Skip to main content

Advertisement

Log in

Quantitative analysis of temperature effect on SOI piezoresistive pressure sensors

  • Technical Paper
  • Published:
Microsystem Technologies Aims and scope Submit manuscript

Abstract

Quantitative analysis of the temperature effect on piezoresistive pressure sensor response for operation at 200 bar, 200 °C was carried out through FEM simulations. Pressure sensor design based on bulk micromachined silicon diaphragm of geometry of 1 mm × 1 mm and thickness of 200 µm was used for this study. The location of the piezoresistors on the diaphragms was optimized for obtaining maximum sensitivity. Subsequently, the temperature effect on the response of pressure sensor was simulated in the temperature range of 25–200 °C for piezoresistive doping concentration of 1019 cm−3. Based on the simulation results, a quantitative data for variation of the pressure sensor response with temperature is presented. Pressure sensor with boron doped piezoresistors of 1019 cm−3 doping was observed to show decrease of sensitivity of 1.47 × 10−3 V/V/MPa at 200 °C compared to the sensitivity of 1.86 × 10−3 V/V/MPa at 25 °C.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  • Aljancic U, Resnik D, Vrtacnik D et al (2002) Temperature effects modeling in silicon piezoresistive pressure sensor. In: Electrotechnical Conference, 2002. MELECON 2002. 11th Mediterranean, pp 36–40. doi:10.1109/MELECON.2002.1014525

  • Bao M (2005) Analysis and design principles of MEMS devices. Elsevier, Amsterdam

    Google Scholar 

  • Barlian AA, Park W-T, Mallon JR Jr et al (2009) Review: semiconductor piezoresistance for microsystems. Proc IEEE 97:513–552

    Article  Google Scholar 

  • Cho CH, Jaeger RC, Suhling JC (2008) Characterization of the temperature dependence of the piezoresistive coefficients of silicon from −150 °C to +125 °C. IEEE Sens J 8:1455–1468

    Article  Google Scholar 

  • Fraga MA, Furlan H, Pessoa RS et al (2012) Studies on SiC, DLC and TiO2 thin films as piezoresistive sensor materials for high temperature application. Microsyst Technol 18:1027–1033

    Article  Google Scholar 

  • Fraga MA, Furlan H, Pessoa RS, Massi M (2013) Wide bandgap semiconductor thin films for piezoelectric and piezoresistive MEMS sensors applied at high temperatures: an overview. Microsyst Technol 20:9–21

    Article  Google Scholar 

  • Guo S, Eriksen H, Childress K et al (2009) High temperature smart-cut SOI pressure sensor. Sens Actuators A Phys 154:255–260

    Article  Google Scholar 

  • Hsu T-R (2008) MEMS and microsystems: design, manufacture, and nanoscale engineering. Wiley, Hoboken

    Google Scholar 

  • Kanda Y (1982) A graphical representation of the piezoresistance coefficients in silicon. IEEE Trans Electron Devices 29:64–70

    Article  Google Scholar 

  • Kumar SS, Pant BD (2015) Polysilicon thin film piezoresistive pressure microsensor: design, fabrication and characterization. Microsyst Technol 21:1949–1958

    Article  Google Scholar 

  • Kumar SS, Ojha AK, Pant BD (2016) Experimental evaluation of sensitivity and non-linearity in polysilicon piezoresistive pressure sensors with different diaphragm sizes. Microsyst Technol 22:83–91

    Article  Google Scholar 

  • Li X, Liu Q, Pang S et al (2012) Sensors and actuators A: physical high-temperature piezoresistive pressure sensor based on implantation of oxygen into silicon wafer. Sens Actuators A Phys 179:277–282

    Article  Google Scholar 

  • Ngo H-D, Mukhopadhyay B, Ehrmann O, Lang K-D (2015) Advanced Liquid-free, piezoresistive, SOI-based pressure sensors for measurements in harsh environments. Sensors 15:20305–20315

    Article  Google Scholar 

  • Niu Z, Zhao Y, Tian B (2014) Design optimization of high pressure and high temperature piezoresistive pressure sensor for high sensitivity. Rev Sci Instrum 85:15001

    Article  Google Scholar 

  • Obieta I, Castano E, Gracia FJ (1995) High-temperature polysilicon pressure sensor. Sens Actuators A Phys 46:161–165

    Article  Google Scholar 

  • Phan H-P, Dao DV, Nakamura K et al (2015) The piezoresistive effect of SiC for MEMS sensors at high temperatures: a review. J Microelectromech Syst 24:1663–1677

    Article  Google Scholar 

  • Singh K, Joyce R, Varghese S, Akhtar J (2015) Fabrication of electron beam physical vapor deposited polysilicon piezoresistive MEMS pressure sensor. Sens Actuators A Phys 223:151–158

    Article  Google Scholar 

  • Smith CS (1954) Piezoresistance effect in germanium and silicon. Phys Rev 94:42

    Article  Google Scholar 

  • Sze SM, Ng KK (2007) Physics of semiconductor devices, 3rd edn. Wiley, New York, pp 164, 682

  • Timoshenko SP, Woinowsky-Krieger S (1959) Theory of plates and shells. McGraw-Hill, New York

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anita Topkar.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Belwanshi, V., Topkar, A. Quantitative analysis of temperature effect on SOI piezoresistive pressure sensors. Microsyst Technol 23, 2719–2725 (2017). https://doi.org/10.1007/s00542-016-3102-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00542-016-3102-1

Keywords

Navigation