Skip to main content

Advertisement

Log in

Piezoelectric energy harvester using mechanical frequency up conversion for operation at low-level accelerations and low-frequency vibration

  • Technical Paper
  • Published:
Microsystem Technologies Aims and scope Submit manuscript

Abstract

In this paper, we propose a modified frequency up-conversion mechanism to lower the operational acceleration level for energy harvesting devices using a snap-through buckling phenomenon. The proposed device consists of a buckled bridge beam clamped on flexible sidewalls with a proof mass and cantilever beams attached to the bridge. When subject to a vibration, the buckled bridge beam snaps through between two stable states, inducing impulsive acceleration on the attached piezoelectric cantilevers. During the snap-through transition, the flexible sidewalls deflect outward, thus lowering the threshold acceleration value for the state transition. Various sidewall materials with different flexibilities were tested to determine the maximum output power, bandwidth, and output characteristics for various input acceleration values. The minimum acceleration value for snap-through transition was 0.5g (g = 9.8 m/s2) when using latex sidewalls. A maximum output power of 0.4 mW Hz/cm2—that is 10 μW for test sample at an excitation frequency of 15 Hz—was generated by using the proposed device with latex sidewalls.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Ashraf K, Md Khir MH, Dennis JO, Baharudin Z (2013) A wideband, frequency up-converting bounded vibration energyvharvester for a low frequencyvenvironment. Smart Mater Struct 22:025018

    Article  Google Scholar 

  • Basset P, Galayko D, Paracha AM, Marty F, Dudka A, Bourouina T (2009) A batch-fabricated and electret-free silicon electrostatic vibration energy harvester. J Micromech Microeng 19:115025

    Article  Google Scholar 

  • Beeby SP, O’Donnell T (2009) Electromagnetic energy harvesting. Springer, USA

    Book  Google Scholar 

  • Betts DN, Kim HA, Bowen CR, Inman DJ (2012) Optimal configurations of bistable piezo-composites for energy harvesting. Appl Phys Lett 100:114104

    Article  Google Scholar 

  • Blarigan LV, Danzl P, Moehlisa J (2012) A broadband vibrational energy harvester. Appl Phys Lett 100:253904

    Article  Google Scholar 

  • Bokaian A (1998) Natural frequencies of beams under compressive axial loads. J Sound Vib 126:49–65

    Article  Google Scholar 

  • Cottone F, Gammaitoni L, Vocca H, Ferrari M, Ferrari V (2012) Piezoelectric buckled beams for random vibration energy harvesting. Smart Mater Struct 21:035021

    Article  Google Scholar 

  • Elfrink R, Kamel T, Goedbloed M, Matova S, Hohlfeld D, Van Andel Y, Van Schaijk R (2009) Vibration energy harvesting with aluminum nitride-based piezoelectric devices. J Micromech Microeng 19:094005

    Article  Google Scholar 

  • Erturk A, Inman DJ (2009) An experimentally validated bimorph cantilever model for piezoelectric energy harvesting from base excitations. Smart Mater Struct 18:025009

    Article  Google Scholar 

  • Galchev T, Kim H, Najafi K (2011) Micro power generator for harvesting low-frequency and nonperiodic vibrations. J Microelectromech Syst 20:852–866

    Google Scholar 

  • Gu L, Livermore C (2011) Impact-driven, frequency up-converting coupled vibration energy harvesting device for low-frequency operation. Smart Mater Struct 20:045004

    Article  Google Scholar 

  • Jung SM, Yun KS (2010) Energy-harvesting device with mechanical frequency up-conversion mechanism for increased power efficiency and wideband operation. Appl Phys Lett 96:111906

    Article  Google Scholar 

  • Krupenkin T, Taylor JA (2011) Reverse electrowetting as a new approach to high-power energy harvesting. Nat Commun 2:448

    Article  Google Scholar 

  • Kulkarni S, Koukharenko E, Torah R, Tudor J, Beeby S, O’Donnell T, Roy S (2008) Design, fabrication and test of integrated micro-scale vibration-based electromagnetic generator. Sens Actuators A Phys 145:336–342

    Article  Google Scholar 

  • Liu JQ, Fang HB, Xu ZY, Mao XH, Shen XC, Chen D, Liao H, Cai BC (2008) A MEMS-based piezoelectric power generator array for vibration energy harvesting. Microelectron J 39:802–806

    Article  Google Scholar 

  • Liu H, Lee C, Kobayashi T, Tay CJ, Quan C (2012) Piezoelectric MEMS-based wideband energy harvesting systems using a frequency-up-conversion cantilever stopper. Sens Actuators A Phys 186:242–248

    Article  Google Scholar 

  • Priya S, Inman DJ (2009) Energy harvesting technologies. Springer, New York

    Book  Google Scholar 

  • Qiu J, Lang JH, Slocum AH (2004) A curved-beam bistable mechanism. J Microelectromech Syst 13:137–146

    Article  Google Scholar 

  • Renaud M, Karakaya K, Sterken T, Fiorini P, Van Hoof C, Puers R (2008) Fabrication, modelling and characterization of MEMS piezoelectric vibration harvesters. Sens Actuators A Phys 145:380–386

    Article  Google Scholar 

  • Roundy S, Leland ES, Baker J, Carleton E, Reilly E, Lai E, Otis B, Rabaey JM, Wright PK, Sundararajan V (2005) Improving power output for vibration-based energy scavengers. Pervasive Comput IEEE 4:28–36

    Article  Google Scholar 

  • Saif MTA (2000) On a tunable bistable MEMS-theory and experiment. J Microelectromech Syst 9:157–170

    Article  Google Scholar 

  • Sari I, Balkan T, Kulah H (2008) An electromagnetic micro power generator for wideband environmental vibrations. Sens Actuators A Phys 145:405–413

    Article  Google Scholar 

  • Sari I, Balkan T, Kulah H (2010) An electromagnetic micro power generator for low-frequency environmental vibrations based on the frequency upconversion technique. J Microelectromech Syst 19:14–27

    Article  Google Scholar 

  • Shen D, Park JH, Ajitsaria J, Choe SY, Wikle HC, Kim DJ (2008) The design, fabrication, and evaluation of a MEMS PZT cantilever with an integrated Si proof mass for vibration energy harvesting. J Micromech Microeng 18:055017

    Article  Google Scholar 

  • Suzuki Y, Miki D, Edamoto M, Honzumi M (2010) A MEMS electret generator with electrostatic levitation for vibration-driven energy-harvesting applications. J Micromech Microeng 20:104002

    Article  Google Scholar 

  • Wang P, Tanaka K, Sugiyama S, Dai X, Zhao X, Liu J (2009) A micro electromagnetic low level vibration energy harvester based on MEMS technology. Microsyst Technol 15:941–951

    Article  Google Scholar 

  • Wickenheiser A, Garcia E (2010) Broadband vibration-based energy harvesting improvement through frequency up-conversion by magnetic excitation. Smart Mater Struct 19:065020

    Article  Google Scholar 

  • Xu R, Lei A, Dahl-Petersen C, Hansen K, Guizzetti M, Birkelund K, Thomsen E, Hansen O (2011) Screen printed PZT/PZT thick film bimorph MEMS cantilever device for vibration energy harvesting. Sens Actuators A Phys 188:383–388

    Article  Google Scholar 

  • Yang B, Lee C, Xiang W, Xie J, Han He J, Kotlanka RK, Low SP, Feng H (2009) Electromagnetic energy harvesting from vibrations of multiple frequencies. J Micromech Microeng 19:035001

    Article  Google Scholar 

  • Zhao S, Erturk A (2013) On the stochastic excitation of monostable and bistable electroelastic power generators: relative advantages and tradeoffs in a physical system. Appl Phys Lett 102:103902

    Article  Google Scholar 

  • Zhu D, Beeby S, Tudor J, Harris N (2012) Vibration energy harvesting using the Halbach array. Smart Mater Struct 21:075020

    Article  Google Scholar 

  • Zorlu O, Topal ET, Kulah H (2011) A vibration-based electromagnetic energy harvester using mechanical frequency up-conversion method. IEEE Sens J 11:481–488

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by Pioneer Research Center Program (No. 2010-0019453) and the National Research Foundation of Korea (NRF) grant (No. 2013R1A2A2A03016489) funded by the Korea Ministry of Science, ICT and Future Planning.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kwang-Seok Yun.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Han, D., Yun, KS. Piezoelectric energy harvester using mechanical frequency up conversion for operation at low-level accelerations and low-frequency vibration. Microsyst Technol 21, 1669–1676 (2015). https://doi.org/10.1007/s00542-014-2261-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00542-014-2261-1

Keywords

Navigation