Skip to main content

Advertisement

Log in

Low-temperature quartz wafer bonding using hyperbranched polyurethane oligomers

  • Technical Paper
  • Published:
Microsystem Technologies Aims and scope Submit manuscript

Abstract

In this paper, we introduce a new bonding technology for the assembly of micro- structured glass substrates for miniaturized chemical analysis. The protocol features a facile polymer chemistry method processing at lower temperatures (<100 °C). The method consisted of a proper cleaning of the two glass surfaces, followed by hydroxylization, aminosilylation and hyperbranched polyurethane oligomers (HPU) bridging on quartz wafer surfaces as the interlayer. Strong bonding with a shear force 4.5 MPa has been achieved. The present procedure avoids the possible micro-channel blockage and contamination by using conventional adhesives. Moreover, the microfluidic chips bonded by the above procedures are highly transparent therefore allowing for biochemical compositions to be easily characterized by UV–vis or IR spectroscopy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme1
Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Abgrall P, Nguyen NT (2008) Nanofluidic devices and their applications. Anal Chem 80(7):2326–2341

    Article  Google Scholar 

  • Chen LX, Luo GA, Liu KH, Ma JP, Yao B, Yan YC, Wang YM (2006) Bonding of glass-based microfluidic chips at low- or room-temperature in routine laboratory. Sens Actuators B 119:335–344

    Article  Google Scholar 

  • Coffinier Y, Olivier C, Perzyna A, Grandidier B, Wallart X, Durand JO, Melnyk O, Stiévenard D (2005) Semicarbazide functionalized Si(111) surfaces for the site-specific immobilization of peptides. Langmuir 21(4):1489–1496

    Article  Google Scholar 

  • Díaz-González M, Baldi A (2012) Fabrication of biofunctionalized microfluidic structures by low-temperature wax bonding. Anal Chem 84(18):7838–7844

    Article  Google Scholar 

  • Dykstra PH, Roy V, Byrd C, Bentley WE, Ghodssi R (2011) Microfluidic electrochemical sensor array for characterizing protein interactions with various functionalized surfaces. Anal Chem 83(15):5920–5927

    Article  Google Scholar 

  • Karabudak E, Kas R, Ogieglo W, Rafieian D, Schlautmann S, Lammertink RGH, Gardeniers HJGE, Mul G (2013) Disposable attenuated total reflection-infrared crystals from silicon wafer: a versatile approach to surface infrared spectroscopy. Anal Chem 85(1):33–38

    Article  Google Scholar 

  • Lasky JB (1986) Wafer bonding for silicon-on-insulator technologies. Appl Phys Lett 48(1):78–80

    Article  Google Scholar 

  • Lee CC, Chiang HP, Li KL, Ko FH, Su CY, Yang YS (2009) Surface reaction limited model for the evaluation of immobilized enzyme on planar surfaces. Anal Chem 81(7):2737–2744

    Article  Google Scholar 

  • Lee YC, Kim JW, Kim Y, Jung SB (2013) Reliability of chip on glass module fabricated with direct printing method. Microelectron Eng 107:114–120

    Article  Google Scholar 

  • Liu TH, Ding L, He G, Yang Y, Wang WL, Fang Y (2011) Photochemical stabilization of terthiophene and its utilization as a new sensing element in the fabrication of monolayer-chemistry-based fluorescent sensing films. ACS Appl Mater Interfaces 3(4):1245–1253

    Article  Google Scholar 

  • Liu WJ, Zhang YX, Hou SH, Zhao ZBK (2013) Synthesis of isoprenoid chain-contained chemical probes for an investigation of molecular interactions by using quartz crystal microbalance. Tetrahedron Lett 54(46):6208–6210

    Article  Google Scholar 

  • Maszara WP, Goetz G, Caviglia A, McKitterick JB (1988) Bonding of silicon wafers for Silicon-On-Insulator. J Appl Phys 64:4943–4950

    Article  Google Scholar 

  • Mirasoli M, Guardigli M, Michelini E, Roda A (2014) Recent advancements in chemical luminescence-based lab-on-chip and microfluidic platforms for bioanalysis. J Pharm Biomed Anal 87(18):36–52

    Article  Google Scholar 

  • Moon JH, Shin JW, Kim SY, Park JW (1996) Formation of uniform aminosilane thin layers: an imine formation to measure relative surface density of the amine group. Langmuir 12:4621–4624

    Article  Google Scholar 

  • Moon JH, Kim JH, Kim KJ, Kang TH, Kim B, Kim CH, Hahn JH, Park JW (1997) Absolute surface density of the amine group of the aminosilylated thin layers: ultraviolet-visible spectroscopy, second harmonic generation, and synchrotron- radiation photoelectron spectroscopy study. Langmuir 13:4305–4310

    Article  Google Scholar 

  • Nakanishi H, Nishimoto T, Kanai M, Saitoh T, Nakamura K, Shoji S (1999) Condition optimization, reliability evaluation of SiO2–SiO2 HF bonding and its application for UV detection micro flow cell. In: Proc. Transducers 99, Sendai, Japan 1332

  • Poenar DP, Iliescu C, Carp M, Pang AJ, Leck KJ (2007) Glass-based microfluidic device fabricated by parylene wafer-to-wafer bonding for impedance spectroscopy. Sens Actuators A: Physical 139:162–171

    Article  Google Scholar 

  • Ramos LA, Ulic SE, Romano RM, Vishnevskiy YV, Berger RJF, Mitzel NW, Beckers H, Willner H, Tong SR, Ge MF, Della Védova CO (2012) chlorodifluoroacetyl isocyanate, ClF2CC(O)NCO: preparation and structural and spectroscopic studies. J Phys Chem A 116(47):11586–11595

    Article  Google Scholar 

  • Schmidt MA (1998) Wafer-to-wafer bonding for microstructure formation. Proc IEEE 86:1575

    Article  Google Scholar 

  • Sharma CS, Sharma A, Madou M (2010) Multiscale carbon structures fabricated by direct micropatterning of electrospun mats of SU-8 photoresist nanofibers. Langmuir 26(4):2218–2222

    Article  Google Scholar 

  • Shimbo M, Furukawa K, Fukuda K, Tanzawa K (1986) Silicon-to-silicon direct bonding method. J Appl Phys 60:2987–2989

    Article  Google Scholar 

  • Smith RL, Collins SD (1988) Micromachined packaging for chemical microsensors. IEEE Trans Electron Devices ED 35:787–792

    Article  Google Scholar 

  • Vander Groen S, Rosmeulen M, Baert K, Jansen P, Deferm L (1997) Substrate bonding techniques for CMOS processed wafers. J Micromech Microeng 7:108–110

    Article  Google Scholar 

  • Vilkner T, Janasek D, Manz A (2004) Micro total analysis systems, recent developments. Anal Chem 76(12):3373–3386

    Article  Google Scholar 

  • Vladisavljević GT, Khalid N, Neves MA, Kuroiwa T, Nakajima M, Uemura K, Ichikawa S, Kobayashi I (2013) Industrial lab-on-a-chip: design, applications and scale-up for drug discovery and delivery. Adv Drug Deliv Rev 65(11–12):1626–1663

    Article  Google Scholar 

  • Wei J, Nai SML, Wong CKS, Sun Z, Lee LC (2003) Low temperature glass-to-glass bonding. IEEE Trans Adv Packag 26(3):289–294

    Article  Google Scholar 

  • Zhao JY, Shang ZP, Gao LX (2007) Bonding quartz wafers by the atom transfer radical polymerization of the glycidyl methacrylate at mild temperature. Sens Actuators A 35:257–261

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jianying Zhao or Shaomin Liu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhao, J., Jin, F., Zhao, J. et al. Low-temperature quartz wafer bonding using hyperbranched polyurethane oligomers. Microsyst Technol 21, 1473–1478 (2015). https://doi.org/10.1007/s00542-014-2258-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00542-014-2258-9

Keywords

Navigation