Skip to main content

Advertisement

Log in

The predictive ability of six pharmacokinetic models of rocuronium developed using a single bolus: evaluation with bolus and continuous infusion regimen

  • Original Article
  • Published:
Journal of Anesthesia Aims and scope Submit manuscript

Abstract

Purpose

Rocuronium concentration prediction using pharmacokinetic (PK) models would be useful for controlling rocuronium effects because neuromuscular monitoring throughout anesthesia can be difficult. This study assessed whether six different compartmental PK models developed from data obtained after bolus administration only could predict the measured plasma concentration (Cp) values of rocuronium delivered by bolus followed by continuous infusion.

Methods

Rocuronium Cp values from 19 healthy subjects who received a bolus dose followed by continuous infusion in a phase III multicenter trial in Japan were used retrospectively as evaluation datasets. Six different compartmental PK models of rocuronium were used to simulate rocuronium Cp time course values, which were compared with measured Cp values. Prediction error (PE) derivatives of median absolute PE (MDAPE), median PE (MDPE), wobble, divergence absolute PE, and divergence PE were used to assess inaccuracy, bias, intra-individual variability, and time-related trends in APE and PE values.

Results

MDAPE and MDPE values were acceptable only for the Magorian and Kleijn models. The divergence PE value for the Kleijn model was lower than −10 %/h, indicating unstable prediction over time. The Szenohradszky model had the lowest divergence PE (−2.7 %/h) and wobble (5.4 %) values with negative bias (MDPE = −25.9 %). These three models were developed using the mixed-effects modeling approach. The Magorian model showed the best PE derivatives among the models assessed.

Conclusions

A PK model developed from data obtained after single-bolus dosing can predict Cp values during bolus and continuous infusion. Thus, a mixed-effects modeling approach may be preferable in extrapolating such data.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Maybauer DM, Geldner G, Blobner M, Puhringer F, Hofmockel R, Rex C, Wulf HF, Eberhart L, Arndt C, Eikermann M. Incidence and duration of residual paralysis at the end of surgery after multiple administrations of cisatracurium and rocuronium. Anaesthesia. 2007;62:12–7.

    Article  CAS  PubMed  Google Scholar 

  2. Fuchs-Buder T, Schreiber JU, Meistelman C. Monitoring neuromuscular block: an update. Anaesthesia. 2009;64(Suppl 1):82–9.

    Article  PubMed  Google Scholar 

  3. Struys MM, De Smet T, Mortier EP. Simulated drug administration: an emerging tool for teaching clinical pharmacology during anesthesiology training. Clin Pharmacol Ther. 2008;84:170–4.

    Article  CAS  PubMed  Google Scholar 

  4. Wierda JM, Kleef UW, Lambalk LM, Kloppenburg WD, Agoston S. The pharmacodynamics and pharmacokinetics of Org 9426, a new non-depolarizing neuromuscular blocking agent, in patients anaesthetized with nitrous oxide, halothane and fentanyl. Can J Anaesth. 1991;38:430–5.

    Article  CAS  PubMed  Google Scholar 

  5. Szenohradszky J, Fisher DM, Segredo V, Caldwell JE, Bragg P, Sharma ML, Gruenke LD, Miller RD. Pharmacokinetics of rocuronium bromide (ORG 9426) in patients with normal renal function or patients undergoing cadaver renal transplantation. Anesthesiology. 1992;77:899–904.

    Article  CAS  PubMed  Google Scholar 

  6. Alvarez-Gomez JA, Estelles ME, Fabregat J, Perez F, Brugger AJ. Pharmacokinetics and pharmacodynamics of rocuronium bromide in adult patients. Eur J Anaesthesiol Suppl. 1994;9:53–6.

    CAS  PubMed  Google Scholar 

  7. Cooper RA, Maddineni VR, Mirakhur RK, Wierda JM, Brady M, Fitzpatrick KT. Time course of neuromuscular effects and pharmacokinetics of rocuronium bromide (Org 9426) during isoflurane anaesthesia in patients with and without renal failure. Br J Anaesth. 1993;71:222–6.

    Article  CAS  PubMed  Google Scholar 

  8. Magorian T, Wood P, Caldwell J, Fisher D, Segredo V, Szenohradszky J, Sharma M, Gruenke L, Miller R. The pharmacokinetics and neuromuscular effects of rocuronium bromide in patients with liver disease. Anesth Analg. 1995;80:754–9.

    CAS  PubMed  Google Scholar 

  9. Kleijn HJ, Zollinger DP, van den Heuvel MW, Kerbusch T. Population pharmacokinetic-pharmacodynamic analysis for sugammadex-mediated reversal of rocuronium-induced neuromuscular blockade. Br J Clin Pharmacol. 2011;72:415–33.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Kataria BK, Ved SA, Nicodemus HF, Hoy GR, Lea D, Dubois MY, Mandema JW, Shafer SL. The pharmacokinetics of propofol in children using three different data analysis approaches. Anesthesiology. 1994;80:104–22.

    Article  CAS  PubMed  Google Scholar 

  11. Murat I, Billard V, Vernois J, Zaouter M, Marsol P, Souron R, Farinotti R. Pharmacokinetics of propofol after a single dose in children aged 1–3 years with minor burns. Comparison of three data analysis approaches. Anesthesiology. 1996;84:526–32.

    Article  CAS  PubMed  Google Scholar 

  12. Egan TD, Lemmens HJ, Fiset P, Hermann DJ, Muir KT, Stanski DR, Shafer SL. The pharmacokinetics of the new short-acting opioid remifentanil (GI87084B) in healthy adult male volunteers. Anesthesiology. 1993;79:881–92.

    Article  CAS  PubMed  Google Scholar 

  13. Takagi S, Ozaki M, Iwasaki H, Hatano Y, Takeda J. [Effects of sevoflurane and propofol on neuromuscular blocking action of Org 9426 (rocuronium bromide) infused continuously in Japanese patients]. Masui. 2006;55:963–70.

    PubMed  Google Scholar 

  14. Rex C, Wagner S, Spies C, Scholz J, Rietbergen H, Heeringa M, Wulf H. Reversal of neuromuscular blockade by sugammadex after continuous infusion of rocuronium in patients randomized to sevoflurane or propofol maintenance anesthesia. Anesthesiology. 2009;111:30–5.

    Article  CAS  PubMed  Google Scholar 

  15. Varvel JR, Donoho DL, Shafer SL. Measuring the predictive performance of computer-controlled infusion pumps. J Pharmacokinet Biopharm. 1992;20:63–94.

    Article  CAS  PubMed  Google Scholar 

  16. Glen JB, Servin F. Evaluation of the predictive performance of four pharmacokinetic models for propofol. Br J Anaesth. 2009;102:626–32.

    Article  CAS  PubMed  Google Scholar 

  17. Glass PS, Shafer S, Reves JG. Intravenous drug delivery systems. In: Miller RD, editor. Miller’s anesthesia. 6th ed. Pennsylvania: Elsevier; 2004. p. 439–80.

    Google Scholar 

  18. Benjamini Y, Hochberg Y. Controlling the false discovery rate: a practical and powerful approach to multiple testing. J Roy Stat Soc B. 1995;57:289–300.

    Google Scholar 

  19. Sepulveda P, Cortinez LI, Saez C, Penna A, Solari S, Guerra I, Absalom AR. Performance evaluation of paediatric propofol pharmacokinetic models in healthy young children. Br J Anaesth. 2011;107:593–600.

    Article  CAS  PubMed  Google Scholar 

  20. Masui K, Upton RN, Doufas AG, Coetzee JF, Kazama T, Mortier EP, Struys MM. The performance of compartmental and physiologically based recirculatory pharmacokinetic models for propofol: a comparison using bolus, continuous, and target-controlled infusion data. Anesth Analg. 2010;111:368–79.

    Article  CAS  PubMed  Google Scholar 

  21. Davidson JA, Macleod AD, Howie JC, White M, Kenny GN. Effective concentration 50 for propofol with and without 67% nitrous oxide. Acta Anaesthesiol Scand. 1993;37:458–64.

    Article  CAS  PubMed  Google Scholar 

  22. Miyabe-Nishiwaki T, Masui K, Kaneko A, Nishiwaki K, Nishio T, Kanazawa H. Evaluation of the predictive performance of a pharmacokinetic model for propofol in Japanese macaques (Macaca fuscata fuscata). J Vet Pharmacol Ther. 2013;36:169–73.

    Article  CAS  PubMed  Google Scholar 

  23. Olofsen E, Dinges DF, Van Dongen HP. Nonlinear mixed-effects modeling: individualization and prediction. Aviat Space Environ Med. 2004;75:A134–40.

    PubMed  Google Scholar 

Download references

Acknowledgments

The authors are grateful to MSD K.K. (Tokyo, Japan), a subsidiary of Merck & Co., Inc. (Whitehouse Station, NJ, USA), for providing the evaluation dataset of measured plasma concentrations of rocuronium.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kenichi Masui.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sasakawa, T., Masui, K., Kazama, T. et al. The predictive ability of six pharmacokinetic models of rocuronium developed using a single bolus: evaluation with bolus and continuous infusion regimen. J Anesth 30, 620–627 (2016). https://doi.org/10.1007/s00540-016-2174-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00540-016-2174-5

Keywords

Navigation