Skip to main content
Log in

Increased IL-17A/IL-17F expression ratio represents the key mucosal T helper/regulatory cell-related gene signature paralleling disease activity in ulcerative colitis

  • Original Article—Alimentary Tract
  • Published:
Journal of Gastroenterology Aims and scope Submit manuscript

An Erratum to this article was published on 27 June 2016

Abstract

Background

T helper (Th) and regulatory T (Treg) cell-related cytokines are implicated in inflammatory bowel diseases, including ulcerative colitis (UC). While these cytokines are generally upregulated in inflamed mucosae, the key cytokine profile explaining disease severity has not been determined.

Methods

The Rachmilewitz endoscopic index (REI) was assessed in 61 UC patients undergoing colonoscopy. Biopsies obtained from inflamed (REI 3–12) and noninflamed (REI 0–2) areas were analyzed by quantitative PCR for expression of mRNAs encoding cytokines and transcription factors related to Th1 (TNF-α, IFN-γ, IL-12p35, IL-12p40, and T-bet), Th2 (IL-4, IL-13, IL-33, and GATA3), Th17 (IL-17A, IL-17F, IL-21, IL-22, IL-23p19, IL-6, and RORC), Th9 (IL-9, IRF4, and PU.1), and Treg (TGF-β and Foxp3). Expression patterns associated with higher REI were determined by univariate and multivariate analyses.

Results

Despite general upregulation, none of these mRNAs showed univariate correlation with REI in inflamed samples. Multiple regression analysis, however, found that joint expression of IL-17A, IL-17F, IL-21, RORC, and TGF-β was significantly predictive of REI (P < 0.0002, R2 = 0.380), with major individual contributions by IL-17A (P < 0.0001) and IL-17F (P < 0.0001), which were associated with increased and decreased REI, respectively. Partial correlation analysis, validating this model, indicated differences between IL-17A and IL-17F in correlating with other targets. The IL-17A/IL-17F ratio showed a significant correlation with REI (r = 0.5124, P < 0.0001), whereas no other mRNAs were essentially predictive of REI.

Conclusions

Mucosal IL-17A/IL-17F ratio significantly correlates with endoscopic score in UC patients, accompanied by their disparate interactions with other Th/Treg-related genes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Nikolaus S, Schreiber S. Diagnostics of inflammatory bowel disease. Gastroenterology. 2007;133:1670–89.

    Article  PubMed  Google Scholar 

  2. Xavier RJ, Podolsky DK. Unravelling the pathogenesis of inflammatory bowel disease. Nature. 2007;448:427–34.

    Article  CAS  PubMed  Google Scholar 

  3. Strober W, Fuss IJ. Proinflammatory cytokines in the pathogenesis of inflammatory bowel diseases. Gastroenterology. 2011;140:1756–67.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Fuss IJ, Neurath M, Boirivant M, et al. Disparate CD4 + lamina propria (LP) lymphokine secretion profiles in inflammatory bowel disease. Crohn’s disease LP cells manifest increased secretion of IFN-gamma, whereas ulcerative colitis LP cells manifest increased secretion of IL-5. J Immunol. 1996;157:1261–70.

    CAS  PubMed  Google Scholar 

  5. Fuss IJ, Heller F, Boirivant M, et al. Nonclassical CD1d-restricted NK T cells that produce IL-13 characterize an atypical Th2 response in ulcerative colitis. J Clin Invest. 2004;113:1490–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Heller F, Florian P, Bojarski C, et al. Interleukin-13 is the key effector Th2 cytokine in ulcerative colitis that affects epithelial tight junctions, apoptosis, and cell restitution. Gastroenterology. 2005;129:550–64.

    Article  CAS  PubMed  Google Scholar 

  7. Kobori A, Yagi Y, Imaeda H, et al. Interleukin-33 expression is specifically enhanced in inflamed mucosa of ulcerative colitis. J Gastroenterol. 2010;45:999–1007.

    Article  CAS  PubMed  Google Scholar 

  8. Christophi GP, Rong R, Holtzapple PG, et al. Immune markers and differential signaling networks in ulcerative colitis and Crohn’s disease. Inflamm Bowel Dis. 2012;18:2342–56.

    Article  PubMed  PubMed Central  Google Scholar 

  9. Monteleone G, Biancone L, Marasco R, et al. Interleukin 12 is expressed and actively released by Crohn’s disease intestinal lamina propria mononuclear cells. Gastroenterology. 1997;112:1169–78.

    Article  CAS  PubMed  Google Scholar 

  10. Matsuoka K, Inoue N, Sato T, et al. T-bet upregulation and subsequent interleukin 12 stimulation are essential for induction of Th1 mediated immunopathology in Crohn’s disease. Gut. 2004;53:1303–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Harrington LE, Hatton RD, Mangan PR, et al. Interleukin 17-producing CD4 + effector T cells develop via a lineage distinct from the T helper type 1 and 2 lineages. Nat Immunol. 2005;6:1123–32.

    Article  CAS  PubMed  Google Scholar 

  12. Park H, Li Z, Yang XO, et al. A distinct lineage of CD4 T cells regulates tissue inflammation by producing interleukin 17. Nat Immunol. 2005;6:1133–41.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Fujino S, Andoh A, Bamba S, et al. Increased expression of interleukin 17 in inflammatory bowel disease. Gut. 2003;52:65–70.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Holtta V, Klemetti P, Sipponen T, et al. IL-23/IL-17 immunity as a hall- mark of Crohn’s disease. Inflamm Bowel Dis. 2008;14:1175–84.

    Article  PubMed  Google Scholar 

  15. Kobayashi T, Okamoto S, Hisamatsu T, et al. IL23 differentially regulates the Th1/Th17 balance in ulcerative colitis and Crohn’s disease. Gut. 2008;57:1682–9.

    Article  CAS  PubMed  Google Scholar 

  16. Hölttä V, Klemetti P, Salo HM, et al. Interleukin-17 immunity in pediatric Crohn disease and ulcerative colitis. J Pediatr Gastroenterol Nutr. 2013;57:287–92.

    Article  PubMed  Google Scholar 

  17. Verma R, Verma N, Paul J. Expression of inflammatory genes in the colon of ulcerative colitis patients varies with activity both at the mRNA and protein level. Eur Cytokine Netw. 2013;24:130–8.

    CAS  PubMed  Google Scholar 

  18. Öhman L, Dahlén R, Isaksson S, et al. Serum IL-17A in newly diagnosed treatment-naive patients with ulcerative colitis reflects clinical disease severity and predicts the course of disease. Inflamm Bowel Dis. 2013;19:2433–9.

    Article  PubMed  Google Scholar 

  19. Fransen K, van Sommeren S, Westra H-J, et al. Correlation of genetic risk and messenger RNA expression in a Th17/IL23 pathway analysis in inflammatory bowel disease. Inflamm Bowel Dis. 2014;20:777–82.

    Article  PubMed  Google Scholar 

  20. Bettelli E, Oukka M, Kuchroo VK. T(H)-17 cells in the circle of immunity and autoimmunity. Nat Immunol. 2007;8:345–50.

    Article  CAS  PubMed  Google Scholar 

  21. Moran EM, Mullan R, McCormick J, et al. Human rheumatoid arthritis tissue production of IL-17A drives matrix and cartilage degradation: synergy with tumour necrosis factor-alpha, Oncostatin M and response to biologic therapies. Arthritis Res. Ther. 2009;11:R113.

    Article  PubMed  PubMed Central  Google Scholar 

  22. Nakamura K, Kitani A, Strober W. Cell contact-dependent immunosuppression by CD4(+)CD25(+) regulatory T cells is mediated by cell surface-bound transforming growth factor beta. J Exp Med. 2001;194:629–44.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Nakamura K, Kitani A, Fuss I, et al. TGF-beta 1 plays an important role in the mechanism of CD4 + CD25 + regulatory T cell activity in both humans and mice. J Immunol. 2004;172:834–42.

    Article  CAS  PubMed  Google Scholar 

  24. Asseman C, Mauze S, Leach MW, Coffman RL, Powrie F. An essential role for interleukin 10 in the function of regulatory T cells that inhibit intestinal inflammation. J Exp Med. 1999;190:995–1004.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Nalleweg N, Chiriac MT, Podstawa E, et al. IL-9 and its receptor are predominantly involved in the pathogenesis of UC. Gut. 2015;64:743–55.

    Article  CAS  PubMed  Google Scholar 

  26. Raddatz D, Bockemühl M, Ramadori G. Quantitative measurement of cytokine mRNA in inflammatory bowel disease: relation to clinical and endoscopic activity and outcome. Eur J Gastroenterol Hepatol. 2005;17:547–57.

    Article  CAS  PubMed  Google Scholar 

  27. Zahn A, Giese T, Karner M, et al. Transcript levels of different cytokines and chemokines correlate with clinical and endoscopic activity in ulcerative colitis. BMC Gastroenterol. 2009;9:13.

    Article  PubMed  PubMed Central  Google Scholar 

  28. Tsukada Y, Nakamura T, Iimura M, Iizuka BE, Hayashi N. Cytokine profile in colonic mucosa of ulcerative colitis correlates with disease activity and response to granulocytapheresis. Am J Gastroenterol. 2002;97:2820–8.

    Article  CAS  PubMed  Google Scholar 

  29. Matsuda R, Koide T, Tokoro C, et al. Quantitive cytokine mRNA expression profiles in the colonic mucosa of patients with steroid naive ulcerative colitis during active and quiescent disease. Inflamm Bowel Dis. 2009;15:328–34.

    Article  PubMed  Google Scholar 

  30. Dziuda DM. Data mining for genomics and proteomics: analysis of gene and protein expression data, vol. 1. New york: John Wiley & Sons; 2010.

    Book  Google Scholar 

  31. Karp LC. Heterogeneity of inflammatory bowel diseases. In: Stephan RT, editor. In: Stephan RT, Fergus S, Loren CK, editors. Inflammatory bowel disease: translating basic science into clinical practice. Hoboken: Wiley-Blackwell; 2010.

    Google Scholar 

  32. Iboshi Y, Nakamura K, Ihara E, et al. Multigene analysis unveils distinctive expression profiles of helper T-cell–related genes in the intestinal mucosa that discriminate between ulcerative colitis and Crohn’s disease. Inflamm Bowel Dis. 2014;20(6):967–77.

    PubMed  Google Scholar 

  33. Rachmilewitz D. Coated mesalazine (5-aminosalicylic acid) versus sulphasalazine in the treatment of active ulcerative colitis: a randomised trial. Br Med J. 1989;298(6666):82–6.

    Article  CAS  Google Scholar 

  34. Hirai F, Matsui T. A critical review of endoscopic indices in ulcerative colitis: inter-observer variation of the endoscopic index. Clin J Gastroenterol. 2008;1:40–5.

    Article  PubMed  Google Scholar 

  35. Hirai F, Matsui T, Aoyagi K, et al. Validity of activity indices in ulcerative colitis: comparison of clinical and endoscopic indices. Dig Endosc. 2010;22(1):39–44.

    Article  PubMed  Google Scholar 

  36. Schoepfer AM, Beglinger C, Straumann A, et al. Ulcerative colitis: correlation of the Rachmilewitz endoscopic activity index with fecal calprotectin, clinical activity, C-reactive protein, and blood leukocytes. Inflamm Bowel Dis. 2009;15(12):1851–8.

    Article  PubMed  Google Scholar 

  37. Florholmen J, Fries W. Candidate mucosal and surrogate biomarkers of inflammatory bowel disease in the era of new technology. Scand J Gastroenterol. 2011;46:1407–17.

    Article  PubMed  Google Scholar 

  38. Boland BS, Boyle DL, Sandborn WJ, et al. Validated gene expression biomarker analysis for biopsy-based clinical trials in ulcerative colitis. Aliment Pharmacol Ther. 2014;40:477–85.

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Bogaert S, Laukens D, Peeters H, et al. Differential mucosal expression of Th17-related genes between the inflamed colon and ileum of patients with inflammatory bowel disease. BMC Immunol. 2010;11:61.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Vandesompele J, De Preter K, Pattyn F, et al. Accurate normalization of real-time quantitative RT-PCR data by geometric averaging of multiple internal control genes. Genome Biol. 2002;3:RESEARCH0034.

    Article  PubMed  PubMed Central  Google Scholar 

  41. Giles MS, Trivigno C. Identity crisis of Th17 cells: many forms, many functions, many questions. Semin Immunol. 2013;25:263–72.

    Article  Google Scholar 

  42. Kanai T, Mikami Y, Sujino T, et al. RORγt-dependent IL-17A-producing cells in the pathogenesis of intestinal inflammation. Mucosal Immunol. 2012;5:240–7.

    Article  CAS  PubMed  Google Scholar 

  43. Pappu R, Ramirez-Carrozzi V, Sambandam A. The interleukin 17 cytokine family: critical players in host defence and inflammatory diseases. Immunology. 2011;134(1):8–16.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Chang SH, Dong C. A novel heterodimeric cytokine consisting of IL-17 and IL-17F regulates inflammatory responses. Cell Res. 2007;17(5):435–40.

    PubMed  Google Scholar 

  45. Wright JF, Guo Y, Quazi A, Luxenberg DP, et al. Identification of an interleukin 17F/17A heterodimer in activated human CD4 + T cells. J Biol Chem. 2007;282(18):13447–55.

    Article  CAS  PubMed  Google Scholar 

  46. Hueber W, Sands BE, Lewitzky S, et al. Secukinumab, a human anti-IL-17A monoclonal antibody, for moderate to severe Crohn’s disease: unexpected results of a randomised, double-blind placebo-controlled trial. Gut. 2012;61:1693–700.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Wedebye Schmidt EG, Larsen HL, Kristensen NN, et al. TH17 cell induction and effects of IL-17A and IL-17F blockade in experimental colitis. Inflamm Bowel Dis. 2013;19(8):1567–76.

    Article  PubMed  Google Scholar 

  48. Giles DA, Moreno-Fernandez ME, Stankiewicz TE, et al. Regulation of Inflammation by IL-17A and IL-17F Modulates Non-Alcoholic Fatty Liver Disease Pathogenesis. PLoS One. 2016;11:e0149783 Guillou H, editor.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

We thank Naoko Yamamoto for advice on performing the experiments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kazuhiko Nakamura.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Funding

This work was supported in part by a grant from the Japanese Ministry of Education, Culture, Sports, Science and Technology (Grant Number 20590743).

Additional information

An erratum to this article is available at http://dx.doi.org/10.1007/s00535-016-1231-z.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Iboshi, Y., Nakamura, K., Fukaura, K. et al. Increased IL-17A/IL-17F expression ratio represents the key mucosal T helper/regulatory cell-related gene signature paralleling disease activity in ulcerative colitis. J Gastroenterol 52, 315–326 (2017). https://doi.org/10.1007/s00535-016-1221-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00535-016-1221-1

Keywords

Navigation