Skip to main content

Advertisement

Log in

Urinary excretion of the water channel aquaporin 2 correlated with the pharmacological effect of tolvaptan in cirrhotic patients with ascites

  • Original Article—Liver, Pancreas, and Biliary Tract
  • Published:
Journal of Gastroenterology Aims and scope Submit manuscript

Abstract

Background

The water channel aquaporin 2 (AQP2) at the apical membrane of renal collecting duct cells mediates water reabsorption. The expression of AQP2 at the apical membrane is tightly regulated by vasopressin and was quantitated by measurement of the urinary form by a recently developed ELISA. Tolvaptan, an antagonist of vasopressin type 2 receptor, inhibits water reabsorption in cirrhosis. The aim of this study was to determine the correlation between the pharmacological effect of tolvaptan and the dynamics of urinary AQP2 levels.

Methods

Tolvaptan was administered to 41 cirrhotic patients with ascites unresponsive to standard diuretic therapy. Urinary excretion of AQP2 and urinary osmolarity were measured at the baseline and at 4, 8, and 24 h after administration of tolvaptan.

Results

At the baseline, urinary AQP2/creatinine ratios were significantly higher in cirrhotic patients with ascites than in healthy controls (P < 0.0001). After administration of tolvaptan, urinary AQP2/creatinine ratios decreased by 45.0 % at 4 h and 77.0 % at 8 h. Similarly, urinary osmolarity decreased by 42.0 % at 4 h and 41.5 % at 8 h. Urinary AQP2 levels and urinary osmolarity significantly correlated at the baseline and at all time points after tolvaptan administration. The degree of the decrease in urinary AQP2 levels and degree of the decrease in urinary osmolarity correlated significantly at 4 h (r = 0.452, P = 0.009) and 8 h (r = 0.384, P = 0.030) after tolvaptan administration.

Conclusions

These results indicate that the vasopressin–AQP2 system plays a major role in fluid retention in cirrhosis and that the pharmacological effect of tolvaptan to inhibit water reabsorption can be monitored by measurement of the dynamics of urinary AQP2 levels.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Sola E, Watson H, Graupera I, et al. Factors related to quality of life in patients with cirrhosis and ascites: relevance of serum sodium concentration and leg edema. J Hepatol. 2012;57(6):1199–206.

    Article  CAS  PubMed  Google Scholar 

  2. Gines P, Cardenas A, Arroyo V, Rodes J. Management of cirrhosis and ascites. N Engl J Med. 2004;350(16):1646–54.

    Article  CAS  PubMed  Google Scholar 

  3. Gines P, Jimenez W, Arroyo V, et al. Atrial natriuretic factor in cirrhosis with ascites: plasma levels, cardiac release and splanchnic extraction. Hepatology. 1988;8(3):636–42.

    Article  CAS  PubMed  Google Scholar 

  4. La Villa G, Romanelli RG, Casini Raggi V, et al. Plasma levels of brain natriuretic peptide in patients with cirrhosis. Hepatology. 1992;16(1):156–61.

    Article  PubMed  Google Scholar 

  5. Arroyo V, Bosch J, Mauri M, et al. Renin, aldosterone and renal haemodynamics in cirrhosis with ascites. Eur J Clin Investig. 1979;9(1):69–73.

    Article  CAS  Google Scholar 

  6. Bichet D, Szatalowicz V, Chaimovitz C, Schrier RW. Role of vasopressin in abnormal water excretion in cirrhotic patients. Ann Intern Med. 1982;96(4):413–7.

    Article  CAS  PubMed  Google Scholar 

  7. Claria J, Jimenez W, Arroyo V, et al. Blockade of the hydroosmotic effect of vasopressin normalizes water excretion in cirrhotic rats. Gastroenterology. 1989;97(5):1294–9.

    CAS  PubMed  Google Scholar 

  8. Claria J, Jimenez W, Arroyo V, et al. Effect of V1-vasopressin receptor blockade on arterial pressure in conscious rats with cirrhosis and ascites. Gastroenterology. 1991;100(2):494–501.

    CAS  PubMed  Google Scholar 

  9. Asahina Y, Izumi N, Enomoto N, et al. Increased gene expression of water channel in cirrhotic rat kidneys. Hepatology. 1995;21(1):169–73.

    Article  CAS  PubMed  Google Scholar 

  10. Fushimi K, Uchida S, Hara Y, Hirata Y, Marumo F, Sasaki S. Cloning and expression of apical membrane water channel of rat kidney collecting tubule. Nature. 1993;361(6412):549–52.

    Article  CAS  PubMed  Google Scholar 

  11. Sasaki S, Fushimi K, Saito H, et al. Cloning, characterization, and chromosomal mapping of human aquaporin of collecting duct. J Clin Investig. 1994;93(3):1250–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Radin MJ, Yu MJ, Stoedkilde L, et al. Aquaporin-2 regulation in health and disease. Vet Clin Pathol. 2012;41(4):455–70.

    Article  PubMed  PubMed Central  Google Scholar 

  13. Sasaki S. Aquaporin 2: from its discovery to molecular structure and medical implications. Mol Aspects Med. 2012;33(5–6):535–46.

    Article  CAS  PubMed  Google Scholar 

  14. Brown D, Hasler U, Nunes P, Bouley R, Lu HA. Phosphorylation events and the modulation of aquaporin 2 cell surface expression. Curr Opin Nephrol Hyperten. 2008;17(5):491–8.

    Article  CAS  Google Scholar 

  15. Kanno K, Sasaki S, Hirata Y, et al. Urinary excretion of aquaporin-2 in patients with diabetes insipidus. N Engl J Med. 1995;332(23):1540–5.

    Article  CAS  PubMed  Google Scholar 

  16. Pisitkun T, Shen RF, Knepper MA. Identification and proteomic profiling of exosomes in human urine. Proc Natl Acad Sci U S A. 2004;101(36):13368–73.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Rai T, Sekine K, Kanno K, et al. Urinary excretion of aquaporin-2 water channel protein in human and rat. J Am Soc Nephrol. 1997;8(9):1357–62.

    CAS  PubMed  Google Scholar 

  18. Sasaki S, Ohmoto Y, Mori T, Iwata F, Muraguchi M. Daily variance of urinary excretion of AQP2 determined by sandwich ELISA method. Clin Exp Nephrol. 2012;16(3):406–10.

    Article  CAS  PubMed  Google Scholar 

  19. Ivarsen P, Frokiaer J, Aagaard NK, et al. Increased urinary excretion of aquaporin 2 in patients with liver cirrhosis. Gut. 2003;52(8):1194–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Elliot S, Goldsmith P, Knepper M, Haughey M, Olson B. Urinary excretion of aquaporin-2 in humans: a potential marker of collecting duct responsiveness to vasopressin. J Am Soc Nephrol. 1996;7(3):403–9.

    CAS  PubMed  Google Scholar 

  21. Matsuzaki M, Hori M, Izumi T, Fukunami M. Efficacy and safety of tolvaptan in heart failure patients with volume overload despite the standard treatment with conventional diuretics: a phase III, randomized, double-blind, placebo-controlled study (QUEST study). Cardiovasc Drugs Ther. 2011;25(Suppl 1):S33–45.

    Article  PubMed  Google Scholar 

  22. Konstam MA, Gheorghiade M, Burnett JC Jr, et al. Effects of oral tolvaptan in patients hospitalized for worsening heart failure: the EVEREST outcome trial. JAMA. 2007;297(12):1319–31.

    Article  CAS  PubMed  Google Scholar 

  23. Gheorghiade M, Konstam MA, Burnett JC Jr, et al. Short-term clinical effects of tolvaptan, an oral vasopressin antagonist, in patients hospitalized for heart failure: the EVEREST clinical status trials. JAMA. 2007;297(12):1332–43.

    Article  CAS  PubMed  Google Scholar 

  24. Hori M. Tolvaptan for heart failure patients with volume overload. Cardiovasc Drug Ther. 2011;25(Suppl 1):S1–4.

    Article  Google Scholar 

  25. Schrier RW, Gross P, Gheorghiade M, et al. Tolvaptan, a selective oral vasopressin V2-receptor antagonist, for hyponatremia. N Engl J Med. 2006;355(20):2099–112.

    Article  CAS  PubMed  Google Scholar 

  26. Sakaida I, Kawazoe S, Kajimura K, et al. Tolvaptan for improvement of hepatic edema: a phase 3, multicenter, randomized, double-blind, placebo-controlled trial. Hepatol Res. 2014;44(1):73–82.

    Article  CAS  PubMed  Google Scholar 

  27. Zhang X, Wang SZ, Zheng JF, et al. Clinical efficacy of tolvaptan for treatment of refractory ascites in liver cirrhosis patients. World J Gastroenterol. 2014;20(32):11400–5.

    Article  PubMed  PubMed Central  Google Scholar 

  28. Gaglio P, Marfo K, Chiodo J 3rd. Hyponatremia in cirrhosis and end-stage liver disease: treatment with the vasopressin V2-receptor antagonist tolvaptan. Dig Dis Sci. 2012;57(11):2774–85.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Okita K, Kawazoe S, Hasebe C, et al. Dose-finding trial of tolvaptan in liver cirrhosis patients with hepatic edema: a randomized, double-blind, placebo-controlled trial. Hepatol Res. 2014;44(1):83–91.

    Article  CAS  PubMed  Google Scholar 

  30. Kogiso T, Tokushige K, Hashimoto E, et al. Safety and efficacy of long-term tolvaptan therapy for decompensated liver cirrhosis. Hepatol Res. 2015. doi:10.1111/hepr.12547.

  31. Ohki T, Sato K, Yamada T, et al. Efficacy of tolvaptan in patients with refractory ascites in a clinical setting. World J Hepatol. 2015;7(12):1685–93.

    Article  PubMed  PubMed Central  Google Scholar 

  32. European Association for the Study of the Liver. EASL clinical practice guidelines on the management of ascites, spontaneous bacterial peritonitis, and hepatorenal syndrome in cirrhosis. J Hepatol. 2010;53(3):397–417.

  33. Hernandez-Guerra M, Garcia-Pagan JC, Bosch J. Increased hepatic resistance: a new target in the pharmacologic therapy of portal hypertension. J Clin Gastroenterol. 2005;39(4 Suppl 2):S131–7.

    Article  CAS  PubMed  Google Scholar 

  34. Epstein FH. Underfilling versus overflow in hepatic ascites. N Engl J Med. 1982;307(25):1577–8.

    Article  CAS  PubMed  Google Scholar 

  35. Esteva-Font C, Baccaro ME, Fernandez-Llama P, et al. Aquaporin-1 and aquaporin-2 urinary excretion in cirrhosis: relationship with ascites and hepatorenal syndrome. Hepatology. 2006;44(6):1555–63.

    Article  CAS  PubMed  Google Scholar 

  36. Chung SH, Jun DW, Kim KT, et al. Aquaporin-2 urinary excretion in cirrhosis: relationship to vasopressin and nitric oxide. Dig Dis Sci. 2010;55(4):1135–41.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgment

This study was supported by a Grant-in-Aid from the Japan Agency for Medical Research and Development.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Namiki Izumi.

Ethics declarations

Conflict of interest

Namiki Izumi received grants from the Japanese Ministry of Welfare, Health, and Labor and the Japanese Ministry of Education, Culture, Sports, and Science during the conduct of this study, and has received lecture fees from MSD, Chugai Pharmaceutical Company, Ltd.; Daiichi-Sankyo Company, Ltd.; Bayer AG; and Janssen Pharmaceutical K.K. Masayuki Kurosaki has received lecture fees from Chugai Pharmaceutical Company, Ltd; and Janssen Pharmaceutical K.K.

Additional information

H. Nakanishi and M. Kurosaki contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nakanishi, H., Kurosaki, M., Hosokawa, T. et al. Urinary excretion of the water channel aquaporin 2 correlated with the pharmacological effect of tolvaptan in cirrhotic patients with ascites. J Gastroenterol 51, 620–627 (2016). https://doi.org/10.1007/s00535-015-1143-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00535-015-1143-3

Keywords

Navigation