Skip to main content
Log in

Middle Miocene (Chokrakian, Karaganian) depositional environments of the Eastern Paratethys Sea in the southern Caspian Basin (Mazandaran Province, northern Iran)

  • Original Paper
  • Published:
International Journal of Earth Sciences Aims and scope Submit manuscript

Abstract

We present a detailed description of the Middle Miocene (Chokrakian and Karaganian) depositional environments of the Eastern Paratethys Sea in the southern Caspian Basin. The Chokrakian comprises a 500-m-thick succession of marls and sandstones, termed herein Javarem Formation, which formed in coastal marine environments. The lower Javarem Fm. Developed in calm lagoonal settings, indicating frequent exposure under a predominantly dry climate and occasional formation of evaporites. The upper part of the Javarem Fm. Is characterized by mixed siliciclastic-carbonatic sediments with ooids of agitated, warm, hypersaline tidal shoals. Above follows the about 500-m-thick Vashi Formation, which is correlated with the Karaganian regional stage. The formation is characterized by an alternation of reddish marls with thick sandstones and gravel beds with terrestrial gastropods, ubiquitous pedogenetic features and occasional root horizons. The depositional environment is interpreted as a floodplain with gravelly channels of an arid to semiarid climate. The successions of the Javarem and Vashi formations capture the transition from the shallow marine Iranian shelf into the northern Iranian coastal plain around 13.8 Ma, following the onset of the Miocene Climate Transition and the coinciding global sea level drop around the Langhian/Serravallian boundary.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

(modified from Gradstein et al. (2020), Harzhauser et al. (2020) and Popov et al. (2022); see text)

Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

Data availability

The data that support the findings of this study are available from the corresponding author upon reasonable request.

References

  • Abtahi A (1977) Effect of a saline and alkaline ground water on soil genesis in semiarid southern Iran. Soil Sci Soc Am J 41:583–588. https://doi.org/10.2136/sssaj1977.03615995004100030032x

    Article  CAS  Google Scholar 

  • Alavi M (1996) Tectonostratigraphic synthesis and structural style of the Alborz mountain system in northern Iran. Geodynamics 21:1–33. https://doi.org/10.1016/0264-3707(95)00009-7

    Article  Google Scholar 

  • Allen MB, Armstrong HA (2008) Arabia-Eurasia collision and the forcing of mid-Cenozoic global cooling. Palaeogeogr Palaeoclimatol Palaeoecol 265:52–58. https://doi.org/10.1016/J.PALAEO.2008.04.021

    Article  Google Scholar 

  • Allen MB, Ghassemi MR, Shahrabi M, Qorashi M (2003) Accommodation of late Cenozoic oblique shortening in the Alborz range, northern Iran. J Struct Geol 25:659–672. https://doi.org/10.1016/S0191-8141(02)00064-0

    Article  ADS  Google Scholar 

  • Amini A (2001) Red colouring of the Upper Red Formation in central part of its basin, Central Zone. Iran J Sci R Iran 12(2):145–156

    CAS  Google Scholar 

  • Ansell AD (1983) The biology of the genus Donax. In: McLachlan A, Erasmus T, Junk W (eds) Developments in Hydrobiology 19. Sandy Beaches as Ecosystems. Dr. W. Junk Publ, The Hague, pp 607–635

    Chapter  Google Scholar 

  • Bagdasaryan KG (1965) Razvitie mollyuskovoi fauny chokraka Gruzii (Development of the Mollusk Fauna of the Chokrakian of Georgia). Tbilisi, Metsniereba, pp 1–231

  • Bajarunas MV (1910) Fauna der miozänen Sande von Stavropol. Mém Soc Nat Kiew 21:239–268

    Google Scholar 

  • Ballato P, Nowaczyk NR, Landgraf A, Strecker MR, Friedrich A, Tabatabaei SH (2008) Tectonic control on sedimentary facies pattern and sediment accumulation rates in the Miocene foreland basin of the southern Alborz Mountains, N Iran. Tectonics 27:1–20. https://doi.org/10.1029/2008TC002278

    Article  Google Scholar 

  • Ballato P, Mulch A, Landgraf A, Strecker MR, Dalconi MC, Friedric A, Tabatabaei SH (2010) Middle to Late Miocene Middle Eastern climate from stable oxygen and carbon isotope data, southern Alborz Mountains, N Iran. Earth Planet Sci Lett 300:125–138. https://doi.org/10.1016/j.epsl.2010.09.043

    Article  ADS  CAS  Google Scholar 

  • Ballato P, Landgraf A, Schildgena TF, Stockli DF, Fox M, Ghassemie MR, Kirby E, Strecker MR (2015) The growth of a mountain belt forced by base-level fall: tectonics and surface processes during the evolution of the Alborz Mountains, N Iran. Earth Planet Sci Lett 425:204–218. https://doi.org/10.1016/j.epsl.2015.05.051

    Article  ADS  CAS  Google Scholar 

  • Baykina EM, Schwarzhans WW (2017) Description of Karaganops n. gen. perratus (Daniltshenko 1970) with otoliths in situ, an endemic Karaganian (Middle Miocene) herring (Clupeidae) in the Eastern Paratethys. Swiss J Palaeont 136:129–140. https://doi.org/10.1007/s13358-016-0115-4

    Article  Google Scholar 

  • Bogdanowicz AK (1950) Chokrakian foraminifers of Western Ciscaucasia. Microfauna of the USSR(4), Tr VNIGRI, ns 51:129–205

  • Bogdanowicz AK (1952) Miliolidae and Peneroplidae. The fossil foraminifera of USSR. Proceed Oil Res Geol Inst (VNIGRI) 64:1–338 (in Russian). https://books.google.pt/books/about?id=USphDwAAQBAJ

  • Bogdanowicz AK (1960) On new and little-known foraminifers from the Miocene of Western Ciscaucasia. Tr. Kazan Fil. Vseross. Nauchno-Issled. Inst Geol Moscow 3:241–263

    Google Scholar 

  • Bogdanowicz AK (1965) Stratigraphic and facial distribution of foraminifers in the Miocene of Western Ciscaucasia and issues of their genesis. Tr Kazan Fil Vseross Nauchno Issled Inst 16:300–350

    Google Scholar 

  • Bosboom R, Mandic O, Dupont-Nivet G, Proust JN, Ormukov C, Aminov J (2017) Late Eocene palaeogeography of the proto-Paratethys Sea in Central Asia (NW China, southern Kyrgyzstan and SW Tajikistan). Geol Soc Lond Spec Publ 427:565–588. https://doi.org/10.1144/SP427.11

    Article  Google Scholar 

  • Branch M, Branch G (1981) The living shores of Southern Africa. Cape Town, Struik

  • Bugrova EM, Gladkov VI, Dmitrieva TV, Nevzorova LS, Sokolov BC (2005) Prakticheskoe rukovodstvo po mikrofaune, 8: Foraminiferi kainozoya (Guidebook of microfauna, 8: Cenozoic Foraminifera). St. Petersburg: VSEGEI

  • Clapp FG (1940) Geology of Eastern Iran. Am Geol Soc Bull 51:1–102. https://doi.org/10.1130/GSAB-51-1

    Article  Google Scholar 

  • Davoudzadeh M, Lammere B, Weber-Diefenbach K (1997) Paleogeography, stratigraphy, and tectonics of the Tertiary of Iran. N Jb Geol Pal Abh 205:33–67

    Article  Google Scholar 

  • d'Orbigny AD (1846) Die fossilen Foraminiferen des tertiären Beckens von Wien. Foraminifères fossiles du bassin tertiaire de Vienne. https://archive.org/details/bub_gb_JKpAAAAAcAAJ

  • Diaz M, Eberli GP (2018) Decoding the mechanism of formation in marine ooids: a review. Earth Sci Rev 190:536–556. https://doi.org/10.1016/j.earscirev.2018.12.016

    Article  ADS  CAS  Google Scholar 

  • Dzhanelidze OI (1963) Miliolidae of the Middle Miocene of Georgia, VIII. Tr Inst paleobiol Akad nauk Gruzinskoi SSR, pp. 133–192

  • Dzhanelidze OI (1970) Foraminifery nizhnego i srednego miotsena Gruzii (Foraminifers of the Lower and Middle Miocene of Georgia). Tbilisi, Metsniereba, pp 1–171

  • Eichwald E (1851) Paleontologiya Rossii. Opisanie molassovoi i namyvnoi formatsii. Eduard Prats, Sanktpeterburg

  • Galán E, Pozo M (2011) Palygorskite and Sepiolite deposits in continental environments. Description, genetic patterns and sedimentary settings. Dev Clay Sci 3:125–173. https://doi.org/10.1016/B978-0-444-53607-5.00006-2

    Article  CAS  Google Scholar 

  • Gatuev SA (1916) The Neogene species of the genus Modiolus Lmk. of Russia. Tr Geolog Mineral Muz Imp Petra Velikogo Imp Akad Nauk 2:141–163

    Google Scholar 

  • Gerke AA (1938) The variability of Miliolina akneriana (d’Orbigny) and Sigmoilina tschokrakensis nov. sp. in the Chokrak-Spiralis zones of eastern Cis-Caucasia. Univ Lab Pal Prob Pal Moscow 4:293–324

    Google Scholar 

  • Ghandchi M, Afsharian Zadeh A (1991) Sari. Geological Quadrangle Map of Iran, No. G4, 1: 250,000, Geological Survey of Iran, Teheran Naqsheh Offset Press, Teheran

  • Ghasemlooytakantapeh S, Zohdi A, Lakirouhani A (2023) Petrography and geochemistry of the Miocene Upper Red Formation sandstones in NW Iran; with an application to the origin and tectonic setting. Mar Pet Geol 153:1–14. https://doi.org/10.1016/j.marpetgeo.2023.106275

    Article  CAS  Google Scholar 

  • Goncharova IA (1989) Dvustvorchatye mollyuski tarkhanskogo I chokrakskogo basseinov (Bivalves of the Tarkhanian and Chokrakian Basins). Tr Paleont Inst 234:1–200

    Google Scholar 

  • Goncharova IA, Iljina LB, Tchepalyga AL (2014) New data on mollusks from the Miocene (Tarkhanian–Chokrakian) of northern Sinop Province, Turkey. Pal J 48(3):249–254. https://doi.org/10.1134/S003103011403006X

    Article  Google Scholar 

  • Goncharova IA, Todd J, Nikolaeva SV (2023) Taxonomic history and type material of Astarte pulchella Baily, 1858 (Mollusca: Bivalvia, Lutetiidae). Paleont J 57:288–294. https://doi.org/10.1134/S0031030123030061

    Article  Google Scholar 

  • Gradstein FM, Ogg JG, Schmitz MD, Ogg GM (2020) The geologic time scale 2020, vol 2. Elsevier, Amsterdam. https://doi.org/10.1016/C2020-1-02369-3

    Book  Google Scholar 

  • Grémare A, Dunchêne JC, Rosenberg R, Desmalades M (2004) Feeding behaviour and functional response of Abra ovata and A. nitida compared by image analysis. Mar Ecol Prog Ser 267:195–208. https://doi.org/10.3354/meps267195

    Article  ADS  Google Scholar 

  • Guest B, Horton BK, Axen GI, Hassanzadeh J, McIntosh WC (2007) Middle to late Cenozoic basin evolution in the western Alborz Mountains: implications for the onset of collisional deformation in northern Iran. Tectonics 26:1–26. https://doi.org/10.1029/2006TC002091

    Article  Google Scholar 

  • Guzhov A (2015) Lower Chokrakian gastropod assemblages from the Belaya River section, Adygea. Geology and biodiversity of the Mesozoic and Cenozoic deposits of the southern part of Russia. Goryachiy Klyuch, pp 81–87

  • Hampton BA, Horton BK (2007) Sheetflow fluvial processes in a rapidly subsiding basin, Altiplano plateau, Bolivia. Sedimentology 54:1121–1147. https://doi.org/10.1111/j.1365-3091.2007.00875.x

    Article  ADS  Google Scholar 

  • Harris PM, Purkis SJ, Ellis J (2011) Analysingspatial patterns in modern carbonate sand bodies from Great Bahama Bank. J Sediment Res 81:185–206

    Article  CAS  Google Scholar 

  • Harzhauser M, Piller WE (2007) Benchmark data of a changing sea–palaeogeography, palaeobiogeography and events in the Central Paratethys during the Miocene. Palaeogeogr Palaeoclimatol Palaeoecol 253:8–31. https://doi.org/10.1016/j.palaeo.2007.03.031

    Article  Google Scholar 

  • Harzhauser M, Piller WE, Steininger FF (2002) Circum-Mediterranean Oligo/Miocene Biogeographic Evolution—the Gastropods’ Point of View. Palaeogeogr Palaeoclimatol Palaeoecol 183:103–133. https://doi.org/10.1016/S0031-0182(01)00464-3

    Article  Google Scholar 

  • Harzhauser M, Neubauer TA, Gross M, Binder H (2014) The early Middle Miocene mollusc fauna of Lake Rein (Eastern Alps, Austria). Palaeontogr A 302:1–71. https://doi.org/10.1127/pala/302/2013/1

    Article  Google Scholar 

  • Harzhauser M, Kranner M, Mandic O, Strauss P, Siedl W, Piller WE (2020) Miocene lithostratigraphy of the northern and central Vienna Basin (Austria). AJES 113:169–200

    Article  ADS  Google Scholar 

  • Harzhauser M, Guzhov A, Landau B, Kern AK, Neubauer TA (2023) Oligocene to Pliocene mudwhelks (Gastropoda: Potamididae, Batillariidae) of the Eurasian Paratethys Sea—diversity, origins and mangroves. Palaeogeogr Palaeoclimatol Palaeoecol 630:111811. https://doi.org/10.1016/j.palaeo.2023.111811

    Article  Google Scholar 

  • Hilgen FJ, Lourens LJ, Van Dam JA (2012) The Neogene period, a geological time scale. In: Gradstein F, Ogg J, Schmitz M, Ogg G (eds) vol 2. Cambridge University Press, Cambridge, Elsevier, pp 923–979

    Google Scholar 

  • Hill CA, Polyak VJ, Nash DJ, Asmerom Y, Provencio PP (2017) The West Water Formation (Hualapai Plateau, Arizona, USA) as a calcrete-paleosol sequence, and its implications for the Paleogene-Neogene evolution of the southwestern Colorado Plateau. Palaeogeogr Palaeoclimatol Palaeoecol 479:146–163. https://doi.org/10.1016/j.palaeo.2017.05.003

    Article  Google Scholar 

  • Holbourn A, Kuhnt W, Kochhann KGD, Andersen N, Meier S (2015) Global perturbation of the carbon cycle at the onset of the miocene climatic optimum. Geology 43:123–126. https://doi.org/10.1130/G36317.1

    Article  ADS  CAS  Google Scholar 

  • Holmes SP, Dekker R, Williams ID (2004) Population dynamics and genetic differentiation in the bivalve mollusc Abra tenuis: aplanic dispersal. Mar Ecol Prog Ser 268:131–140. https://doi.org/10.3354/meps26813

    Article  ADS  Google Scholar 

  • Iaccarino SM, Di Stefano A, Foresi LM, Turco E, Baldassini N, Cascella A, Da Prato S, Ferraro L, Gennari R, Hilgen FJ, Lirer F, Maniscalco R, Mazzei R, Riforgiato F, Russo B, Sagnotti L, Salvatorini G, Speranza F, Verducci M (2011) High-resolution integrated stratigraphy of the upper Burdigalian-lower Langhian in the Mediterranean: the Langhian historical stratotype and new candidate sections for defining its GSSP. Stratigraphy 8(2–3):199–215

    Google Scholar 

  • Iljina LB (1993) Handbook for identification of marine middle Miocene gastropods of Southwestern Eurasia. Trans Paleont Inst 255:1–151

    Google Scholar 

  • Iljina LB (2004) On the origin and composition of Early Chokrakian (Middle Miocene) gastropods of the Eastern Paratethys. Paleont J 38(6):618–626

    Google Scholar 

  • Iljina LB (2006) Morphogenesis of Rissoidae in the inland basins of the Eastern Paratethys. Paleont J 40(4):54–63. https://doi.org/10.1134/S0031030106040058

    Article  Google Scholar 

  • Janssen AW, Janssen R, van der Voort J (2015) Spaniodontella Andrussow in Goloubiatnikow, 1902: a critical survey of use and validity of the genus and its relationship to the genus Alveinus Conrad, 1865 (Mollusca, Bivalvia: Glossoidea, Kelliellidae). Cainozoic Res 15:127–146

    Google Scholar 

  • Jordaens K, Platts E, Backejau T (2001) Genetic and morphological variation in the land winkle Pomatias elegans (Müller) (Caenogastropoda: Pomatiasidae). J Moll Stud 67:145–152

    Article  Google Scholar 

  • Kapoor BS, Singh HB, Goswami SC, Abrol IP (1981) Weathering of micaceous minerals in some salt affected soils. J Indian Soc Soil Sci 29:486–492

    CAS  Google Scholar 

  • Khabbaz-Nia AR, Sadeghi A (2003) Sari. Geological Map 1: 100.000 Series. Sheet No. 6663, Geological Survey and Mineral Exploration of Iran, Teheran

  • Kidwell SM (1991) The stratigraphy of shell concentrations. In: Allison PA, Briggs DEG (eds) Taphonomy. Releasing the data locked in the fossil record. Plenum, New York, pp 211–290

    Chapter  Google Scholar 

  • Konenkova ID (1989) On some foraminifer species from Chokrakian and Karaganian deposits of the Eastern Black Sea region (southern slope of the Ukrainian shield). Paleontol Sb (Coll. Sci. Works in Paleontology), Lviv: Lviv Gos. Univ. 26:11–18

  • Konenkova ID, Bogdanowicz EM (1994) Distribution of foraminifers and calcareous nannofossils in Tarkhanian–Chokrakian deposits of the Malyi Kamyshlak area (Kerch Peninsula). Biosfery geol minulogo Ukraini, Kiev, Inst Geol Nauk Nats Akad Nauk Ukr, pp 95–96

  • Kováč M, Hudáčková N, Halásová E, Kováčová M, Holcová K, Oszczypko-Clowes M, Báldi K, Less G, Nagymarosy A, Ruman A, Klučiar T, Jamrich M (2017) The Central Paratethys palaeoceanography: a water circulation model based on microfossil proxies, climate, and changes of depositional environment. Acta Geol Slov 9:75–114

    Google Scholar 

  • Krasheninnikov VA (1959) Characteristics of the Middle Miocene foraminiferal fauna. Atlas of the Middle Miocene fauna of the North Caucasus and Crimea. 15–103. https://books.google.pt/books?id=GYcoEAAAQBAJ

  • Krasheninnikov VA, Basov IA, Golovina LA (2003) Vostochnyi Paratetis: Tarhanskiy I Konkskiy Regioyarusy. Stratigrafiya, Mikropaleontologiya, Bionomiya, Paleogeograficheskie Svyazi. Moscau, Nauchnyi Mir. https://www.geokniga.org/bookfiles/geokniga-krashenninikovidr2003.pdf

  • Kuhlemann J, Kempf O (2002) Post-eocene evolution of the North Alpine Foreland Basin and its response to Alpine tectonics. Sed Geol 152:45–78. https://doi.org/10.1016/S0037-0738(01)00285-8

    Article  Google Scholar 

  • Liu L, Zhang S, Liu Q, Deng Y (2021) Palaeoclimate, palaeosalinity and redox conditions control palygorskite claystone formation: an example from the Yangtaiwatan Basin, northwest China. Clay Miner 56:210–221. https://doi.org/10.1180/clm.2022.1

    Article  ADS  CAS  Google Scholar 

  • Loreau J-P, Purser BH (1973) Distribution and Ultrastructure of Holocene Ooids in the Persian Gulf. In: Purser BH (ed) the Persian Gulf. Springer, Berlin, pp 279–328. https://doi.org/10.1007/978-3-642-65545-6_15

    Chapter  Google Scholar 

  • Madanipour S, Ehlers TA, Yassaghi A, Enkelmann E (2017) Accelerated middle Miocene exhumation of the Talesh Mountains constrained by U-Th/He thermochronometry: evidence for the Arabia-Eurasia in the NW Iranian Plateau. Tectonics 36:1538–1561. https://doi.org/10.1002/2016TC004291

    Article  ADS  Google Scholar 

  • Magyar I (2021) Chronostratigraphy of clinothem-filled non-marine basins: dating the Pannonian Stage. Glob Planet Change 205:103609. https://doi.org/10.1016/j.gloplacha.2021.103609

    Article  Google Scholar 

  • Magyar I, Geary DH, Sütõ-Szentai M, Müller P (1999) Integrated biostratigraphic, magnetostratigraphic and chrono-stratigraphic correlations of the Late Miocene Lake Pannon deposits. Acta Geol Hung 42:5–31

    Google Scholar 

  • Mahjoory RA (1979) The nature and genesis of some salt-affected soils in Iran. Soil Sci Soc Am J 43:1019–1024. https://doi.org/10.2136/sssaj1979.03615995004300050041x

    Article  CAS  Google Scholar 

  • Mandic O, Harzhauser M, Roetzel R, Tibuleac P (2008) Benthic mass-mortality events on a Middle Miocene incised-valley tidal-flat (North Alpine Foredeep Basin). Facies 54:343–359. https://doi.org/10.1007/s10347-008-0144-6

    Article  Google Scholar 

  • Merriman RJ (2005) Clay minerals and sedimentary basin history. Eur J Miner 17:7–20. https://doi.org/10.1127/0935-1221/2005/0017-0007

    Article  CAS  Google Scholar 

  • Milišić N (1991) Školjke i puževi Jadrana. Split, Logos

    Google Scholar 

  • Miller KG, Browning JV, Schmelz WJ, Kopp RE, Mountain GS, Wright JD (2020) Cenozoic sea level and cryospheric evolution from deep-sea geochemical and continental margin records. Sci Adv 6:eaaz1346. https://doi.org/10.1126/sciadv.aaz1346

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  • Moghadam IM (2013) Stratigraphy of Neogene Deposits in Northern Iran. Middle East J Sci Res 15(60):846–852

    Google Scholar 

  • Moore DM, Reynolds RC Jr (1989) X-ray diffraction and their identification and analysis of clay minerals. Oxford University Press, Oxford

    Google Scholar 

  • Moreno D (1998) Descripción de la comunidad de Ervilia castanea (Montagu, 1803) (Bivalvia, Tellinoidea) en fondos de arena gruesa del Cabo de Gata (Almería, SE de la Península Ibérica). Iberus 16:21–38. https://doi.org/10.5281/zenodo.4651635

    Article  Google Scholar 

  • Morton B (1990) The biology and functional morphology of Ervilia castanea (Bivalvia: Tellinacea) from the Azores. Acoreana Suppl 75–96

  • Naeimi A, Alavi SA, Madanipour S (2022) Tectonic evolution of the foreland basin of the SE Alborz Mountains, northern Iran. J Asian Earth Sci 223:104981. https://doi.org/10.1016/j.jseaes.2021.104981

    Article  Google Scholar 

  • Neuberger-Cywiak L, Achituv Y, Mizrahi L (1989) The ecology of Donax trunculus Linnaeus and Donax semistriatus Poli from the Mediterranean Coast of Israel. J Exp Mar Biol Ecol 134:203–220. https://doi.org/10.1016/0022-0981(89)90070-1

    Article  Google Scholar 

  • Nevesskaya LA, Goncharova IA, Iljina LB, Paramonova NP, Popov SV, Babak EV, Bagdasaryan KG, Voronina AA (1986) Istoriya neogenovykh mollyuskov Paratetisa. Tr Paleont Inst 220:1–208

    Google Scholar 

  • Nevesskaya LA, Goncharova IA, Paramonova NP, Popov CB, Babak EV, Bagdasaryan KG, Voronin AA (1993) Opredelitel' miotsenovykh dvustvorchatykh mollyuskov Yugo-Zapadnoy Yevrazii. Tr Paleontol Inst 247

  • Nevesskaya LA, Goncharova IA, Iljina LB (2005) Types of Neogene marine and nonmarine basins exemplified by the Eastern Paratethys. Paleont J 39(3):227–235

    Google Scholar 

  • Nevesskaya LA, Popov SV, Goncharova IA, Iljina LB, Paramonova NP (2006) Uskorennaya evolyutsiya mollyuskov Vostochnogo Paratetisa v usloviyakh ponizhennoi konkurentsii. Evolyutsiya biosfery i bioraznoobraziya. Tovarishchestvo nauchnykh izdanii KMK, Moscow, pp 334–358

  • Özsayar TY (1977) Karadeniz kıyı bölgesindeki Neojen formasyonları ve bunların mollusk faunasının incelenmesi. Karadeniz Teknik Üniversitesi Yayın 79:1–80

    Google Scholar 

  • Paknia M, Ballato P, Heidarzadeh G, Cifelli F, Hassanzadeh J, Vezzoli G, Mirzaie Ataabadi M, Ghassemi MR, Mattei M (2021) Neogene Tectono-Stratigraphic Evolution of the Intermontane Tarom Basin: Insights Into Basin Filling and Plateau Building Processes Along the Northern Margin of the Iranian Plateau (Arabia-Eurasia Collision Zone). Tectonics 40(3):e2020TC006254. https://doi.org/10.1029/2020TC006254

    Article  ADS  Google Scholar 

  • Palcu D, Golovina LA, Vernyhorova YV, Popov SV, Krijgsman W (2017) Middle Miocene paleoenvironmental crises in Central Europe caused by changes in Paratethys gateway configuration. Glob Planet Change 158:57–71. https://doi.org/10.1016/j.gloplacha.2017.09.013

    Article  ADS  Google Scholar 

  • Palcu DV, Popov SV, Golovina LA, Kuiper KF, Liu S, Krijgsman W (2019) The shutdown of an anoxic giant: magnetostratigraphic dating of the end of the Maikop Sea. Gondwana Res 67:82–100. https://doi.org/10.1016/j.gr.2018.09.011

    Article  ADS  CAS  Google Scholar 

  • Peryt TM, Peryt D, Jasinowski M, Poberezhskyy AV, Durakiewicz T (2004) Post-evaporitic restricted deposition in the Middle Miocene Chokrakian-Karaganian of East Crimea (Ukraine). Sed Geol 170:21–36. https://doi.org/10.1016/j.sedgeo.2004.04.003

    Article  CAS  Google Scholar 

  • Piller WE, Harzhauser M (2005) The Myth of the Brackish Sarmatian Sea. Terra Nova 17:450–455. https://doi.org/10.1111/j.1365-3121.2005.00632.x

    Article  ADS  CAS  Google Scholar 

  • Piller WE, Harzhauser M, Mandic O (2007) Miocene central paratethys stratigraphy–current status and future directions. Stratigraphy 4:151–168

    Article  Google Scholar 

  • Pinchuk TN (2006) Biostratigraphy of the Cenozoic of Russia and neighboring regions based on foraminifers: Western Caucasus and Ciscaucasia (Oligocene and Neogene). Prakticheskoe rukovodstvo po mikrofaune SSSR. Foraminifery kainozoya. St. Petersburg, Nedra, pp 91–98

  • Pinchuk TN (2017) Planktonic foraminifers of Karaganian deposits of Western Ciscaucasia. Mater. 38 Sess. Paleontol Obshch Nats Akad Nauk Ukr Kiev, Inst Geol Nauk, pp 133–134

  • Popov SV, Rögl F, Rozanov AY, Steininger FF, Shcherba IG, Kováč M (2004) Lithological-paleogeographic maps of the paratethys. 10 maps late Eocene to Pliocene. Courier Forschungsinst Senckenberg 250:1–46

    Google Scholar 

  • Popov SV, Shcherba IG, Ilyina LB, Nevesskaya LA, Paramonova NP, Khondkarian SO, Magyar I (2006) Late Miocene to Pliocene palaeogeography of the Paratethys and its relation to the Mediterranean. Palaeogeogr Palaeoclimatol Palaeoecol 238:91–106. https://doi.org/10.1016/j.palaeo.2006.03.020

    Article  Google Scholar 

  • Popov SV, Golovina LA, Palcu DV, Goncharova IA, Pinchuk TN, Rostovtseva YV, Akhmetiev MA, Aleksandrova GN, Zaporozhets NI, Bannikov AF, Bylinskaya ME, Lazarev SY (2022) Neogene regional scale of the eastern paratethys. Stratigr Paleontol Basis Paleontol J 56(12):1557–1720

    Google Scholar 

  • Popov SV, Golovina LA, Goncharova IA (2015) Miocene deposits, mollusks, and calcareous nannofossils of the Eastern Paratethys in Northern Iran. Stratigraficheskie I paleogeograficheskie problemy neogena i kvartera Rossii. GEOS, pp 34–38

  • Radionova EP, Golovina LA, Filippova NY, Trubikhin VM, Popov SV, Goncharova IA, Vernigorova YV, Pinchuk TN (2012) Middle-upper Miocene stratigraphy of the Taman Peninsula, Eastern Paratethys. Cent Eur J Geosci 4(1):188–204. https://doi.org/10.2478/s13533-011-0065-8

    Article  Google Scholar 

  • Reuter M, Piller WE, Harzhauser M (2008) Comment on ”Revision of the age of the Qom Formation in the Central Iran Basin, Iran” by Zhu et al. (Journal of Asian Earth Sciences, 2007, vol. 29, 715–721). J Asian Earth Sci 34:699–701. https://doi.org/10.1016/j.jseaes.2008.10.006

    Article  ADS  Google Scholar 

  • Rögl F (1998) Palaeogeographic Considerations for Mediterranean and Paratethys Seaways (Oligocene to Miocene). Ann Nat Hist Mus Wien 99A:279–310

    Google Scholar 

  • Saidov ME, Kuchapin AV (1955) Geologicheskoe Ctroyeniye Oblasti Razvitiya Tretichnykh Otlzheniy Mazanderana. Ministerstvo Neftyanoy Promyshlennosi SSSR, Vsesoyuznyy Nauchno-Issledovatel'skiy Geologorazvedochnyy Neftyanoy Institut

  • Salvador RB, Sach VJ, Valentas-Romera BL (2015) The fossil continental mollusks in the Upper Freshwater Molasse (Middle Miocene) of the districts of Biberach, Ravensburg and Neu-Ulm, Germany. Rev Bras Paleontol 18:201–216. https://doi.org/10.4072/rbp.2015.2.02

    Article  Google Scholar 

  • Sant K, Palcu DV, Turco E, Di Stefano A, Baldassini N, Kouwenhoven T, Kuiper KF, Krijgsman W (2019) The mid-Langhian flooding in the eastern Central Paratethys: integrated stratigraphic data from the Transylvanian Basin and SE Carpathian Foredeep. Int J Earth Sci 108:2209–2232. https://doi.org/10.1007/s00531-019-01757-z

    Article  CAS  Google Scholar 

  • Satanovskaya ZN (1994) New locality of Chokrakian foraminifers in the Northern Black Sea region. Geol Zh 4–6:67–72

    Google Scholar 

  • Schulz HM, Bechtel A, Sachsenhofer RF (2005) The birth of the paratethys during the early oligocene: from tethys to an ancient Black Sea analogue? Glob Planet Change 49:163–176. https://doi.org/10.1016/j.gloplacha.2005.07.001

    Article  ADS  Google Scholar 

  • Schwetz FP (1912) Die Fauna der Tschokrak-Kalke der Halbinsel Kertsch. Verh Russ-Kais Min Ges St Petersburg 2(49):251–380

    Google Scholar 

  • Šegvić B, Lukács R, Mandic O, Strauss P, Badurina L, Guillong M, Harzhauser M (2022) U-Pb zircon age and mineralogy of St Georgen halloysite tuff shed light on the timing of the middle Badenian transgression, ash dispersal and paleoenvironmental conditions in the central Vienna Basin, Austria. J Geol Soc 180(2):2022. https://doi.org/10.1144/jgs2022-106

    Article  Google Scholar 

  • Shafiei Bafti B, Dunkl I, Madanipour S (2021) Timing of fluoritemineralization and exhumation events in theeast Central Alborz Mountains, northern Iran: constraints from fluorite (U–Th)/Hethermochronometry. Geol Mag 158:1600–1616. https://doi.org/10.1017/S0016756821000169

    Article  ADS  CAS  Google Scholar 

  • Stocklin J, Setudehnia A (1971) Stratigraphic lexicon of Iran. Part I: central, North and East Iran. Geol Surv Iran Rep 18:1–338

    Google Scholar 

  • Strachimirov B (1960) Krimo-Caucasian type torton. Les fossiles de Bulgarie. VII. Tortonien. Académie des Sciences de Bulgarie, Sofia, pp 243–299

  • Studencka B, Goncharova IA, Popov SV (1998) The bivalve faunas as a basis for reconstruction of the Middle Miocene history of the Paratethys. Acta Geol Pol 48(3):285–342

    Google Scholar 

  • Takeuchi S, Suzuki Y, Takamasu T, Isomoto H, Tamaki A (2016) Ecology of the Razor Clam Solen gordonis and Fishery Impact on the Population In Sasebo Bay, Kyushu, Japan. J Shellfish Res 35:785–799. https://doi.org/10.2983/035.035.0407

    Article  Google Scholar 

  • Tateo F, Sabbadini R, Morandi N (2000) Palygorskite and sepiolite occurrence in Pliocene lake deposits along the River Nile: evidence of an arid climate. J Afr Earth Sci 31:633–645. https://doi.org/10.1016/S0899-5362(00)80011-1

    Article  CAS  Google Scholar 

  • Taut T, Kleeberg R, Bergmann J (1998) The new Seifert Rietveld program BGMN and its application to quantitative phase analysis. Mater Sci (bull Czech Slovak Crystall Ass) 5:55–64

    Google Scholar 

  • Tebble N (1976) British Bivalve Seashells. A Handbook for Identification, 2nd ed. Edinburgh: British Museum (Natural History), Her Majesty's Stationary Office

  • Vahdati Daneshmand F (1991) Amol. Geological Quadrangle Map of Iran, No. F4, 1: 250,000, Geological Survey of Iran, Teheran Naqsheh Offset Press, Teheran.

  • Vahdati Daneshmand F (2000) Amol. Geological Map 1:100,000 Series. Sheet No. 64362, Geological survey and mineral exploration of Iran, Teheran

  • Vahdati Daneshmand F (2003) Pol-E-Sefid. Geological Map 1 : 100,000 Series. Sheet No. 6662, Geological Survey and Mineral Exploration of Iran, Teheran

  • Vahdati Daneshmand F, Karimi HR (2004) Ghaem Shar. Geological Map 1 : 100,000 Series. Sheet No. 6562, Geological Survey and Mineral Exploration of Iran, Teheran

  • Vernyhorova YV, Holcová K, Doláková N, Reichenbacher B, Scheiner F, Ackerman L, Rejšek J, De Bortoli L, Trubač J, Utescher T (2023) The Miocene Climatic Optimum at the interface of epicontinental sea and large continent: a case study from the Middle Miocene of the Eastern Paratethys. Mar Micropaleontol 181:102231. https://doi.org/10.1016/j.marmicro.2023.102231

    Article  ADS  Google Scholar 

  • Volkova NS (1974) Polevoj atlas fauny molljuskov neogenovykh otlozhenij juga SSSR. Nedra, Leningrad, p 192

    Google Scholar 

  • Volkova NS (1955) Polevoj atlas fauny tretichnykh otlozhenij Tsentral’nogo Predkavkazja. Gosgeoltekhizdat, Moskva

  • Wade BS, Pearson PN, Berggren WA, Pälike H (2011) Review and revision of Cenozoic tropical planktonic foraminiferal biostratigraphy and calibration to the geomagnetic polarity and astronomical time scale. Earth Sci Rev 104:111–142. https://doi.org/10.1016/j.earscirev.2010.09.003

    Article  ADS  Google Scholar 

  • Welter-Schultes FW (2012) European non-marine molluscs, a guide for species identification. Planet Poster Editions, Göttingen. A1–A3, 1–679, Q1–Q78

  • Westerhold T, Marwan N, Drury AJ, Liebrand D, Agnini C, Anagnostou E, Barnet JSK, Bohaty SM, De Vleeschouwer D, Florindo F, Frederichs T, Hodell DA, Holbourn AE, Kroon D, Lauretano V, Littler K, Lourens LJ, Lyle M, Pälike H, Röhl U, Tian J, Wilkens RH, Wilson PA, Zachos JC (2020) An astronomically dated record of Earth’s climate and its predictability over the last 66 million years. Science 369(6509):1383–1387. https://doi.org/10.1126/science.aba6853

    Article  ADS  CAS  PubMed  Google Scholar 

  • Wongpokhom N, Kheoruenromne I, Suddhiprakarn A, Gilkes RJ (2008) Micromorphological properties of salt affected soils in northeast Thailand. Geoderma 144:158–170. https://doi.org/10.1016/j.geoderma.2007.10.026

    Article  ADS  CAS  Google Scholar 

  • Xie H, He S, Huang C, Tan W (2019) Origin of smectite in salinized soil of Junggar Basin in Xinjiang of China. Minerals 9:100. https://doi.org/10.3390/min9020100

    Article  ADS  CAS  Google Scholar 

  • Yassini I (1981) Paratethys Neogene deposits from the southern Caspian Sea. Bull Iran Petrol Inst 38:1–24

    Google Scholar 

  • Ye C, Yang Y, Fang X, Hong H, Zhang W, Yang R, Song B, Zhang Z (2018) Mineralogical and geochemical discrimination of the occurrence and genesis of Palygorskite in eocene sediments on the Northeastern Tibetan Plateau. Geochem Geophys 19:567–581. https://doi.org/10.1002/2017GC007060

    Article  CAS  Google Scholar 

  • Zachos J, Dickens G, Zeebe R (2008) An early Cenozoic perspective on greenhouse warming and carbon-cycle dynamics. Nature 451:279–283. https://doi.org/10.1038/nature06588

    Article  ADS  CAS  PubMed  Google Scholar 

  • Zhgenti EM, Maisuradze LS (2016) Karaganskii, kartvel’skii i konkskii regioyarusy Gruzii: istoriya razvitiya mollyuskov i foraminifer i ikh stratigraficheskoe znachenie. Izd Universal, Tbilisi, p 91

    Google Scholar 

  • Zhizchenko BP (1936) Tschokrakische Mollusken. Paläontologie Der USSR 10(3):1–355

    Google Scholar 

Download references

Acknowledgements

We are grateful to Dr. Alireza Shahidi (Deputy Minister and Director General of the Geological Survey of Iran) for his generous and friendly support of our field work. Sergey V. Popov and Aleksandr Guzhov (Borissiak Paleontological Institute, Russian Academy of Sciences, Moscow) kindly provided rare literature. We thank Marco Brandano (Università di Roma La Sapienza, Rome) and an anonymous reviewer for their constructive comments and Hildegard Westphal (Leibniz Centre for Tropical Marine Research, Bremen) for the editorial work.

Funding

This project (The biota of the Qom Formation (Oligocene–Miocene) in northwestern Iran and its biogeographic implication) was funded by the Dr. Emil Suess-Erbschaft of the Austrian Academy of Sciences.

Author information

Authors and Affiliations

Authors

Contributions

Fieldwork: MH, MK, OM, WEP, JD, TM; concept of the study: MH, MK, WEP; clay mineralogy and XRF data: MP, CB, interpretation and discussion of the results: MH, JD, MK, WEP.

Corresponding author

Correspondence to Mathias Harzhauser.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial or non-financial interests that could have appeared to influence the work reported in this paper.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary Table 1. Bulk mineralogy and clay minerals. (XLSX 10 kb)

531_2023_2379_MOESM2_ESM.tif

Supplementary Figure 1. a Geographic setting of the investigation area south of Ghaemshahr. b Location of the investigated sections. Map modified from Google Earth Pro (Image © CNES / Airbus; 2/21/2023) and © 2009 Esri (World Shaded Relief). (TIF 6755 kb)

531_2023_2379_MOESM3_ESM.tif

Supplementary Figure 2. Outcrop pictures. a Deh Kolan section. b Javarem section. c Javarem B section. d Tange Vashi section. e mudclasts with gypsum crusts at Deh Kolan (DK 27). f helicid gastropod at Tange Vashi (Ja98) (see arrow). All pictures were taken in May 2023. (TIF 37430 kb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Harzhauser, M., Kranner, M., Mandic, O. et al. Middle Miocene (Chokrakian, Karaganian) depositional environments of the Eastern Paratethys Sea in the southern Caspian Basin (Mazandaran Province, northern Iran). Int J Earth Sci (Geol Rundsch) 113, 389–415 (2024). https://doi.org/10.1007/s00531-023-02379-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00531-023-02379-2

Keywords

Navigation