Skip to main content
Log in

Terpenoids in resinites from middle Cretaceous karst infillings in the Rhenish Massif (Rhineland, Germany): botanical source and preservation

  • Original Paper
  • Published:
International Journal of Earth Sciences Aims and scope Submit manuscript

A Correction to this article was published on 29 November 2023

This article has been updated

Abstract

Resinites from middle Cretaceous infillings of karst structures exposed in two limestone quarries in the Rhenish Massif, Germany, were analyzed for their terpenoid biomarker signatures using GC–MS to infer their original plant sources and depositional history. The total solvent extracts of the resinites were composed mostly of mono-, sesqui- and diterpenoids. The predominant compounds in all resinite extracts were diterpenoids derived from the abietane, isopimarane, pimarane, and labdane classes. These resinite compositions are characteristic for conifer resins, thus interpreted as derived from such sources. Based on the mono- and diterpenoid chemistry, alteration of these resinites occurred mainly prior to transportation and final burial. The results show that these terpenoids are excellent molecular markers for the chemosystematic assignment of resinites preserved dissociated from their plant sources.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data availability

All data generated or analyzed during this study are included in this published article and its supplementary information files.

Change history

References

  • Alonso J, Arillo A, Barron E, Corral JC, Grimalt J, Lopez JF, Lopez R, Martinez-Delclos X, Ortuno V, Penalver E, Trincao PR (2000) A new fossil resin with biological inclusions in Lower Cretaceous deposits from Alava (Northern Spain, Basque-Cantabrian Basin). J Paleontol 74:158–178

    Article  Google Scholar 

  • Alvin KL (1953) Three abietaceous cones from the Wealden of Belgium. Inst R Sci Nat Belg Mém 125:1–42

    Google Scholar 

  • Alvin KL (1957) On the two cones Pseudoaraucaria heeri (Coemans) nov. comb. and Pityostrobus villerotensis nov. sp. from the Wealden of Belgium. Inst R Sci Nat Belg Mém 135:1–27

    Google Scholar 

  • Alvin KL (1960) Further conifers of the Pinaceae from the Wealden Formation of Belgium. Inst R Sci Nat Belg Mém 146:1–39

    Google Scholar 

  • Alvin KL (1971) Weichselia reticulata (Stokes et Webb) Fontaine from the Wealden of Belgium. Inst R Sci Nat Belg Mém 166:1–33

    Google Scholar 

  • Anderson KB (1994) The nature and fate of natural resins in the geosphere—IV. Middle and Upper Cretaceous amber from the Taimyr Peninsula, Siberia—evidence for a new form of polylabdanoid of resinite and revision of the classification of Class I resinites. Org Geochem 21:209–212

    Article  Google Scholar 

  • Anderson KB (1995) New evidence concerning the structure, composition, and maturation of Class I (polylabdanoid) resinites. In: Anderson KB, Crelling JC (eds) Amber, resinite, and fossil resins. American Chemical Society, Washington, DC, pp 105–129

    Chapter  Google Scholar 

  • Anderson KB, Botto RE (1993) The nature and fate of natural resins in the geosphere—III. Re-evaluation of the structure and composition of Highgate Copalite and Glessite. Org Geochem 20:1027–1038

    Article  Google Scholar 

  • Anderson KB, Crelling JC (1995) Amber, resinite and fossil resins. Introduction. In: Anderson KB, Crelling JC (eds) Amber, resinite, and fossil resins. American Chemical Society, Washington, DC, p XI–XVII

    Google Scholar 

  • Anderson KB, LePage BA (1995) Analysis of fossil resins from Axel Heiberg Island, Canadian Arctic. In: Anderson KB, Crelling JC (eds) Amber, resinite, and fossil resins. American Chemical Society, Washington, DC, pp 171–192

    Google Scholar 

  • Balcewicz M, Ahrens B, Lippert K, Saenger EH (2021) Characterization of discontinuities in potential reservoir rocks for geothermal applications in the Rhine-Ruhr metropolitan area (Germany). Solid Earth 12:35–58. https://doi.org/10.5194/se-12-35-2021

    Article  Google Scholar 

  • Barnes MA, Barnes WC (1983) Oxic and anoxic diagenesis of diterpenes in lacustrine sediments. In: Bjorøy M et al (eds) Advances in organic geochemistry 1981. Wiley, Chichester, pp 289–298

    Google Scholar 

  • Becker R, Aboussalam ZS, Hartenfels S, Nowak H, Juch D, Drozdzewski G (2016) Drowning and sedimentary cover of Velbert Anticline reef complexes (northwestern Rhenish Massif). Münstersche Forsch Geol Paläont 108:76–101

    Google Scholar 

  • Bendoraitis JG (1974) Hydrocarbons of biogenic origin in petroleum—aromatic triterpenes and bicyclic sesquiterpenes. In: Tissot B, Bienner F (eds) Advances in organic geochemistry 1973. Editions Technip, Paris, pp 209–224

    Google Scholar 

  • Bicas JL, Fontanille P, Pastore GM, Larroche C (2008) Characterization of monoterpene biotransformation in two pseudomonads. J Appl Microbiol 105:1991–2001

    Article  Google Scholar 

  • Cambie RC, Franich RA (1970) A new synthesis of methyl 13-hydroxypodocarpa-8,11,13-trien-18-oate via nitrodeisopropylation of methyl 12-acetylabieta-8,11,13-trien-18-oate. J Chem Soc D Chem Commun 14:845–846

    Article  Google Scholar 

  • Chatterjee T, De BK, Bhattacharyya DK (1999) Microbial oxidation of α-pinene to (+)-α-terpineol by Candida tropicalis. Indian J Chem 38B:515–517

    Google Scholar 

  • Cheung HTA, Miyase T, Lenguyen MP, Smal MA (1993) Further acidic constituents and neutral components of Pinus massoniana resin. Tetrahedron 49:7903–7915

    Article  Google Scholar 

  • Choudhary MI, Atif M, Ali Shah SA, Sultan S, Erum S, Khan SN, Rahman AU (2014) Biotransformation of dehydroabietic acid with microbial cell cultures and α-glucosidase inhibitory activity of resulting metabolites. Int J Pharm Pharm Sci 6:375–378

    Google Scholar 

  • Clausen C-D, Leuteritz K (1989) Spalten und ihre Füllungen in den Carbonatgesteinen des Warsteiner Raumes (nordöstliches Rheinisches Schiefergebirge). Fortschr Geol Rheinld Westf 35:309–391

    Google Scholar 

  • Corbet B, Albrecht P, Ourisson G (1980) Photochemical or photomimetic fossil triterpenoids in sediments and petroleum. J Am Chem Soc 102:1171–1173

    Article  Google Scholar 

  • Cox RC, Yamamoto S, Otto A, Simoneit BRT (2007) Oxygenated di- and tricyclic diterpenoids of southern hemisphere conifers. Biochem Syst Ecol 35:342–362

    Article  Google Scholar 

  • Czechowski F, Simoneit BRT, Sachanbinski M, Wolowiec S (1996) Physicochemical structural characterization of ambers from deposits in Poland. Appl Geochem 11:811–834

    Article  Google Scholar 

  • Dejax J, Pons D, Yans J (2008) Palynology of the Wealden facies from Hautrage Quarry (Mons Basin, Belgium). Mem Geol Surv Belg 55:45–52

    Google Scholar 

  • Dev S (1989) Terpenoids. In: Rowe JW (ed) Natural products of woody plants, vol 1. Springer, Berlin, pp 691–807

    Chapter  Google Scholar 

  • Drozdzewski G, Hartkopf-Fröder C, Lange FG, Oesterreich B, Ribbert KH, Voigt S, Wrede V (1998) Vorläufige Mitteilung über unterkretazischen Tiefenkarst im Wülfrather Massenkalk (Rheinisches Schiefergebirge). Mitt Verb Dtsch Höhlen- Und Karstforsch 44:54–64

    Google Scholar 

  • Drozdzewski G, Richter DK, Wrede V, mit Beitr. von Oesterreich B, Viehofen A, Voigt S (2017) Hydrothermalkarst im nördlichen Rheinischen Schiefergebirge. Karst und Höhle 2015-2017:1–88

  • Dupuis C, Vandycke S (1990) Tectonique et karstification profonde: un modèle de subsidence original pour le Bassin de Mons. Ann Soc Géol Belg 112:479–487

    Google Scholar 

  • Erdtman H, Norin T (1966) The chemistry of the order Cupressales. Prog Chem Org Nat Prod 24:207–287

    Google Scholar 

  • Farooq A, Atta-ur-Rahman B, Choudhary MI (2004) Fungal transformation of monoterpenes. Curr Org Chem 8:353–366

    Article  Google Scholar 

  • Figueiredo MR, Kaplan MAC, Gottlieb OR (1995) Diterpenes, taxonomic markers? Plant Syst Evol 195:149–158

    Article  Google Scholar 

  • Franich RA, Gadgil PD, Shain L (1983) Fungistaxic effects of Pinus radiata needle epicuticular fatty and resin acids on Dothistroma pini. Physiol Plant Pathol 23:183–195

    Article  Google Scholar 

  • Godefroit P (ed) (2012) Bernissart dinosaurs and Early Cretaceous terrestrial ecosystems. Indiana University Press, Bloomington

    Google Scholar 

  • Gomez B, Gillot T, Daviero-Gomez V, Spagna P, Yans J (2008) Palaeoflora from the Wealden facies strata of Belgium—mega- and meso-fossils of Hautrage. Mem Geol Surv Belg 55:53–60

    Google Scholar 

  • Gough LJ, Mills JS (1972) The composition of succinite (Baltic amber). Nature 239:527–528

    Article  Google Scholar 

  • Grebe H (1982) Die unterkretazische Karsthöhlen-Füllung von Nehden im Sauerland. 2. Die Mikrosporen-Assoziation, Altersaussage und Versuch eines Vegetationsbildes. Geol Palaeontol 16:243–258

    Google Scholar 

  • Grimalt JO, Simoneit BRT, Hatcher PG, Nissenbaum A (1988) The molecular composition of ambers. Org Geochem 13:677–690

    Article  Google Scholar 

  • Harris TM (1953) Conifers of the Taxodiaceae from the Wealden Formation of Belgium. Inst R Sci Nat Belg Mém 126:1–43

    Google Scholar 

  • Hartkopf-Fröder C, Rust J, Wappler T, Friis EM, Viehofen A (2012) Mid-Cretaceous charred fossil flowers reveal direct observation of arthropod feeding strategies. Biol Lett 8:295–298

    Article  Google Scholar 

  • Hartkopf-Fröder C (2007) Fossile Höhlenfüllungen im Wülfrather Massenkalk. In: Ribbert KH (ed) Geologische Karte von Nordrhein-Westfalen 1: 100.000, Erläuterungen zu Blatt C 4706 Düsseldorf—Essen, 2. überarbeitete und aktualisierte Aufl. Geologischer Dienst Nordrhein-Westfalen, Krefeld, pp 57–60

  • Hegnauer R (1962) Chemotaxonomie der Pflanzen, Band I. Birkhäuser, Basel

    Book  Google Scholar 

  • Hegnauer R (1992) Chemotaxonomie der Pflanzen, Band VII. Birkhäuser, Basel

    Book  Google Scholar 

  • Huckriede R (1982) Die unterkretazische Karsthöhlen-Füllung von Nehden im Sauerland, I.: Geologische, paläozoologische und paläobotanische Befunde und Datierung. Geol Palaeontol 16:183–242

    Google Scholar 

  • Hürlimann H, Cherbuliez E (1981) Konstitution und Vorkommen der organischen Pflanzenstoffe (exklusive Alkaloide), Ergänzungsband 2. Birkhäuser, Basel

    Google Scholar 

  • Juch D, Drozdzewski G (2014) Oberdevonzeitliche Tektonik und Verkarstung im Wülfrather Massenkalk. Scriptum 22:45–62

    Google Scholar 

  • Kampmann H (1983) Mikrofossilien, Hölzer, Zapfen und Pflanzenreste aus der unterkretazischen Sauriergrube bei Brilon-Nehden. Geol Paläontol Westfal 1:1–146

    Google Scholar 

  • Karrer W, Cherbuliez E, Eugster CH (1977) Konstitution und Vorkommen der organischen Pflanzenstoffe (exklusive Alkaloide), Ergänzungsband 1. Birkhäuser, Basel

    Book  Google Scholar 

  • LaFlamme RE, Hites RA (1978) The global distribution of polycyclic aromatic hydrocarbons in recent sediments. Geochim Cosmochim Acta 42:289–303

    Article  Google Scholar 

  • Langenheim JH (1969) Amber: a botanical inquiry. Science 163:1157–1169

    Article  Google Scholar 

  • Langenheim JH (1995) Biology of amber-producing trees: focus on case studies of Hymenaea and Agathis. In: Anderson KB, Crelling JC (eds) Amber, resinite, and fossil resins. American Chemical Society, Washington, DC, pp 1–31

    Google Scholar 

  • Lanser KP, Heimhofer U (2015) Evidence of theropod dinosaurs from a Lower Cretaceous karst filling in the northern Sauerland (Rhenish Massif, Germany). Paläontol Z 89:79–94

    Article  Google Scholar 

  • Lee SY, Kim SH, Hong CY, Kim HY, Ryu SH, Choi IG (2015) Biotransformation of (-)-α-pinene by whole cells of white rot fungi, Ceriporia sp. ZLY-2010 and Stereum hirsutum. Mycobiology 43:297–302

    Article  Google Scholar 

  • Lenen L, Fradet A, Schaeffer P, Gomez B, Adam P (2022) Sulfurized diterpenoids in amber as diagenetic indicators of sulfate-reducing processes in past depositional environments. Org Biomol Chem 21:768–774. https://doi.org/10.1039/d2ob02017c

    Article  Google Scholar 

  • Luchnikova NA, Ivanova KM, Tarasova EV, Grishko VV, Ivshina IB (2019) Microbial conversion of toxic resin acids. Molecules 24:4121. https://doi.org/10.3390/molecules24224121

    Article  Google Scholar 

  • Martin VJJ, Yu Z, Mohn WW (1999) Recent advances in understanding resin acid biodegradation: Microbial diversity and metabolism. Arch Microbiol 172:131–138

    Article  Google Scholar 

  • Marynowski L, Otto A, Zatón M, Philippe M, Simoneit BRT (2007) Biomolecules preserved in ca. 160-million-year-old fossil conifer wood. Naturwissenschaften 94:228–236

    Article  Google Scholar 

  • Marynowski L, Goryl M, Lempart-Drozd M, Bucha M, Majewski M, Stępień M, Loręc R, Brocks J, Simoneit BRT (2023) Differences in hemicellulose composition and pectin detection in Eocene and Miocene xylites. Chem Geol 624:121416

    Article  Google Scholar 

  • Menor-Salván C, Najarro M, Velasco F, Rosales I, Tornos F, Simoneit BRT (2010) Terpenoids in extracts of Lower Cretaceous ambers from the Basque-Cantabrian Basin (El Soplao, Cantabria, Spain): Paleochemotaxonomic aspects. Org Geochem 41:1089–1103

    Article  Google Scholar 

  • Mills JS, White R, Gough LJ (1984) The chemical composition of Baltic amber. Chem Geol 47:15–39

    Article  Google Scholar 

  • Molina G, Pimentel MR, Pastore GM (2013) Pseudomonas: a promising biocatalyst for the bioconversion of terpenes. Appl Microbiol Biotechnol 97:1851–1864

    Article  Google Scholar 

  • Narushima H, Omori T, Minoda Y (1982) Microbial transformation of α-pinene. Eur J Appl Microbiol Biotechnol 16:174–178

    Article  Google Scholar 

  • Norman DB, Hilpert KH (1987) Die Wirbeltierfauna von Nehden (Sauerland), Westdeutschland. Geol Paläontol Westfal 8:1–77

    Google Scholar 

  • Otto A, Simoneit BRT (2001) Chemosystematics and diagenesis of terpenoids in fossil conifer species and sediment from the Eocene Zeitz Formation, Saxony, Germany. Geochim Cosmochim Acta 65:3505–3527

    Article  Google Scholar 

  • Otto A, Simoneit BRT (2002) Biomarkers of Holocene buried conifer logs from Bella Coola and North Vancouver, British Columbia, Canada. Org Geochem 33:1241–1251

    Article  Google Scholar 

  • Otto A, Wilde V (2001) Sesqui-, di-, and triterpenoids as chemosystematic markers in extant conifers—a review. Bot Rev 67:141–238

    Article  Google Scholar 

  • Otto A, Kvaček J, Goth K (1999) Biomarkers from the taxodiaceous conifer Sphenolepis pecinovensis Kvaček and resin from Bohemian Cenomanian. Acta Palaeobot, Suppl 2:153–157

    Google Scholar 

  • Otto A, Simoneit BRT, Lesiak M, Wilde V, Worobiec G (2001) Resin and wax biomarkers preserved in Miocene Cupressaceae s.l. from Bełchatów and Lipnica Wielka, Poland. Acta Palaeobot 41:195–206

    Google Scholar 

  • Otto A, Simoneit BRT, Wilde V, Kunzmann L, Püttmann W (2002a) Terpenoid composition of three fossil resins from Cretaceous and Tertiary conifers. Rev Palaeobot Palynol 120:203–215

    Article  Google Scholar 

  • Otto A, White JD, Simoneit BRT (2002b) Natural product terpenoids in Eocene and Miocene conifer fossils. Science 297:1543–1545

    Article  Google Scholar 

  • Otto A, Simoneit BRT, Rember WC (2003) Resin compounds from the seed cones of three fossil conifer species from the Miocene Clarkia Flora, Emerald Creek, Idaho, USA, and from related extant species. Rev Palaeobot Palynol 126:225–241

    Article  Google Scholar 

  • Otto A, Simoneit BRT, Rember WC (2005) Conifer and angiosperm biomarkers in clay sediments and fossil plants from the Miocene Clarkia Formation, Idaho, USA. Org Geochem 36:907–922

    Article  Google Scholar 

  • Otto A, Simoneit BRT, Wilde V (2007) Terpenoids as chemosystematic markers in selected fossil and extant species of pine (Pinus, Pinaceae). Bot J Linn Soc 154:129–140

    Article  Google Scholar 

  • Paeckelmann W (1979) Geologische Karte von Nordrhein-Westfalen 1:25 000, Erläuterungen zu Blatt 4708 Wuppertal-Elberfeld, 2. Aufl. Geologisches Landesamt Nordrhein-Westfalen, Krefeld

  • Pereira R, Carvalho IS, Simoneit BRT, Azevedo DA (2009) Molecular composition and chemosystematic aspects of Cretaceous amber from the Amazonas, Araripe and Recôncavo basins, Brazil. Org Geochem 40:863–875

    Article  Google Scholar 

  • Pereira R, Carvalho IS, Fernandes ACS, Azevedo DA (2011) Chemotaxonomical aspects of Lower Cretaceous amber from Recôncavo basin, Brazil. J Braz Chem Soc 22:92–97

    Article  Google Scholar 

  • Ponomarev D, Mettee H (2016) Camphor and its industrial synthesis. Chem Educ J 18:102

    Google Scholar 

  • Quinif Y, Licour L (2012) The karstic phenomenon of the Iguanodon Sinkhole and the geomorphological situation of the Mons Basin during the Early Cretaceous. In: Godefroit P (ed) Bernissart dinosaurs and Early Cretaceous terrestrial ecosystems. Indiana University Press, Bloomington, pp 51–61

    Google Scholar 

  • Ribbert KH (2011) Sedimente des Paläokarsts im devonischen Massenkalk von Wülfrath (Bergisches Land). Scriptum 20:1–62

    Google Scholar 

  • Rozenbaum HF, Patitucci ML, Antunes OAC, Pereira N (2006) Production of aromas and fragrances through microbial oxidation of monoterpenes. Braz J Chem Eng 23:273–279

    Article  Google Scholar 

  • Schultz G, Noll H (1987) Die Megasporen-Assoziation in den unterkretazischen Sedimenten einer Paläokarsthöhle bei Nehden im Sauerland (Rheinisches Schiefergebirge). Palaeontogr B203:83–107

    Google Scholar 

  • Seward AC (1900) La flore wealdienne de Bernissart. Mém Mus R Hist Nat Belg 1:3–37

    Google Scholar 

  • Simoneit BRT (1986) Cyclic terpenoids of the geosphere. In: Johns RB (ed) Biological markers in the sedimentary record. Elsevier Science, Amsterdam, pp 43–99

    Google Scholar 

  • Simoneit BRT, Grimalt JO, Wang TG, Cox RE, Hatcher PG, Nissenbaum A (1986) Cyclic terpenoids of contemporary resinous plant detritus and of fossil woods, ambers and coal. Org Geochem 10:877–889

    Article  Google Scholar 

  • Simoneit BRT, Otto A, Kusumoto N, Basinger JF (2016) Biomarker compositions of Glyptostrobus and Metasequoia (Cupressaceae) fossils from the Eocene Buchanan Lake Formation, Axel Heiberg Island, Nunavut, Canada reflect diagenesis from terpenoids of their related extant species. Rev Palaeobot Palynol 235:81–93

    Article  Google Scholar 

  • Simoneit BRT, Cox RE, Oros DR, Otto A (2018) Terpenoid compositions of resins from Callitris species (Cupressaceae). Molecules 23:3384. https://doi.org/10.3390/molecules23123384

    Article  Google Scholar 

  • Simoneit BRT, Otto A, Oros DR, Kusumoto N (2019) Terpenoids of the swamp cypress subfamily (Taxodioideae), Cupressaceae, an overview by GC–MS. Molecules 24:3036. https://doi.org/10.3390/molecules24173036

    Article  Google Scholar 

  • Simoneit BRT, Oros DR, Karwowski Ł, Szendera Ł, Smolarek-Lach J, Goryl M, Bucha M, Rybicki M, Marynowski L (2020a) Terpenoid biomarkers of ambers from Miocene tropical paleoenvironments in Borneo and of their potential extant plant sources. Int J Coal Geol 221:103430. https://doi.org/10.1016/j.coal.2020.103430

    Article  Google Scholar 

  • Simoneit BRT, Otto A, Menor-Sálvan C, Oros DR, Wilde V, Riegel W (2020b) Composition of resinites from the Eocene Geiseltal brown coal basin, Saxony-Anhalt, Germany and comparison to their possible botanical analogues. Org Geochem 152:104138. https://doi.org/10.1016/j.orggeochem.2020.104138

    Article  Google Scholar 

  • Simoneit BRT, Rybicki M, Gory M, Bucha M, Otto A, Marynowski L (2021) Monoterpenylabietenoids, novel biomarkers from extant and fossil Taxodioideae and sedimentary rocks. Org Geochem 154:104172. https://doi.org/10.1016/j.orggeochem.2020.104172

    Article  Google Scholar 

  • Skrigan AI (1951) Composition of turpentine from swamp rosin 1000 years old. Dokl Akad Nauk SSSR 80:607–609

    Google Scholar 

  • Stefanova M, Ivanov DA, Simoneit BRT (2013) Paleoenvironmental application of Taxodium macrofossil biomarkers from the Bobov dol coal formation, Bulgaria. Int J Coal Geol 120:102–110

    Article  Google Scholar 

  • ten Haven HL, Littke R, Rullkötter J (1992) Hydrocarbon biological markers in Carboniferous coals of different maturities. In: Moldowan JM, Albrecht P, Philp RP (eds) Biological markers in sediments and petroleum. Prentice Hall, Englewood Cliffs, pp 142–155

    Google Scholar 

  • Thomas BR (1970) Modern and fossil plant resins. In: Harborne JB (ed) Phytochemical phylogeny. Academic Press, London, pp 59–79

    Google Scholar 

  • Thomas BA (1986) The biochemical analysis of fossil plants and its use in taxonomy and systematics. In: Spicer RA, Thomas BA (eds) Systematic and taxonomic approaches in palaeobotany. Clarendon Press, Oxford, pp 39–51

    Google Scholar 

  • Uhl D, Jasper A, Solórzano-Kraemer MM, Wilde V (2019) Charred biota from an Early Cretaceous fissure fill in W-Germany and their palaeoenvironmental implications. N Jahrb Geol Paläontol Abh 293:83–105

    Article  Google Scholar 

  • van Aarssen BGK, de Leeuw JW, Collinson M, Boon JJ, Goth K (1994) Occurrence of polycadinene in fossil and recent resins. Geochim Cosmochim Acta 58:223–229

    Article  Google Scholar 

  • van Beek TA, Claassen FW, Dorado J, Godejohann M, Sierra-Alvarez R, Wijnberg JBPA (2007) Fungal biotransformation products of dehydroabietic acid. J Nat Prod 70:154–159

    Article  Google Scholar 

  • van Bergen PF, Collinson ME, Scott AC, de Leeuw JW (1995) Unusual resin chemistry from Upper Carboniferous pteridosperm resin rodlets. In: Anderson KB, Crelling JC (eds) Amber, resinite, and fossil resins. American Chemical Society, Washington, DC, pp 149–169

    Chapter  Google Scholar 

  • Vávra N, Walther H (1993) Chemofossilien aus dem Harz von Cunninghamia miocenica Ettingshausen (Taxodiaceae; Oligo/Miozän). N Jahrb Geol Paläontol Monatsh 1993:693–704

    Google Scholar 

  • Vespermann KAC, Paulino BN, Barcelos MCS, Pessôa MG, Pastore GM, Molina G (2017) Biotransformation of α- and β-pinene into flavor compounds. Appl Microbiol Biotechnol 101:1805–1817

    Article  Google Scholar 

  • Viehofen A, Hartkopf-Fröder C, Friis EM (2008) Inflorescences and flowers of Mauldinia angustiloba sp. nov. (Lauraceae) from middle Cretaceous karst infillings in the Rhenish Massif, Germany. Int J Plant Sci 169:871–889

    Article  Google Scholar 

  • Wakeham SG, Schaffner C, Giger W (1980) Polycyclic aromatic hydrocarbons in Recent lake sediments—II. Compounds derived from biogenic precursors during early diagenesis. Geochim Cosmochim Acta 44:415–429

    Article  Google Scholar 

  • Wolff GA, Trendel JM, Albrecht P (1989) Novel monoaromatic triterpenoid hydrocarbons occurring in sediments. Tetrahedron 45:6721–6728

    Article  Google Scholar 

  • Yamamoto S, Otto A, Krumbiegel G, Simoneit BRT (2006) The natural product biomarkers in succinite, glessite and stantienite ambers from Bitterfeld, Germany. Rev Palaeobot Palynol 140:27–49

    Article  Google Scholar 

  • Yans J, Dejax J, Pons D, Dupuis C, Taquet P (2005) Implications paléontologiques et géodynamiques de la datation palynologique des sédiments à faciès wealdien de Bernissart (bassin de Mons, Belgique). C R Palevol 4:135–150

    Article  Google Scholar 

  • Yans J, Dejax J, Pons D, Taverne L, Bultynck P (2006) The iguanodons of Bernissart (Belgium) are middle Barremian to earliest Aptian in age. Bull Inst R Sci Nat Belg Sci Terre 76:91–95

    Google Scholar 

  • Yoo SK, Day DF (2002) Bacterial metabolism of α- and β-pinene and related monoterpenes by Pseudomonas sp. strain PIN. Process Biochem 37:739–745

    Article  Google Scholar 

  • Yoo SK, Day DF, Cadwallader KR (2001) Bioconversion of α- and β-pinene by Pseudomonas sp. strain PIN. Process Biochem 36:925–932

    Article  Google Scholar 

Download references

Acknowledgements

Erika Murek and Agnes Viehofen (then with the Geological Survey North Rhine-Westphalia) processed the samples and picked the resinite bodies from the residues. Lhoist Germany Rheinkalk GmbH and Kalkwerke H. Oetelshofen GmbH & Co. KG provided access to the quarries Rohdenhaus-Süd and Osterholz, respectively. All support is gratefully acknowledged. Finally, we respectfully acknowledge and thank our coauthor, Prof. Bernd (Bernie) RT Simoneit, who passed away before we could publish this paper—we  tied up this loose end and couldn’t have done it without you!

Funding

Field work, excavations in the Osterholz and Rohdenhaus-Süd quarries and sample processing in the laboratory were partially funded by the Ministerium für Heimat, Kommunales, Bau und Digitalisierung des Landes Nordrhein-Westfalen and the LVR-Amt für Bodendenkmalpflege im Rheinland through the Denkmalförderprogramm.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daniel R. Oros.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

The original online version of this article was revised due to change in co-author’s affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOC 336 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Simoneit, B.R.T., Oros, D.R., Otto, A. et al. Terpenoids in resinites from middle Cretaceous karst infillings in the Rhenish Massif (Rhineland, Germany): botanical source and preservation. Int J Earth Sci (Geol Rundsch) (2023). https://doi.org/10.1007/s00531-023-02351-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00531-023-02351-0

Keywords

Navigation