Skip to main content
Log in

Eocene to Late Oligocene extension dominated mafic magmatism from South Kaleybar, Iran

  • Original Paper
  • Published:
International Journal of Earth Sciences Aims and scope Submit manuscript

    We’re sorry, something doesn't seem to be working properly.

    Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Abstract

Vast and geochemically diverse volcanic rocks from the western Alborz Magmatic Assemblage (AMA) represent the back-arc of the central Iran Neotethyan arc (Urumieh–Dokhtar Magmatic Assemblage; UDMA). Volcanic rocks of the west AMA record valuable information on the timing, source region(s) and geodynamic setting of magmatism. Over 30 days of field study and sampling, investigation of 170 thin sections, 30 whole-rock geochemical analyses, 13 whole-rock Sr–Nd isotopic ratios and U–Pb age dating of zircon separates from 7 samples furnished the present study data. Eocene (38.5 Ma) OIB-type volcanic rocks from South Kaleybar indicate an anorogenic (extensional) setting. This lithospheric-scale extensional event induced influx of asthenospheric mantle into the sub-arc wedge, of which the partial melts differentiated to produce OIB-type melts. The OIB-type melts incorporated some inherited zircons in their ascent through  the Cadomian crust. A continued extensional regime led to asthenospheric upwelling and produced mafic melts that produced 27.5-Ma-old subalkaline series volcanics. The LILE-depleted signature of the South Kaleybar subalkaline volcanic rocks implies that their mantle source region experienced previous partial melting event(s), probably during OIB-type magmatism in the Eocene. Alkaline volcanism (24.4 Ma) and concurrent high-silica adakitic volcanism (24.3 Ma–23.4 Ma) followed subalkaline magmatism. The alkaline rock signature in the study area range from ‘Nb–Ta depleted’ to ‘plume-type’. This is consistent with lithosphere–asthenosphere interaction in an arc-related setting. Simultaneous partial melts of delaminated lower crustal rocks reacted with the asthenosphere and produced adakitic melts. Asthenospheric, lithospheric and crustal contribution to the magmatism in South Kaleybar express the back-arc signature of magmatism in Eocene to Late Oligocene times.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Data availability

The authors confirm that the data supporting the findings of this study are available within the article and its supplementary materials.

References

  • Aghazadeh M, Castro A, Rashidnejad Omran N, Emami MH, Moinvaziri H, Badrzadeh Z (2010) The gabbro (shoshonitic)-monzonite-granodiorite association of Khankandi pluton, Alborz Mountains, NW Iran. J Asian Earth Sci 38:199–219

    Article  Google Scholar 

  • Aghazadeh M, Castro A, Badrzadeh Z, Vogts K (2011) Post-collisional polycyclic plutonism from the Zagros hinterland: the Shaivar Dagh plutonic complex, Alborz belt. Iran Geol Mag 148:980–1008

    Article  Google Scholar 

  • Ahmadvand A, Ghorbani MR, Mokhtari MAA, Chen Y, Amidon W, Santos JF, Paydari M (2021) Lithospheric mantle, asthenosphere, slab and crustal contribution to petrogenesis of Eocene to Miocene volcanic rocks from the west Alborz magmatic assemblage, SE Ahar. Iran Geol Mag 158:375–406

    Article  Google Scholar 

  • Alavi M (1996) Tectonostratigraphic synthesis and structural style of the Alborz mountain system in northern Iran. J Geodynamics 21:1–33

    Article  Google Scholar 

  • Asiabanha A, Foden J (2012) Post-collisional transition from an extensional volcanosedimentary basin to a continental arc in the Alborz Ranges, N-Iran. Lithos 148:98–111

    Article  Google Scholar 

  • Azizi H, Asahara Y, Tsuboi M, Takemura K, Razyani S (2014) The role of heterogenetic mantle in the genesis of adakites northeast of Sanandaj, northwestern Iran. Geochemistry 74:87–97

    Article  Google Scholar 

  • Azizi H, Kazemi T, Asahara T (2017) A-type granitoid in Hasansalaran complex, northwestern Iran: evidence for extensional tectonic regime in northern Gondwana in the late paleozoic. J Geodyn 108:56–72

    Article  Google Scholar 

  • Babazadeh S, Ghorbani MR, Brocker M, Antonio MD, Cottle J, Gebbing T, Mazzeo FC, Ahmadi P (2017) Late Oligocene-Miocene mantle upwelling and interaction inferred from mantle signatures in gabbroic to granitic rocks from the Urumieh-Dokhtar arc, south Ardestan. Iran Inter Geol Rev 59:1590–1608

    Article  Google Scholar 

  • Belousova EA, Griffin WL, O’Reilly SY, Fisher NJ (2002) Igneous zircon: trace element composition as an indicator of source rock type. Contrib Miner Petrol 143:602–622

    Article  Google Scholar 

  • Berberian F, Berberian M (1981) Tectono-plutonic episodes in Iran. In: Gupta HK, Delany FM (eds) Zagros-Hindu Kush-Himalaya geodynamic evolution. AGU, Washington D.C., pp 5–32

    Chapter  Google Scholar 

  • Black LP, Kamo SL, Allen CM, Davis DW, Aleinikoff JN, Valley JW, Mundil R, Campbell IH, Korsch RJ, Williams IS, Foudoulis C (2004) Improved 206Pb/238U microprobe geochronology by the monitoring of a trace-element-related matrix effect; SHRIMP, ID–TIMS, ELA–ICP–MS and oxygen isotope documentation for a series of zircon standards. Chem Geol 205:115–140

    Article  Google Scholar 

  • Bonin B (2007) A-type granites and related rocks: evolution of a concept, problems and prospects. Lithos 97:1–29

    Article  Google Scholar 

  • Castro M, Aghazadeh M, Badrzadeh Z, Chichorro M (2013) Late Eocene-Oligocene post-collisional monzonitic intrusions from the Alborz magmatic belt, NW Iran. An example of monzonite magma generation from a metasomatized mantle source. Lithos 180–181:109–127

    Article  Google Scholar 

  • Chaharlang R, Ghorbani MR (2019) A hidden crust beneath the central Urumieh-Dokhtar magmatic arc revealed by inherited zircon ages, Tafresh. Iran Geol J 55:3770–3781

    Article  Google Scholar 

  • Chiu HY, Chung SL, Zarrinkoub MH, Pang KN, Lee HY (2018) Cadomian basement evolution and Cenozoic crustal growth in Iran: constraints from zircon Hf isotopes. AGU, Washington D.C.

    Google Scholar 

  • Cottle JM, Waters DJ, Riley D, Beyssac O, Jessup MJ (2011) Metamorphic history of the South Tibetan detachment system, Mt. Everest region, revealed by RSCM thermometry and phase equilibria modelling. J Metamorph Geol 29(5):561–582. https://doi.org/10.1111/jmg.2011.29

    Article  Google Scholar 

  • Cottle JM, Burrows AJ, Kylander-Clark A, Freedman PA, Cohen RS (2013) Enhanced sensitivity in laser ablation multi-collector inductively coupled plasma mass spectrometry. J Anal Atom Spectrom 28:1700–1706. https://doi.org/10.1039/c3ja50216c

    Article  Google Scholar 

  • Davidson J, Turner S, Handley H, Macpherson C, Dosseto A (2007) Amphibole “sponge” in arc crust? Geology 35:787–790

    Article  Google Scholar 

  • Deer WA, Howie RA, Zussman J (2013) An Introduction to the Rock-Forming Minerals. Mineralogical Society of Great Britain and Ireland, London, p 498

  • Defant MJ, Drummond MS (1990) Derivation of some modern arc magmas by melting of young subducted lithosphere. Nature 347:662–665

    Article  Google Scholar 

  • Defant MJ, Richerson PM, De Boer JZ, Stewart RH, Maury RC, Bellon H, Drummond MS, Feigenson MD, Maury RC, Jackson TE (1991) Dacite genesis via both slab melting and differentiation: petrogenesis of La Yeguada volcanic complex, Panama. J Petrol 32:1101–1142

    Article  Google Scholar 

  • Deng Y-F, Song X-Y, Hollings P, Zhou T, Yuan F, Chen L-M, Zhang D (2015) Role of asthenosphere and lithosphere in the genesis of the early Permian Huangshan mafic–ultramafic intrusion in the Northern Tianshan, NW China. Lithos 227:241–254

    Article  Google Scholar 

  • Deng C, Sun G, Sun D, Huang H, Zhang J, Gou J (2018) Origin of C type adakite magmas in the NE Xing’an block, NE China and tectonic implication. Acta Geochim 37:281–294

    Article  Google Scholar 

  • Du JG, Du YS, CaO Y (2017) Important role of hornblende fractionation in generating the adakitic magmas in Tongling, Eastern China: evidence from amphibole megacryst and cumulate xenoliths and host gabbros. Int Geol Rev 60:1381–1403

    Article  Google Scholar 

  • Eby GN, Kochhar N (1990) Geochemistry and petrogenesis of the Malani Igneous Suite, North Peninsular India. J Geol Soc India 36:109–130

    Google Scholar 

  • Emami MH (2000) 1:100000 Geologic Map of Kaleybar, Iran. Tehran. Geol Survey Iran, map no:5467

  • Ghorbani MR (2006) Lead enrichment in Neotethyan volcanic rocks from Iran: the implications of a descending slab. Geochem J 40:557–568

    Article  Google Scholar 

  • Ghorbani MR, Bezenjani RN (2011) Slab partial melts from the metasomatizing agent to adakite, Tafresh, Eocene volcanic rocks. Iran Island Arc 20:188–202

    Article  Google Scholar 

  • Ghorbani MR, Graham IT, Ghaderi M (2014) Oligocene—Miocene geodynamic evolution of the central part of Urumieh-Dokhtar Arc of Iran. Int Geol Rev 56(8):1039–1050

    Article  Google Scholar 

  • Guillong M, Meier DL, Allan MM, Heinrich CA, Yardley BW (2008) Appendix A6: SILLS: A MATLAB-based program for the reduction of laser ablation ICP-MS data of homogeneous materials and inclusions. MAC Short Course 40:328–333

    Google Scholar 

  • Gupta AK, Fyfe WS (1975) Leucite survival: the alteration to analcime. Can Mineral 13:361–363

    Google Scholar 

  • Hanchar JM, Miller CF (1993) Zircon zonation patterns as revealed by cathodoluminescence and backscattered electron images: Implications for interpretation of complex crustal histories. Chem Geol 110:1–13

    Article  Google Scholar 

  • Hanchar JM, Rudnick RL (1995) Revealing hidden structures: The application of cathodoluminescence and back-scattered electron imaging to dating zircons from lower crustal xenoliths. Lithos 36:289–303

    Article  Google Scholar 

  • Hanchar JM, van Wetrenen W (2007) Rare earth element behavior in zircon–melt systems. Elements 3:37–42

    Article  Google Scholar 

  • Hassanzadeh J, Stockli DF, Horton BK, Axen GJ, Stockli LD, Grove M, Schmitt AK, Walker JD (2008) U-Pb zircon geochronology of late Neoproterozoic-early Cambrian granitoids in Iran: Implications for paleogeography, magmatism, and exhumation history of Iranian basement. Tectonophysics 451:71–96

    Article  Google Scholar 

  • Hastie AR, Mitchell SF, Kerr AC, Minifie MJ, Millar IL (2011) Geochemistry of rare high- Nb basalt lavas: are they derived from a mantle wedge metasomatised by slab melts? Geochim Cosmochim Acta 75:5049–5072

    Article  Google Scholar 

  • Horstwood MS, Kosler J, Gehrels G, Jackson SE, McLean NM, Paton C, Pearson NJ, Sircombe K, Sylvester P, Vermeesch P (2016) Community-derived standards for LA-ICP-MS U-(Th-)Pb geochronology-uncertainty propagation, age interpretation and data reporting. Geostand Geoanalitical Res 40:311–332

    Article  Google Scholar 

  • Hoskin PWO (2005) Trace-element composition of hydrothermal zircon and the alteration of Hadean zircon from the Jack Hills, Australia. GCA 69:637–648

    Google Scholar 

  • Hou ZQ, Gao YF, Qu XM, Rui ZY, Mo XX (2004) Origin of adakitic intrusives generated during mid-Miocene east–west extension in southern Tibet. Earth Planet Sci Lett 220:139–155

    Article  Google Scholar 

  • Jackson SE, Pearson NJ, Griffin WL, Belousova EA (2004) The application of laser ablation-inductively coupled plasma-mass spectrometry to in situ U-Pb zircon geochronology. Chem Geol 211:47–69

    Article  Google Scholar 

  • Jaffey AH, Flynn KF, Glendenin LE, Bentley WC, Essling AM (1971) Precision Measurement of half-lives and specific activities of 235U and 238U. Phys Rev C 4:1889–1906

    Article  Google Scholar 

  • Jahangiri A (2007) Post-collisional Miocene adakitic volcanism in NW Iran: geochemical and geodynamic implications. J Asian Earth Sci 30:433–447. https://doi.org/10.1016/j.jseaes.2006.11.008

    Article  Google Scholar 

  • Ji C, Yan LL, Lu L, Jin X, Huang Q, Zhang KJ (2021) Anduo late cretaceous high-K calc-alkaline and shoshonitic volcanic rocks in central Tibet, western China: relamination of the subducted Meso-Tethyan oceanic plateau. Lithos 400–401:106345

    Article  Google Scholar 

  • Karevan M, Vaziri-Moghaddam H, Mahboubi A, Moussavi-Harami R (2015) Biostratigraphy and paleo-ecological reconstruction on Scleractinian reef corals of Rupelian-Chattian succession (Qom formation) in northeast of Delijan area. Geopersia 4(1):11–24

    Google Scholar 

  • Karsli O, Aydin F, Uysal I, Dokuz A, Kumral M, Kandemir R, Budakoglu M, Ketenci M (2018) Latest Cretaceous “A2-type” granites in the Sakarya Zone, NE Turkey: partial melting of mafic lower crust in response to roll-back of Neo-Tethyan oceanic lithosphere. Lithos 302–303:321–328

    Google Scholar 

  • Khalatbari Jafari M, Salehi Siavashani N, Babaie HA, Xiao W, Faridi M, Ao S (2020) Late Cenozoic volcanism in the Almaludag region, Azerbaijan province, northwest Iran: evidence for post-collisional extension. J Geody 141–142:101779

    Article  Google Scholar 

  • Koschek G (1993) Origin and significance of the SEM cathodoluminescence from zircon. J Microsc 171:223–232

    Article  Google Scholar 

  • Kylander-Clark ARC, Hacker BR, Cottle JM (2013) Laser ablation split-stream ICP petrochronology. Chem Geol 345:99–112. https://doi.org/10.1016/j.chemgeo.2013.02.019

    Article  Google Scholar 

  • Le Bas MJ, Le Maitre RW, Streckeisen A, Zanettin B (1986) A chemical classification of volcanic rocks based on the total alkali–silica diagram. J Petrol 27:445–450

    Article  Google Scholar 

  • Lechmann A, Burg JP, Ulmer P, Guillong M, Faridi M (2018) Metasomatized mantle as the source of mid-Miocene-quaternary volcanism in NW-Iranian Azerbaijan: geochronological and geochemical evidence. Lithos 304–307:311–328

    Article  Google Scholar 

  • Li XH, Li ZX, Li WX, Wang XC, Gao Y (2013) Revisiting the “C-type adakites” of the Lower Yangtze River Belt, central eastern China: in-situ zircon Hf–O isotope and geochemical constraints. Chem Geol 345:1–15

    Article  Google Scholar 

  • Ludwig KR (2012) Isoplot 3.75: a geochronological toolkit for Microsoft Excel, Spec. Publ., no. 5. Berkeley Geochronology Center, Berkeley, p 75p

    Google Scholar 

  • Ma L, Wang Q, Li Z-X, Wyman DA, Jiang Z-Q, Yang J-H, Gou G-N, Guo H-F (2013) Early late Cretaceous (ca. 93 Ma) norites and hornblendites in the Milin area, eastern Gangdese: lithosphere–asthenosphere interaction during slab roll-back and an insight into early late Cretaceous (ca. 100–80 Ma) magmatic “flare-up” in southern Lhasa (Tibet). Lithos 172–173:17–30

    Article  Google Scholar 

  • Macpherson CG, Dreher ST, Thirlwall MF (2006) Adakites without slab melting: High pressure differentiation of island arc magma, Mindanao, the Philippines. Earth Planet Sci Lett 243(3–4):581–593

    Article  Google Scholar 

  • Martin H (1999) Adakitic magmas: modern analogues of Archaean granitoids. Lithos 46:411–429

    Article  Google Scholar 

  • Martin H, Smithies RH, Rapp R, Moyen JF, Charnpion D (2005) An overview of adakite, tonalite-trondbjcmitc-granodiorite (TTG) and sanukitoid: relationships and some implications for crustal evolution. Lithos 79:1–24

    Article  Google Scholar 

  • McKinney ST, Cottle, JM, Lederer GW (2015) Evaluating rare earth element (REE) mineralization mechanisms in Proterozoic gneiss, Music Valley, California. GSA Bulletin 127(7–8):1135–1152. https://doi.org/10.1130/B31165.1

  • Moinvaziri H (1985) Volcanisme tertiaire et quaternaire en Iran. These d’Etat Université Paris-Sud, Orsay, p 278

    Google Scholar 

  • Nabatian G, Ghaderi M, Neubauer F, Honarmand M, Lui X, Dong Y, Jiang SY, Bernroider M (2014) Petrogenesis of Tarom high-potassic granitoids in the Alborz–Azarbaijan belt, Iran: geochemical, U-Pb zircon and Sr–Nd–Pb isotopic constraints. Lithos 184–187:324–345

    Article  Google Scholar 

  • Nutman A, Mohajjel M, Bennett V, Fergusson CL (2014) Gondwanan Eoarchean-Neoproterozoic ancient crustal material in Iran and Turkey: zircon U-Pb–Hf isotopic evidence. Can J Earth Sci 51:272–285

    Article  Google Scholar 

  • Omrani J, Agard P, Whitechurch H, Benoit M, Prouteau G, Jolivet L (2008) Arc magmatism and subduction history beneath the Zagros Mountains, Iran: a new report of adakites and geodynamic consequences. Lithos 106:380–398

    Article  Google Scholar 

  • Paton C, Woodhead JD, Hellstrom JC, Hergt JM, Greig A, Maas R (2010) Improved laser ablation U-Pb zircon geochronology through robust downhole fractionation correction. Geochem Geophy Geosys (G3) 11:Q0AA06

    Google Scholar 

  • Paton C, Hellstrom J, Paul B, Woodhead J, Hergt J (2011) Iolite: Freeware for the visualisation and processing of mass spectrometric data. J Anal Spectrom 26:2508–2518

    Article  Google Scholar 

  • Paydari M (2023) Petrology and geochemistry of Tertiary volcanic rocks from South Kaleybar. Ph.D thesis, Tarbiat Modares University (in Persian), 120 p

  • Pearce JA, Thirlwall MF, Ingram G, Murton BJ, Arculus RJ, Van Der Laan SR (1992) Isotopic evidence for the origin of boninites and related rocks drilled in the Izu-Bonin (Ogasawara) forearc, LEG 1251. Proc Ocean Drill Prog Sci Results 125:237–261

    Google Scholar 

  • Petrus JA, Kamber BS (2012) VizualAge: a novel approach to laser ablation ICP-MS U-Pb geochronology data reduction. Geostand Geoanalytical Res 36:247–270

    Article  Google Scholar 

  • Pin C, Briot D, Bassin C, Poitrasson F (1994) Concomitant separation of strontium and samarium-neodymium for isotopic analysis in silicate samples, based on specific extraction chromatography. Anal Chim Acta 298:209–217

    Article  Google Scholar 

  • Polat A, Hofmann A (2003) Alteration and geochemical patterns in the 3.7–3.8 Ga Isua greenstone belt, West Greenland. Precamb Res 126:197–218

    Article  Google Scholar 

  • Rabiee A, Rossetti F, Asahara Y, Azizi H, Lucci F, Lustrino M, Nozaem R (2020) Long-Lived, Eocene-Miocene stationary magmatism in NW Iran along a transform plate boundary. Gondw Res 85:237–262

    Article  Google Scholar 

  • Ribeiro JM, Maury RC, Grégoire M (2016) Are adakites slab melts or high-pressure fractionated mantle melts? J Petrol 57(5):839–862

    Article  Google Scholar 

  • Rolland Y (2017) Caucasus collisional history: review of data from East Anatolia to West Iran. Gondw Res 49:130–146

    Article  Google Scholar 

  • Sepidbar F, Shafaii Moghadam H, Li C, Stern RJ, Jiantang P, Vesali Y (2020) Cadomian magmatic rocks from Zarand (SE Iran) formed in a retro-arc basin. Lithos 366:105569

    Article  Google Scholar 

  • Shad Manaman N, Shomali H, Koyi H (2011) New constraints on upper-mantle S-velocity structure and crustal thickness of the Iranian plateau using partitioned waveform inversion. Geophys J Int 184:247–267

    Article  Google Scholar 

  • Shafaii Moghadam H, Khademi M, Hu Z, Stern RJ, Santos JF, Wu Y (2015) Cadomian (Ediacaran–Cambrian) arc magmatism in the ChahJam–Biarjmand metamorphic complex (Iran): magmatism along the northern active margin of Gondwana. Gondw Res 27:439–452

    Article  Google Scholar 

  • Shafaii Moghdam H, Griffin WL, Li XH, Santos JF, Karsli O, Stern RJ, Ghorbani G, Gain S, Murphy R, O’Reilly (2018) Crustal evolution of NW Iran: Cadomian Arcs, archean fragments and the Cenozoic magmatic flare-up. J Petrol 58:2143–2190

    Article  Google Scholar 

  • Shakerardakani F, Li XH, Ling XX, Li J, Tang GQ, Liu Y, Monfared B (2019) Evidence for Archean crust in Iran provided by ca 2.7 Ga zircon xenocrysts within amphibolites from the Sanandaj-Sirjan zone, Zagros orogeny. Percamberian Res 332:105390

    Article  Google Scholar 

  • Slama J, Kosler J, Condon DJ, Crowley JL, Gerdes A, Hanchar JM, Horstwood M, Morris GA, Nasdala L, Norberg N, Schaltegger U, Schoene B, Tubrett MN, Whitehous M (2008) Plesovice zircon—a new natural reference material for U-Pb and Hf isotopic microanalysis. Chem Geol 249:1–35

    Article  Google Scholar 

  • Stacey JS, Kramers JD (1975) Approximation of terrestrial lead isotope evolution by a two-stage model. Earth Planet Sci Lett 26(2):207–221. https://doi.org/10.1016/0012-821X-(75)90088-6

    Article  Google Scholar 

  • Steiger RH, Jäger E (1977) Subcommission on geochronology: convention on the use of decay constants in geo and cosmochronology. Earth Planet Sci Lett 36(3):359–362. https://doi.org/10.1016/0012-821X(77)90060-7

    Article  Google Scholar 

  • Sun SS, Mc Donough WF (1989) Chemical and isotopic systematics of oceanic basalts: implications for mantle composition and processes. In: Saunders AD, Norry MJ (eds) Magmatism in the Ocean Basins. Geol Soc Lond, Spec Publ no. 42, London, pp 313–345

    Google Scholar 

  • Vaziri MR, Sfidari E (2012) The Tethyan seaway Iranian plate Oligo-Miocene deposits (the Qom formation): distribution of Rupelian (early Oligocene) and evaporate deposits as evidences for timing and trending of opening and closure of the Tethyan seaway. Carbonate Evaporite 28:321–345

    Google Scholar 

  • Verdel C, Wernicke BP, Hassanzadeh J, Guest B (2011) A Paleogene extensional arc flare-up in Iran. Tectonics 30:TC3008

    Article  Google Scholar 

  • Vermeesch P (2018) IsoplotR: a free and open toolbox for geochronology. Geosci Front 9:1479–1493

    Article  Google Scholar 

  • Vermeesch P (2021) On the treatment of discordant detrital zircon U-Pb data. Gchron 3:247–257

    Google Scholar 

  • Von Quadt A, Gunther D, Frischknecht R, Dietrich V (1999) Minor and trace element determinations in Li2B407 fused USGS standard materials calibrated without matrix-matched standards using laser ablation ICP-MS. J Conf Abst 4:819

    Google Scholar 

  • Von Quadt A, Wotzlaw JF, Buret Y, Large SJ, Peytcheva I, Trinquier A (2016) High-precision zircon U/Pb geochronology by ID-TIMS using new 1013 ohm resistors. J Anal at Spectrom 31:658–665

    Article  Google Scholar 

  • Whalen JB, Currie KL, Chappell BW (1987) A-type granites: geochemical characteristics, discrimination and petrogenesis. Contrib Mineral Petrol 95:407–419

    Article  Google Scholar 

  • White WM, Patchett J (1984) Hf-Nd-Sr isotopes and incompatible element abundances in island arcs: implications for magma origins and crust-mantle evolution. Earth Planet Sci Lett 67:167–185

    Article  Google Scholar 

  • Wiedenbeck M, Alle P, Corfu F, Griffin WL, Meier M, Oberli F, Von Quadt A, Roddick JC, Spiegel W (1995) Three natural zircon standards for U-Th-Pb, Lu-Hf, trace-element and REE analyses. Geostand Newslett 19:1–23. https://doi.org/10.1111/j.1751-908X.1995.tb00147.x

    Article  Google Scholar 

  • Wilkinson JFG (1977) Analcime phenocrysts in a vitrophyric analcimite-primary or secondary. Contrib Mineral Petrol 64:1–10

    Article  Google Scholar 

  • Wilson M (1989) Igneous petrogenesis: a global tectonic approach. Chapman & Hall, London, p 446

    Book  Google Scholar 

  • Wotzlaw JF, Husing SK, Hilgen FJ, Schaltegger U (2014) High-precision zircon U-Pb geochronology of astronomically dated volcanic ash beds from the Mediterranean Miocene. Earth Plane Sci Lett 407:19–34

    Article  Google Scholar 

  • Xiao L, Clemens JD (2007) Origin of potassic (C-type) adakite magmas: experimental and field constraints. Lithos 95:399–414

    Article  Google Scholar 

  • Xie Q, Zhang Z, Campos E, Cheng Z, Fei X, Liu B, Qiu Y, Santosh M, Ke S, Xu L (2018) Magnesium isotopic composition of continental arc andesites and the implications: a case study from the El Laco volcanic complex, Chile. Lithos 318–319:91–103

    Article  Google Scholar 

  • Xu JF, Shinjo R, Defant MJ, Wang Q, Rapp RP (2002) Origin of Mesozoic adakitic intrusive rocks in the Ningzhen area of east China: partial melting of delaminated lower continental crust? Geology 30:1111–1114

    Article  Google Scholar 

  • Yeganehfar H, Ghorbani MR, Shinjo R, Ghaderi M (2013) Magmatic and geodynamic evolution of Urumieh– Dokhtar basic volcanism, Central Iran: Major, trace element, isotopic, and geochronologic implications. Int Geol Rev 55(6):767–786

    Article  Google Scholar 

  • Yuan L, Zhang X, Xue F, Lu Y, Zong K (2016) Late Permian high-Mg andesite and basalt association from northern Liaoning, North China: insights into the final closure of the Paleo-Asian Ocean and the orogen–craton boundary. Lithos 258–259:58–76

    Article  Google Scholar 

  • Zhang Q, Wang Y, Qian Q, Yang JH, Wang YL, Zhao TP, Guo GJ (2001) The characteristics and tectonic–metallogenic significances of the adakites in Yanshan period from eastern China. Acta Petrol Sin 17:236–244

    Google Scholar 

  • Zindler A, Hart SR (1986) Chemical geodynamics. Annu Rev Earth Planet Sci 14:493–571

    Article  Google Scholar 

Download references

Acknowledgements

This work is derived from the Ph.D. thesis of Mohammad Paydari (2023). TMU, ETH and UC Santa Barbara are acknowledged for their funds and facilities. Two anonymous reviewers and Dr. Lin Sutherland are acknowledge for their comments which significantly improved this manuscript. Chief Editor Prof. Ulrich Riller and the Topic Editor are also acknowledged for their valuable comments and editorial handling which greatly improved this manuscript. Dr Mir A.A. Mokhtari is sincerely acknowledged for his advice while in the field. The Songun Copper Mining Complex is sincerely appreciated for furnishing the field camp during field work. The staff and students of the Geology Department from TMU are acknowledged for their friendship and support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohammad Reza Ghorbani.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 8885 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ghorbani, M.R., Paydari, M., Ahmadi, P. et al. Eocene to Late Oligocene extension dominated mafic magmatism from South Kaleybar, Iran. Int J Earth Sci (Geol Rundsch) 112, 1553–1575 (2023). https://doi.org/10.1007/s00531-023-02313-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00531-023-02313-6

Keywords

Navigation