Skip to main content
Log in

Mafic Magmatism of Northeastern Fennoscandia (2.06–1.86 Ga): Geochemistry of Volcanic Rocks and Correlation with Dike Complexes

  • Published:
Stratigraphy and Geological Correlation Aims and scope Submit manuscript

Abstract

The comprehensive geochemical and isotopic-geochronological study of Early Proterozoic volcanic rocks in structure of the Polmak–Pechenga–Imandra–Varzuga belt and dikes and sills of the Murmansk and Kola–Norwegian terranes is conducted. Abundant swarms of mafic dikes (2.06–1.86 Ga) are established in the northwestern frame of the belt, including swarms of metadolerites (2060 ± 6 Ma), ferropicrites and gabbronorites (1983 ± 5 Ma), and poikilophitic dolerites (1860 ± 4 Ma). The comparison of volcanic rocks of the Pechenga and Imandra–Varzuga structures shows asynchronous change in volcanism style, with a significant time lapse. The geochemical features of volcanic rocks of the Tominga Formation are typical of those of continental magmatism and can hardly be correlated with those of the Pilguyarvi Formation. According to isotopic-geochronological data, depleted mantle melts in the Pechenga and Imandra–Varzuga zones intruded at 2010–1970 and 1970–1980 Ma, respectively. The analysis of the conditions of formation of volcanic series shows that Neoarchean lithospheric mantle, which produced melts with low Zr/Nb ratios, was a source for primary melts of the Kuetsjarvi Formation of the Pechenga structure and their homologs of the Imandra–Varzuga structure. In contrast, the volcanic rocks of the Kolasjoki Formation, which were weakly contaminated with crustal material, and the related Ilmozero Formation, as well as the metadolerite dikes of the Kirkenes region, were sourced mostly from asthenosphere with separation of melt above the garnet stability depth. The formation of the volcanic rocks of the Pilguyarvi Formation is related, judging from the geochemical data, to two asthenospheric sources different in depth, which produced tholeiitic and ferropicritic melts.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.
Fig. 11.
Fig. 12.
Fig. 13.
Fig. 14.
Fig. 15.
Fig. 16.

Similar content being viewed by others

REFERENCES

  1. Arzamastsev, A.A., Bea, F., Arzamastseva, L.V., and Montero, P., Proterozoic Gremyakha–Vyrmes Polyphase Massif, Kola Peninsula: An example of mixing basic and alkaline mantle melts, Petrology, 2006, vol. 14, no. 4, pp. 361–389.

    Article  Google Scholar 

  2. Arzamastsev, A.A., Fedotov, Zh.A., and Arzamastseva, L.V., Daikovyi magmatizm severo-vostochnoi chasti Baltiiskogo shchita (Dike Magmatism in the Northeastern Baltic Shield), St. Petersburg: Nauka, 2009 [in Russian].

  3. Balagansky, V.V., Bogdanova, M.N., and Kozlova, N.E., Strukturno-metamorficheskaya evolyutsiya severo-zapadnogo Belomor’ya (Structural–Metamorphic Evolution of the Northwest White Sea Region), Apatity: Izd. Kol’sk. Fil. Akad. Nauk SSSR, 1986 [in Russian].

  4. Balashov, Yu.A., Paleoproterozoic geochronology of the Pechenga–Varzuga structure, Kola Peninsula, Petrology, 1996, vol. 4, no. 1, pp. 1–22.

    Google Scholar 

  5. Bayanova, T.B., Vozrast repernykh geologicheskikh kompleksov Kol’skogo regiona i dlitel’nost' protsessov magmatizma (Age of the Reference Geological Complexes of the Kola Region and the Duration of Magmatic Processes), St. Petersburg: Nauka, 2004 [in Russian].

  6. Bayanova, T.B., Mitrofanov, F.P., and Egorov, D.G., U-Pb Dating of the Dike Complex at the Kirovogorsk Deposit in the Iron Ore Formation of the Kola Peninsula, Dokl. Akad. Nauk, 1998, vol. 360, no. 5, pp. 637–640.

    Google Scholar 

  7. Bea, F., Arzamastsev, A., Montero, P., and Arzamastseva, L., Anomalous alkaline rocks of Soustov, Kola: evidence of mantle-derived metasomatic fluids affecting crustal materials, Contrib. Mineral. Petrol., 2001, vol. 140, pp. 554–566.

    Article  Google Scholar 

  8. Borisova, V.V., A new occurrence of the Nyasyuk-type magmatism in the Kola Peninsula, in Roi maficheskikh daek kak indikatory endogennogo rezhima (Mafic Dike Swarms as Indicators of Endogenic Regime), Apatity: Izd. Kol’sk. Fil. Akad. Nauk SSSR, 1989, pp. 17–25.

  9. Condie, K.C., High field strength element ratios in Archean basalts: a window to evolving sources of mantle plumes? Lithos, 2005, vol. 79, pp. 491–504.

    Article  Google Scholar 

  10. Daly, J.S., Balagansky, V.V., Timmerman, M.J., and Whitehouse, M.J., The Lapland–Kola orogen: Palaeoproterozoic collision and accretion of the northern Fennoscandian lithosphere, in European Lithosphere Dynamics,32nd ed., Gee, D.G. and Stephenson, R.A. Eds., Geol. Soc. London Mem., 2006, pp. 579–598.

    Google Scholar 

  11. Fedotov, Zh.A., Evolyutsiya proterozoiskogo vulkanizma vostochnoi chasti Pechengsko-Varzugskogo poyasa (petrogeokhimicheskii aspekt) (Evolution of Proterozoic Volcanism in the Eastern Part of the Pechenga–Varzuga Belt (Petrogeochemical Aspect)), Apatity: Izd. Kol’sk. Fil. Akad. Nauk SSSR, 1985 [in Russian].

  12. Fedotov, Zh.A., Bayanova, T.B., and Serov, P.A., Spatiotemporal relationships of dike magmatism in the Kola region, the Fennoscandian Shield, Geotectonics, 2012, vol. 46, no. 6, pp. 412–426.

    Article  Google Scholar 

  13. Galimzyanova, R.M., Bayanova, T.B., Neradovskii, Yu.N., and Zhavkov, V.A., The Late Proterozoic mafic intrusions in the eastern part of the Kola Region: new geological and isotope–geochemical data, in Mater. III Ross. Konf. po izotopnoi geokhronol. “Izotopnoe datirovanie protsessov rudoobrazovaniya, magmatizma, osadkonakopleniya i metamorfizma” (Proc. 3rd Russ. Isotope Geochronol. Conf. “Isotopic Dating of Ore Genesis, Magmatism, Sedimentation, and Metamorphism”), Moscow, 2006, vol. 1, pp. 183–188.

  14. Hannah, J.L., Stein, H.J., Zimmerman, A., Yang, G., Markey, R.J., and Melezhik, V.A., Precise 2004 ± 9 Ma Re–Os age for Pechenga black shale: comparison of sulfides and organic material, in Goldschmidt Conf. Abstracts. Geochim. Cosmochim. Acta, Suppl., 2006, vol. 70, A228.

  15. Hanski, E.J., Petrology of the Pechenga ferropicrites and cogenetic, Ni-bearing gabbro-wehrlite intrusions, Kola Peninsula, Russia. Acad. Diss., Bull. Geol. Surv. Finland, 1992, vol. 367, pp. 1–192.

  16. Hanski, E.J. and Smolkin, V.F., Pechenga ferropicrites and other early Proterozoic picrites in the eastern part of the Baltic Shield, Precambrian Res., 1989, vol. 45, pp. 63–82.

    Article  Google Scholar 

  17. Hanski, E.J. and Smolkin, V.F., Iron- and LREE-enriched mantle source for early Proterozoic intraplate magmatism as exemplified by the Pechenga ferropicrites, Kola Peninsula, Russia, Lithos, 1995, vol. 34, pp. 107–125.

    Article  Google Scholar 

  18. Hanski, E., Huhma, H., Smolkin, V., and Vaasjoki, M., The age of ferropicritic volcanism comagmatic and Ni-bearing intrusions at Pechenga, Kola Peninsula, USSR, Bull. Geol. Surv. Finland, 1990, vol. 62, pp. 123–133.

    Article  Google Scholar 

  19. Hanski, E.J., Huhma, H., and Melezhik, V.A., New isotopic and geochemical data from the Palaeoproterozoic Pechenga Greenstone Belt, NW Russia: implication for basin development and duration of the volcanism, Precambrian Res., 2014, vol. 245, pp. 51–65.

  20. Hart, S.R., Blusztajn, J., Dick, H.J.B., Meyer, P.S., and Muehlenbachs, K., The fingerprint of seawater circulation in a 500-meter section of ocean crust gabbros, Geochim. Cosmochim. Acta, 1999, vol. 3, pp. 4059–4080.

  21. Kaulina T.V., Avedisyan A.A., Tomilenko A.A., Ryabukha M.A., and Il’chenko V.L., Fluid inclusions in quartz from uranium mineralization areas of the Litsa ore cluster (Kola Peninsula), Russ. Geol. Geophys., 2017, vol. 58, no. 9, pp. 1059–1069.

    Article  Google Scholar 

  22. Van Keken, P.E., Hauri, E.H., and Ballentine, C.J., Mantle mixing: the generation, preservation, and destruction of chemical heterogeneity, Annu. Rev. Earth Planet. Sci., 2002, vol. 30, pp. 493–525.

    Article  Google Scholar 

  23. Krogh, T.E., A low-contamination method for hydrothermal decomposition of zircon and extraction of U and Pb for isotopic age determination, Geochim. Cosmochim. Acta, 1973, vol. 37, pp. 485–494.

    Article  Google Scholar 

  24. Lahtinen, R., Korja, A., and Nironen, M., Paleoproterozoic tectonic evolution, in Precambrian Geology of Finland—Key to the Evolution of the Fennoscandian Shield, Lehtinen, M., Nurmi, P.A., and Ramo, O.T., Eds., Amsterdam: Elsevier, 2005, pp. 481–532.

    Google Scholar 

  25. Larionov, A. N., Andreichev, V. A., and Gee, D. G., The Vendian alkaline igneous suite of northern Timan: ion microprobe U–Pb zircon ages of gabbros and syenite, in The Neoproterozoic Timanide Orogen of Eastern Baltica, Gee, D. G. and Pease, V., Eds., Geol. Soc. London Mem., 2004, vol. 30, pp. 69–74.

    Google Scholar 

  26. Larionova, Yu.O., Samsonov, A.V., and Shatagin, K.N., Sources of Archean sanukitoids (high-Mg subalkaline granitoids) in the Karelian Craton: Sm–Nd and Rb–Sr isotopic-geochemical evidence, Petrology, 2007, vol. 15, no. 6, pp. 530–550.

    Article  Google Scholar 

  27. Ludwig, K.R., PbDat for MS-DOS, version 1.21, U.S. Geol. Survey Open-File Rept., 1991, pp. 88–542.

    Google Scholar 

  28. Ludwig, K.R., SQUID 1.12, A User’s Manual. A geochronological toolkit for Microsoft Excel, Berkeley Geochronol. Center Spec. Publ., 2005, pp. 1–22.

    Google Scholar 

  29. Lugwig, K.R., Isoplot/Ex Version 4.1, a geochronological toolkit for Microsoft Excel, Berkeley Geochronol. Center Spec. Publ., 2010, no. 4, pp. 1–76.

  30. Martin, A.P., Condon, D.J., Prave, A.R., Melezhik, V.A., and Fallick, A., Constraining the termination of the Lomagundi–Jatuli positive isotope excursion in the Imandra–Varzuga segment (Kola Peninsula) of the North Transfennoscandian Greenstone Belt by high-precision ID-TIMS, in Proc. AGU Meet., San Francisco, 2010, Abstract #U33A-0010.

  31. McDonough, W.F. and Sun, S.-S., The composition of the Earth, Chem. Geol., 1995, vol. 120, pp. 223–253.

    Article  Google Scholar 

  32. Melezhik, V.A. and Sturt, B.A., General geology and evolutionary history of the early Proterozoic Polmak–Pasvik–Pechenga–Imandra/Varzuga–Ust’Ponoy Greenstone Belt in the northeastern Baltic Shield, Earth Sci. Rev., 1994, vol. 36, pp. 205–241.

    Article  Google Scholar 

  33. Melezhik, V.A., Huhma, H., Condon, D.J., Fallick, A.E., and Whitehouse, M.J., Temporal constraints on the Paleoproterozoic Lomagundi–Jatuli carbon isotopic event, Geology, 2007, vol. 35, no. 7, pp. 655–658.

    Article  Google Scholar 

  34. Melezhik, V.A., Prave, A.R., Fallick, A.E., Kump, L.R., Strauss, H., Lepland, A., and Hanski, E.J., Reading the Archive of Earth’s Oxygenation. Volume 1: The Palaeoproterozoic of Fennoscandia as Context for the Fennoscandian Arctic Russia – Drilling Early Earth Project, Springer, 2013.

  35. Mints, M.V., Glaznev, V.I., Kopalov, A.I., et al., Rannii dokembrii severo-vostoka Baltiiskogo shchita: paleogeodinamika, stroenie i evolyutsiya kontinental’noi kory (Early Precambrian of the Northeastern Baltic Shield: Paleogeodynamics, Structure, and Evolution of the Continental Crust), Moscow: Nauchn. Mir, 1996 [in Russian].

  36. Mitrofanov, F.P., Skuf’in, P.K., Bayanova, T.B., Levkovich, N.V., and Smirnov, Yu.P., Rhyodacite porphyry pluton in the early proterozoic Pechenga complex: Evidence from the Kola Superdeep Borehole section, Dokl. Earth Sci., 2001, vol. 380, no. 4 pp. 540 –544.

    Google Scholar 

  37. Negrutsa, V.Z., Ranneproterozoiskie etapy razvitiya vostochnoi chasti Baltiiskogo shchita (Early Proterozoic Stages of Development of the Eastern Part of the Baltic Shield), Leningrad: Nedra, 1984 [in Russian].

  38. Nerovich, L.I., Bayanova, T.B., Serov, P.A., and Elizarov, D.V., Magmatic sources of dikes and veins in the Moncha Tundra Massif, Baltic Shield: Isotopic–geochronologic and geochemical evidence, Geochem. Int., 2014, vol. 52, no. 7, pp.548–566.

    Article  Google Scholar 

  39. Predovskii, A.A., Fedotov, Zh.A., and Akhmedov, A.M., Geokhimiya Pechengskogo kompleksa (metamorfizovannye osadki i vulkanity) (Geochemistry of the Pechenga Complex (Metamorphosed Sediments and Volcanics)), Leningrad: Nauka, 1974 [in Russian].

  40. Predovskii, A.A., Melezhik, V.A., Bolotov, V.I., et al., Vulkanizm i sedimentogenez dokembriya severo-vostoka Baltiiskogo shchita (Precambrian Volcanism and Sedimentogenesis in the Northeastern Baltic Shield), Leningrad: Nauka, 1987 [in Russian].

  41. Samsonov, A.V., Larionova, Yu.O., Salnikova, E.B., Travin, A.V., Stepanova, A.V., Veselovskii, R.V., Arzamastsev, A.A., Egorova, S.V., Erofeeva, K.G., and Stifeeva, M.V., U–Pb, Sm–Nd, Rb–Sr and Ar–Ar isotope systems in minerals from the Paleoproterozoic dolerite sill of the Murmansk Province as a basis for a key paleomagnetic pole ~1.86 Ga, in Mater. VII Ross. Konf. po izotopnoi geokhronologii “Metody i geologicheskie rezul’taty izucheniya izotopnykh geokhronometricheskikh sistem mineralov i porod” (Proc. VII Russ. Isotope Geochronol. Conf. “Methods and Geological Results of the Study of Isotope Geochronological Systems of Minerals and Rocks”), Moscow: Inst. Geol. Rudn. Mest., Petrogr., Mineral., Geokhim. RAN, 2018, pp. 313–316.

  42. Seismogeologicheskaya model' litosfery Severnoi Evropy: Laplandsko-Pechengskii raion (Seismological Model of the Northern European Lithosphere. The Lapland–Pechenga Region), Sharov, N.V., Ed., Apatity: Izd. KNTs RAN, 1997 [in Russian].

  43. Sharkov, E.V. and Smolkin, V.F., The Early Proterozoic Pechenga-Varzuga Belt: a case of Precambrian back-arc spreading, Precambrian Res., 1997, vol. 82, pp. 133–151.

    Article  Google Scholar 

  44. Skuf’in, P.K., Evolution of the volcanism of the ore-bearing Pechenga Zone, Kola Peninsula), Geol. Rudn. Mestor., 1993, vol. 35, pp. 271–283.

    Google Scholar 

  45. Skuf’in, P.K., Vulkanizm Kol’skogo regiona. Chast’ I. Drevnii Pechengsko-Varzugskii zelenokamennyi poyas (vozrast 2500–1700 mln. let) (Volcanism of the Kola Region. Part I. The Ancient Pechenga–Varzuga Greenstone Belt (2500–1700 Ma)), Lambert Acad. Publ., 2014 [in Russian].

  46. Skuf’in, P.K., Vulkanizm rannego proterozoya Kol’skogo regiona. Chast’ II. Vulkanogennye formatsii pozdnikh karelid Svekofenno-Vepsiiskogo orogennogo poyasa (1905–1700 mln let) (The Early Proterozoic Volcanism in the Kola Region. Part II. Volcanogenic Formations of Late Karelides of the Svecofennian–Vepsian Orogenic Belt (1905–1700 Ma)), Lambert Acad. Publ., 2018a [in Russian].

  47. Skuf’in, P.K., A new model of geological structure of the Southern zone of Early Proterozoic Pechenga–Varzuga greenstone belt (Kola Peninsula), Vestn. Kol’sk. Nauchn. Tsentra RAN, 2018b, vol. 10, pp. 63–80.

    Google Scholar 

  48. Skuf’in, P.K. and Bayanova, T.B., Early Proterozoic central-type volcano in the Pechenga structure and its relation to the ore-bearing gabbro-wehrlite complex of the Kola Peninsula, Petrology, 2006, vol. 14, no. 6, pp. 609–627.

    Article  Google Scholar 

  49. Skuf’in, P.K. and Theart, H.F.J., Geochemical and tectono-magmatic evolution of the volcano-sedimentary rocks of Pechenga and other greenstone fragments within the Kola Greenstone Belt, Russia, Precambrian Res., 2005, vol. 141, pp. 1–48.

    Article  Google Scholar 

  50. Skuf’in, P.K., Bayanova, T.B., and Levkovich, N.V., Lamprophyres in the Early Proterozoic volcanic complex of the Pechenga structure, Kola Peninsula, Petrology, 1999, vol. 7, no. 3, pp. 289–303.

    Google Scholar 

  51. Skuf’in, P.K., Bayanova, T.B., Mitrofanov, F.P., Apanasevich, E.A., and Levkovich, N.V., The absolute age of granitoids from the Shuoniyavri Pluton in the southern framework of the Pechenga Structure, the Kola Peninsula, Dokl. Earth Sci., 2000, vol. 370, no. 2, pp. 114–117.

    Google Scholar 

  52. Skuf’in, P.K., Bayanova, T.B., and Mitrofanov, F.P., Isotope age of subvolcanic granitoid rocks of the Early Proterozoic Panarechka volcanotectonic structure, Kola Peninsula, Dokl. Earth Sci., 2006, vol. 409, no. 1, pp. 774–778.

    Article  Google Scholar 

  53. Skuf’in, P.K., Elizarov, D.V., and Zhavkov, V.A., Geology and geochemistry of the volcanic rocks of the South Pechenga structural and formational zone, Vestn. Murmansk. Gos. Tekh. Univ., 2009, vol. 12, no. 3, pp. 416–435.

  54. Skuf’in, P.K., Bayanova, T.B., Elizarov, D.V., and Serov, P.A., New isotope–geochemical data on the volcanic sequence of the Pechenga structure, in Tr. X Vseross. Fersman. Nauch. Sess. “Geologiya i poleznye iskopaemye Kol’skogo regiona,” Apatity, 7–10 aprelya 2013 g. (Proc. X All-Russ. Fersman Sci. Sess. “Geology and mineral resources of the Kola Region), Apatity: Izd. K&M, 2013, pp. 103–107.

  55. Skuf’in, P.K., Bayanova, T.B., and Serov, P.A., Isotopy of rocks of the Por’itash intrusion (Pechenga structure), in Mater. Mezhd. tekh. konf. “Nauka i obrazovanie-2014,” (Proc. Int. Tecton. Conf. “Science and Education–2014”), Apatity, 2014, pp. 874–878.

  56. Smolkin, V.F., Komatiitovyi i pikritovyi magmatizm rannego dokembriya Baltiiskogo shchita (Komatiite and Picrite Magmatism of the Early Precambrian of the Baltic Shield), St. Petersburg: Nauka, 1992 [in Russian].

  57. Smolkin, V.F., Magmatism of the Early Proterozoic (2.5–1.7 Ga) rift system in the northwestern Baltic Shield, Petrology, 1997, vol. 5, no. 4, pp. 350–365.

    Google Scholar 

  58. Smolkin, V.F., The origin and age of gabbro of the Zhdanov deposit of Cu–Ni ores (Pechenga), in Tez. Konf. “Korrelyatsiya geologicheskikh kompleksov Fennoskandii” (Proc. Conf. “Correlation of Geological Complexes of the Fennoscandia”), Petrozavodsk: Izd. KarNTs RAN, 1999, pp. 150–151.

  59. Smolkin, V.F., Mitrofanov, F.P., Avedisyan, A.A., Balashov, Yu.A., Balaganskii, V.V., Borisov, A.E., Borisova, V.V., Voloshina, Z.M., Kozlova, N.E., Kravtsov, N.A., Negrutsa, V.Z., Mokrousov, V.A., Petrov, V.P., Radchenko, A.T., Skuf’in, P.K., and Fedotov, Zh.A., Magmatizm, sedimentogenez i geodinamika Pechengskoi paleoriftogennoi struktury (Magmatism, Sedimentogenesis, and Geodynamics of the Pechenga Paleorift Structure), Apatity: Izd. Kol’sk. Fil. RAN, 1995 [in Russian].

  60. Smolkin, V.F., Skuf’in, P.K., Mitrofanov, F.P., and Mokrousov, V.A., Stratigraphy and volcanism in the Early Proterozoic Pechenga structure (Kola Peninsula), Stratigr. Geol. Correl., 1996, vol. 4, no. 1, pp. 78–94.

    Google Scholar 

  61. Smolkin, V.F., Lokhov, K.I., Sergeeva, L.Yu., Kapitonov, I.N., Rodionov, N.V., Sergeev, S.A., and Bol’sha-kov, A.N., New data on geochemistry and isotopy (U–Pb, Lu–Hf, Sm–Nd) Keulik–Kenirim ore-bearing gabbro–peridotite complex, Kola Region, in Tr. Fersman. Nauch. Sess. GI KNTs RAN (Proc. Fersman Sci. Sess. Geol. Inst. Kola Sci. Centre Russ. Acad. Sci.), 2014, no. 11, pp. 180–187.

  62. Smolkin, V.F., Hanski, E., Huhma, H., and Fedotov, Zh.A., Sm–Nd and U–Pb isotopic study of the Nyasyukka dike complex, Kola Peninsula, Russia, in Tr. Karel’sk. Nauchn. Tsentra RAN (Trans. Karelian Sci. Centre Russ. Acad. Sci.), 2015, no. 7, pp. 74–84.

  63. Smolkin, V.F., Lokhov, K.I., Skublov, S.G., Sergeeva, L.Yu., Lokhov, D.K., and Sergeev, S.A., Paleoproterozoic Keulik–Kenirim ore-bearing gabbro–peridotite complex, Kola Region: A new occurrence of ferropicritic magmatism, Geol. Ore. Deposits, 2018, vol. 60, no. 2, pp. 142–171.

    Article  Google Scholar 

  64. Söderlund, U. and Johansson, L., A simple way to extract baddeleyite (ZrO2), Geochem. Geophys. Geosyst., 2002, vol. 3, no. 2, pp. 1–7.

    Article  Google Scholar 

  65. Stacey, J.S. and Kramers, I.D., Approximation of terrestrial lead isotope evolution by a two-stage model, Earth Planet. Sci. Lett., 1975, vol. 26, no. 2, pp. 207–221.

    Article  Google Scholar 

  66. Steiger, R.H. and Jager, E., Subcomission of Geochronology: convention of the use of decay constants in geo- and cosmochronology, Earth Planet. Sci. Lett., 1976, vol. 36, no. 2, pp. 359–362.

    Article  Google Scholar 

  67. Stepanova, A.V., Salnikova, E.B., Samsonov, A.V., Larionova, Yu.O., Arzamastsev, A.A., and Larionov, A.N., U–Pb geochronology of Early Precambrian mafic rocks of the Kola–Murmansk province of the Eastern Fennoscandia: the dike “bar code” as a basis of paleocontinental reconstruction, in Mater. VII Ross. Konf. po izotopnoi geokhronologii “Metody i geologicheskie rezul’taty izucheniya izotopnykh geokhronometricheskikh sistem mineralov i porod” (Proc. VII Russ. Isotope Geochronol. Conf. “Methods and Geological Results of the Study of Isotope Geochronological Systems of Minerals and Rocks), Moscow, 2018, pp. 340–342.

  68. Svetov, S.A., Stepanova, A.V., Chazhengina, S.Yu., Svetova, E.N., Rybnikova, Z.P., Mikhailova, A.I., Paramonov, A.S., Ekhova, M.V., and Kolodei, V.A., Precision (ICP–MS, LA–ICP–MS) analysis of rock and mineral composition of Early Precambrian mafic complexes: An illustration of the method and estimation of results’ precision, in Tr. Karel’sk. Nauchn. Tsentra RAN, Ser. Geol. Dokembriya (Trans. Karelian Sci. Centre Russ. Acad. Sci., Ser. Precambrian Geol.), 2015, no. 7, pp. 54–73.

  69. Vetrin, V.R., Duration of the formation and sources of the granitoids of the Litsk–Araguba Complex, Kola Peninsula, Geochem. Int., 2014, vol. 52, no. 1, pp. 33–45.

    Article  Google Scholar 

  70. Vetrin, V.R., Turkina, O.M., and Rodionov, N.V., U–Pb age and genesis of granitoids in the southern framing of the Pechenga structure, Baltic Shield, Dokl. Earth Sci., 2008, vol. 419, no. 1, pp. 298–302.

    Article  Google Scholar 

  71. Walker, R.J., Morgan, J.W., Hanski, E.J., and Smolkin, V.F., Re–Os systematics of early Proterozoic ferropicrites, Pecheng-a Complex, Russia: evidence for ancient 187Os enriched plumes, Geochim. Cosmochim. Acta, 1997, vol. 61, pp. 3145–3160.

    Article  Google Scholar 

  72. Wanke, A. and Melezhik, V.A., Palaeoproterozoic sedimentation and stromatolite growth in an advanced intracontinental rift associated with the marine realm: a record of the Neoarchean continent breakup? Precambrian Res., 2005, vol. 140, pp. 1–35.

    Article  Google Scholar 

  73. Williams, I.S., U–Th–Pb geochronology by ion microprobe. Applications of microanalytical techniques to understanding mineralizing processes, Rev. Econ. Geol., 1998, vol. 7, pp. 1–35.

    Article  Google Scholar 

  74. Yakovlev, Yu.N. and Yakovleva, A.K., Mafic dikes and pseudotachylites of the Allarechenskoe area, in Roi maficheskikh daek kak indikatory endogennogo rezhima (Mafic Dike Swarms as Indicators of Endogenic Regime), Apatity: Izd. KNTs AN SSSR, 1989, pp. 43–53.

  75. Zagorodnyi, V.G., Predovskii, A.A., and Basalaev, A.A., Imandra–Varzuga zona karelid: geologiya, geokhimiya, istoriya razvitiya (Imandra–Varzuga Zone of Karelides: Geology, Geochemistry, and Evolution), Leningrad: Nauka, 1982 [in Russian].

Download references

ACKNOWLEDGMENTS

We are grateful to A.B. Vrevskii (Institute of Precambrian Geology and Geochronology, Russian Academy of Sciences) and N.E. Kozlov (Geological Institute, Kola Science Center, Russian Academy of Sciences) for kind and fruitful criticism.

Funding

This work was supported by the Russian Science Foundation, project no. 16-17-10260.

Reviewers A.B. Vrevskii, N.E. Kozlov, and A.B. Kotov

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. A. Arzamastsev.

Additional information

Translated by I. Melekestseva

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Arzamastsev, A.A., Stepanova, A.V., Samsonov, A.V. et al. Mafic Magmatism of Northeastern Fennoscandia (2.06–1.86 Ga): Geochemistry of Volcanic Rocks and Correlation with Dike Complexes. Stratigr. Geol. Correl. 28, 1–34 (2020). https://doi.org/10.1134/S0869593820010025

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0869593820010025

Keywords:

Navigation