Skip to main content
Log in

Decoupling of Mg from Sr–Nd isotopic compositions in Variscan subduction-related plutonic rocks from the Bohemian Massif: implications for mantle enrichment processes and genesis of orogenic ultrapotassic magmatic rocks

  • Original Paper
  • Published:
International Journal of Earth Sciences Aims and scope Submit manuscript

Abstract

The Moldanubian Zone of the Bohemian Massif was intruded by three Variscan (c. 354–335 Ma) subduction-related plutonic suites. Their mantle sources evolved from CHUR-like (low-K calc-alkaline suite), through slightly enriched (\(\varepsilon_{Nd}^{346}\) ~ − 3; high-K calc-alkaline suite—HKCA) to strongly enriched (\(\varepsilon_{Nd}^{337}\) < − 7.5; (ultra-)potassic suite—UK). This evolution has been previously interpreted in terms of Andean-type subduction passing to deep subduction/relamination of the Saxothuringian continental crust, metasomatizing the mantle source of the HKCA and, more significantly, of the UK suite. This is in accord with the heterogeneity of lithospheric mantle fragments (spinel/garnet peridotites, garnet pyroxenites, eclogites, glimmerites…) sampled by the high-grade Moldanubian orogenic root. Newly acquired Mg isotopic compositions (δ26Mg = − 0.12 to − 0.53‰) vary over similarly broad intervals within each suite. Majority of the most magnesian samples fall within the range of local orogenic mantle peridotites (− 0.33 to − 0.29‰) or close to the global mantle average (− 0.25‰). This implies that the δ26Mg of the progressively metasomatized harzburgitic mantle was mostly buffered by the mantle end-member, while its mantle-incompatible elemental/related isotopic (Sr–Nd–Pb) signal was swamped by the crustally derived contribution. The crustal contaminant, source of the metasomatic fluids, had to be dominated by Mg-poor, felsic metaigneous >  > clastic metasedimentary material. Subducted carbonates were of limited importance, as recorded by lowered δ26Mg values in several mafic UK samples and in a glimmerite vein cutting the peridotites (− 0.44‰). The Mg isotopic variation in less magnesian potassic rock types reflects a complex interplay between source heterogeneity, equilibrium fractionation during fractional crystallization, kinetic fractionation due to chemical diffusion during magma mixing and/or AFC-style contamination by carbonate-derived fluids.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Ackerman L, Jelínek E, Medaris LG Jr, Ježek J, Siebel W, Strnad L (2009) Geochemistry of Fe-rich peridotites and associated pyroxenites from Horní Bory, Bohemian Massif: insights into subduction-related melt-rock reactions. Chem Geol 259:152–167. https://doi.org/10.1016/j.chemgeo.2008.10.042

    Article  Google Scholar 

  • Altherr R, Holl A, Hegner E, Langer C, Kreuzer H (2000) High-potassium, calc-alkaline I-type plutonism in the European Variscides: northern Vosges (France) and northern Schwarzwald (Germany). Lithos 50:51–73. https://doi.org/10.1016/S0024-4937(99)00052-3

    Article  Google Scholar 

  • Barbarin B, Didier J (1991) Macroscopic features of mafic microgranular enclaves. In: Didier J, Barbarin B (eds) Enclaves and Granite Petrology. Elsevier, Amsterdam, pp 253–262

    Google Scholar 

  • Beard BL, Medaris LG Jr, Johnson CM, Brueckner HK, Mísař Z (1992) Petrogenesis of Variscan high-temperature group A eclogites from the Moldanubian zone of the Bohemian Massif, Czechoslovakia. Contrib Mineral Petrol 111:468–483. https://doi.org/10.1007/BF00320902

    Article  Google Scholar 

  • Becker H (1996a) Crustal trace element and isotopic signatures in garnet pyroxenites from garnet peridotite massifs from Lower Austria. J Petrol 37:785–810. https://doi.org/10.1093/petrology/37.4.785

    Article  Google Scholar 

  • Becker H (1996b) Geochemistry of garnet peridotite massifs from Lower Austria and the composition of deep lithosphere beneath a Palaeozoic convergent plate margin. Chem Geol 134:49–65. https://doi.org/10.1016/S0009-2541(96)00089-7

    Article  Google Scholar 

  • Becker H, Wenzel T, Volker F (1999) Geochemistry of glimmerite veins in peridotites from Lower Austria—implications for the origin of K-rich magmas in collision zones. J Petrol 40:315–338. https://doi.org/10.1093/petroj/40.2.315

    Article  Google Scholar 

  • Borghini A, Ferrero S, O’Brien PJ, Laurent O, Günter C, Ziemann MA (2020) Cryptic metasomatic agent measured in situ in Variscan mantle rocks: melt inclusions in garnet of eclogite, Granulitgebirge, Germany. J Metamorph Geol 38:207–234. https://doi.org/10.1111/jmg.12519

    Article  Google Scholar 

  • Bourdon B, Tipper ET, Fitoussi C, Stracke A (2010) Chondritic Mg isotope composition of the Earth. Geochim Cosmochim Acta 74:5069–5083. https://doi.org/10.1016/j.gca.2010.06.008

    Article  Google Scholar 

  • Bouvier A, Vervoort JD, Patchett PJ (2008) The Lu–Hf and Sm–Nd isotopic composition of CHUR: constraints from unequilibrated chondrites and implications for the bulk composition of terrestrial planets. Earth Planet Sci Lett 273:48–57. https://doi.org/10.1016/j.epsl.2008.06.010

    Article  Google Scholar 

  • Broska I, Petrík I, Be’eri-Shlevin Y, Majka J, Bezák V (2013) Devonian/Mississippian I-type granitoids in the Western Carpathians: a subduction-related hybrid magmatism. Lithos 162–163:27–36. https://doi.org/10.1016/j.lithos.2012.12.014

    Article  Google Scholar 

  • Brueckner HK, Medaris LG Jr, Bakun-Czubarow N (1991) Nd and Sr age and isotope patterns from Variscan eclogites of the eastern Bohemian Massif. Neu Jb Mineral, Abh 163:169–196

    Google Scholar 

  • Chaloupský J, Chlupáč I, Mašek J, Waldhausrová J, Cháb J (1995) Teplá–Barrandian Zone (Bohemicum)—Stratigraphy. In: Dallmeyer RD, Franke W, Weber K (eds) Pre-Permian Geology of Central and Eastern Europe. Springer, Berlin, pp 379–391

    Chapter  Google Scholar 

  • Chen YX, Schertl HP, Zheng YF, Huang F, Zhou K, Gong YZ (2016) Mg–O isotopes trace the origin of Mg-rich fluids in the deeply subducted continental crust of Western Alps. Earth Planet Sci Lett 456:157–167. https://doi.org/10.1016/j.epsl.2016.09.010

    Article  Google Scholar 

  • Cheng ZG, Zhang ZC, Hou T, Santosh M, Chen L, Ke S, Xu LJ (2017) Decoupling of Mg–C and Sr–Nd–O isotopes traces the role of recycled carbon in magnesiocarbonatites from the Tarim Large Igneous Province. Geochim Cosmochim Acta 202:159–178. https://doi.org/10.1016/j.gca.2016.12.036

    Article  Google Scholar 

  • Chlupáč I (1989) Stratigraphy of the Sedlčany–Krásná Hora metamorphic ‘Islet’ in Bohemia (Proterozoic? to Devonian). Čas Mineral Geol 34:1–16

    Google Scholar 

  • Chopra R, Richter FM, Bruand E, Scullard CR (2012) Magnesium isotope fractionation by chemical diffusion in natural settings and in laboratory analogues. Geochim Cosmochim Acta 88:1–18. https://doi.org/10.1016/j.gca.2012.03.039

    Article  Google Scholar 

  • Couzinié S, Moyen JF, Villaros A, Paquette JL, Scarrow JH, Marignac C (2014) Temporal relationships between Mg–K mafic magmatism and catastrophic melting of the Variscan crust in the southern part of Velay Complex (Massif Central, France). J Geosci 59:69–86. https://doi.org/10.3190/jgeosci.155

    Article  Google Scholar 

  • Couzinié S, Laurent O, Moyen JF, Zeh A, Bouilhol P, Villaros A (2016) Post-collisional magmatism: crustal growth not identified by zircon Hf–O isotopes. Earth Planet Sci Lett 456:182–195. https://doi.org/10.1016/j.epsl.2016.09.033

    Article  Google Scholar 

  • Debon F, Le Fort P (1988) A cationic classification of common plutonic rocks and their magmatic associations: principles, method, applications. Bull Minéral 111:493–510. https://doi.org/10.3406/bulmi.1988.8096x

    Article  Google Scholar 

  • Dempírová L (2010) Evaluation of SiO2, Na2O, MgO, K2O determinations in silicate samples by z-score obtained from nineteen interlaboratory tests. Zpr Geol Výzk v Roce 2009:326–330 (in Czech with English summary)

    Google Scholar 

  • DePaolo DJ (1981) Trace element and isotopic effects of combined wallrock assimilation and fractional crystallization. Earth Planet Sci Lett 53:189–202. https://doi.org/10.1016/0012-821X(81)90153-9

    Article  Google Scholar 

  • Didier J, Barbarin B (1991) The different types of enclaves in granites—nomenclature. In: Didier J, Barbarin B (eds) Enclaves and Granite Petrology. Elsevier, Amsterdam, pp 19–24

    Google Scholar 

  • Dörr W, Zulauf G (2010) Elevator tectonics and orogenic collapse of a Tibetan-style plateau in the European Variscides: the role of the Bohemian shear zone. Int J Earth Sci 99:299–325. https://doi.org/10.1007/s00531-008-0389-x

    Article  Google Scholar 

  • Faryad SW (2011) Distribution and geological position of high-/ultrahigh-pressure units within the European Variscan Belt: a review. In: Dobrzhinetskaya LF, Faryad SW, Wallis S, Cuthbert S (eds) Ultrahigh-pressure metamorphism: 25 years after the discovery of coesite and diamond. Elsevier, Amsterdam, pp 361–397. https://doi.org/10.1016/B978-0-12-385144-4.00011-4

    Chapter  Google Scholar 

  • Faure M, Lardeaux JM, Ledru P (2009) A review of the pre-Permian geology of the Variscan French Massif Central. C R Geosci 341:202–213. https://doi.org/10.1016/j.crte.2008.12.001

    Article  Google Scholar 

  • Finger F, Roberts MP, Haunschmid B, Schermaier A, Steyrer HP (1997) Variscan granitoids of central Europe: their typology, potential sources and tectonothermal relations. Mineral Petrol 61:67–96. https://doi.org/10.1007/BF01172478

    Article  Google Scholar 

  • Finger F, Gerdes A, Janoušek V, René M, Riegler G (2007) Resolving the Variscan evolution of the Moldanubian sector of the Bohemian Massif: the significance of the Bavarian and the Moravo-Moldanubian tectonometamorphic phases. J Geosci 52:9–28. https://doi.org/10.3190/jgeosci.005

    Article  Google Scholar 

  • Foley SF, Venturelli G, Green DH, Toscani L (1987) Ultrapotassic rocks: characteristics, classification and constraints for petrogenetic models. Earth Sci Rev 24:81–134. https://doi.org/10.1016/0012-8252(87)90001-8

    Article  Google Scholar 

  • Förster MW, Prelević D, Buhre S, Mertz-Kraus R, Foley SF (2019) An experimental study of the role of partial melts of sediments versus mantle melts in the sources of potassic magmatism. J Asian Earth Sci 177:76–88. https://doi.org/10.1016/j.jseaes.2019.03.014

    Article  Google Scholar 

  • Foster GL, Pogge von Strandmann PAE, Rae JWB (2010) Boron and magnesium isotopic composition of seawater. Geochem Geophys Geosyst 11:Q08015. https://doi.org/10.1029/2010GC003201

    Article  Google Scholar 

  • Franěk J, Schulmann K, Lexa O, Tomek Č, Edel JB (2011) Model of syn-convergent extrusion of orogenic lower crust in the core of the Variscan belt: implications for exhumation of high-pressure rocks in large hot orogens. J Metamorph Geol 29:53–78. https://doi.org/10.1111/j.1525-1314.2010.00903.x

    Article  Google Scholar 

  • Franke W (2000) The mid-European segment of the Variscides: tectonostratigraphic units, terrane boundaries and plate tectonic evolution. In: Franke W, Haak V, Oncken O, Tanner D (eds) Orogenic processes: quantification and modelling in the Variscan Belt. Geological Society London Special Publications, vol 179, pp 35–61. https://doi.org/10.1144/GSL.SP.2000.179.01.05

  • Galy A, Belshaw NS, Halicz L, O’Nions RK (2001) High-precision measurement of magnesium isotopes by multiple-collector inductively coupled plasma mass spectrometry. Int J Mass Spectrom 208:89–98. https://doi.org/10.1016/S1387-3806(01)00380-3

    Article  Google Scholar 

  • Galy A, Yoffe O, Janney PE, Williams RW, Cloquet C, Alard O, Halicz L, Wadhwa M, Hutcheon ID, Ramon E, Carignan J (2003) Magnesium isotope heterogeneity of the isotopic standard SRM 980 and new reference materials for magnesium-isotope-ratio measurements. J Anal At Spectrom 18:1352–1352. https://doi.org/10.1039/B309273A

    Article  Google Scholar 

  • Gerdes A, Wörner G, Finger F (2000) Hybrids, magma mixing and enriched mantle melts in post-collisional Variscan granitoids: the Rastenberg Pluton, Austria. In: Franke W, Haak V, Oncken O, Tanner D (eds) Orogenic processes: quantification and modelling in the Variscan Fold Belt. Geological Society London Special Publications, vol 179, pp 415–431. https://doi.org/10.1144/GSL.SP.2000.179.01.25

  • Guo BJ, Zhu XK, Dong AG, Yan B, Shi GH, Zhao Z (2019) Mg isotopic systematics and geochemical applications: a critical review. J Asian Earth Sci 176:368–385. https://doi.org/10.1016/j.jseaes.2019.03.001

    Article  Google Scholar 

  • Hajná J, Žák J, Dörr W, Kachlík V, Sláma J (2018) New constraints from detrital zircon ages on prolonged, multiphase transition from the Cadomian accretionary orogen to a passive margin of Gondwana. Precambr Res 317:159–178. https://doi.org/10.1016/j.precamres.2018.08.013

    Article  Google Scholar 

  • Higgins JA, Schrag DP (2010) Constraining magnesium cycling in marine sediments using magnesium isotopes. Geochim Cosmochim Acta 74:5039–5053. https://doi.org/10.1016/j.gca.2010.05.019

    Article  Google Scholar 

  • Holub FV (1990) Petrogenetic Interpretation of Potassic Lamproid Magmas of the Bohemian Massif. Unpublished PhD. thesis, Charles University, Prague, pp 1–265 (in Czech with English summary)

  • Holub FV (1997) Ultrapotassic plutonic rocks of the durbachite series in the Bohemian Massif: petrology, geochemistry and petrogenetic interpretation. Sbor Geol Věd, Ložisk Geol Mineral 31:5–26

    Google Scholar 

  • Holub FV, Cocherie A, Rossi P (1997a) Radiometric dating of granitic rocks from the Central Bohemian Plutonic Complex (Czech Republic): constraints on the chronology of thermal and tectonic events along the Moldanubian–Barrandian boundary. C R Acad Sci, Ser IIa: Sci Terre Planets 325:19–26. https://doi.org/10.1016/S1251-8050(97)83268-5

    Article  Google Scholar 

  • Holub FV, Machart J, Manová M (1997b) The Central Bohemian Plutonic Complex: geology, chemical composition and genetic interpretation. Sbor Geol Věd, Ložisk Geol Mineral 31:27–50

    Google Scholar 

  • Hora JM, Tabaud AS, Janoušek V, Erban Kochergina YV (2021) Potassic magmas of the Vosges Mts. (NE France) delimit the areal extent and nature of long-gone Variscan orogenic mantle domains. Lithos 402–403:106304. https://doi.org/10.1016/j.lithos.2021.106304

    Article  Google Scholar 

  • Hu Y, Teng FZ, Zhang HF, Xiao Y, Su BX (2016) Metasomatism-induced mantle magnesium isotopic heterogeneity: evidence from pyroxenites. Geochim Cosmochim Acta 185:88–111. https://doi.org/10.1016/j.gca.2015.11.001

    Article  Google Scholar 

  • Hu Y, Teng FZ, Plank T, Huang KJ (2017) Magnesium isotopic composition of subducting marine sediments. Chem Geol 466:15–31. https://doi.org/10.1016/j.chemgeo.2017.06.010

    Article  Google Scholar 

  • Huang F, Chakraborty P, Lundstrom CC, Holmden C, Glessner JJG, Kieffer SW, Lesher CE (2010) Isotope fractionation in silicate melts by thermal diffusion. Nature 464:396–400. https://doi.org/10.1038/nature08840

    Article  Google Scholar 

  • Huang F, Chen L, Wu Z, Wang W (2013a) First-principles calculations of equilibrium Mg isotope fractionations between garnet, clinopyroxene, orthopyroxene, and olivine: implications for Mg isotope thermometry. Earth Planet Sci Lett 367:61–70. https://doi.org/10.1016/j.epsl.2013.02.025

    Article  Google Scholar 

  • Huang KJ, Teng FZ, Elsenouy A, Li WY, Bao ZY (2013b) Magnesium isotopic variations in loess: origins and implications. Earth Planet Sci Lett 374:60–70. https://doi.org/10.1016/j.epsl.2013.05.010

    Article  Google Scholar 

  • Huang KJ, Shen B, Lang XG, Tang WB, Peng Y, Ke S, Kaufman AJ, Ma HR, Li FB (2015) Magnesium isotopic compositions of the Mesoproterozoic dolostones: implications for Mg isotopic systematics of marine carbonates. Geochim Cosmochim Acta 164:333–351. https://doi.org/10.1016/j.gca.2015.05.002

    Article  Google Scholar 

  • Huang KJ, Teng FZ, Plank T, Staudigel H, Hu Y, Bao ZY (2018) Magnesium isotopic composition of altered oceanic crust and the global Mg cycle. Geochim Cosmochim Acta 238:357–373. https://doi.org/10.1016/j.gca.2018.07.011

    Article  Google Scholar 

  • Huang J, Guo S, Jin QZ, Huang F (2020) Iron and magnesium isotopic compositions of subduction-zone fluids and implications for arc volcanism. Geochim Cosmochim Acta 278:376–391. https://doi.org/10.1016/j.gca.2019.06.020

    Article  Google Scholar 

  • Janoušek V (1994) Geochemistry and Petrogenesis of the Central Bohemian Pluton, Czech Republic. Unpublished PhD. thesis, University of Glasgow, pp 1–229

  • Janoušek V, Holub FV (2007) The causal link between HP–HT metamorphism and ultrapotassic magmatism in collisional orogens: case study from the Moldanubian Zone of the Bohemian Massif. Proc Geol Assoc 118:75–86. https://doi.org/10.1016/S0016-7878(07)80049-6

    Article  Google Scholar 

  • Janoušek V, Svojtka M (2021) How old is the Třebíč durbachitic Pluton? Reply to Comment on “Ultrapotassic magmatism in the heyday of the Variscan Orogeny: the story of the Třebíč Pluton, the largest durbachitic body in the Bohemian Massif” by Schaltegger et al. Int J Earth Sci 110:1133–1136. https://doi.org/10.1007/s00531-020-01977-8

    Article  Google Scholar 

  • Janoušek V, Žák J (eds) (2015) Eurogranites 2015: Variscan Plutons of the Bohemian Massif. In: Post-conference field trip following the 26th IUGG General Assembly in Prague. Czech Geological Survey, Prague, pp 1–165

  • Janoušek V, Rogers G, Bowes DR (1995) Sr–Nd isotopic constraints on the petrogenesis of the Central Bohemian Pluton, Czech Republic. Geol Rundsch 84:520–534. https://doi.org/10.1007/BF00284518

    Article  Google Scholar 

  • Janoušek V, Bowes DR, Braithwaite CJR, Rogers G (2000a) Microstructural and mineralogical evidence for limited involvement of magma mixing in the petrogenesis of a Hercynian high-K calc-alkaline intrusion: the Kozárovice granodiorite, Central Bohemian Pluton, Czech Republic. In: Barbarin B, Stephens WE, Bonin B, Bouchez J-L, Clarke DB, Cuney M, Martin H (eds) Fourth Hutton Symposium on the Origin of Granites and Related Rocks. Geological Society of America Special Papers 350, pp 15–26. https://doi.org/10.1130/0-8137-2350-7.15

  • Janoušek V, Bowes DR, Rogers G, Farrow CM, Jelínek E (2000b) Modelling diverse processes in the petrogenesis of a composite batholith: the Central Bohemian Pluton, Central European Hercynides. J Petrol 41:511–543. https://doi.org/10.1093/petrology/41.4.511

    Article  Google Scholar 

  • Janoušek V, Farrow CM, Erban V (2003) GCDkit: new PC software for interpretation of whole-rock geochemical data from igneous rocks. Geochim Cosmochim Acta 67:186

    Google Scholar 

  • Janoušek V, Braithwaite CJR, Bowes DR, Gerdes A (2004a) Magma-mixing in the genesis of Hercynian calc-alkaline granitoids: an integrated petrographic and geochemical study of the Sázava intrusion, Central Bohemian Pluton, Czech Republic. Lithos 78:67–99. https://doi.org/10.1016/j.lithos.2004.04.046

    Article  Google Scholar 

  • Janoušek V, Finger F, Roberts M, Frýda J, Pin C, Dolejš D (2004b) Deciphering the petrogenesis of deeply buried granites: whole-rock geochemical constraints on the origin of largely undepleted felsic granulites from the Moldanubian Zone of the Bohemian Massif. In: Ishihara S, Stephens WE, Harley SL, Arima M, Nakajima T (eds) Fifth Hutton Symposium on the Origin of Granites and Related Rocks. Geological Society of America Special Papers 389, pp 141–159. https://doi.org/10.1130/0-8137-2389-2.141

  • Janoušek V, Gerdes A, Vrána S, Finger F, Erban V, Friedl G, Braithwaite CJR (2006) Low-pressure granulites of the Lišov Massif, Southern Bohemia: Viséan metamorphism of Late Devonian plutonic arc rocks. J Petrol 47:705–744. https://doi.org/10.1093/petrology/egi091

    Article  Google Scholar 

  • Janoušek V, Wiegand B, Žák J (2010) Dating the onset of Variscan crustal exhumation in the core of the Bohemian Massif: new U–Pb single zircon ages from the high-K calc-alkaline granodiorites of the Blatná suite, Central Bohemian Plutonic Complex. J Geol Soc, London 167:347–360. https://doi.org/10.1144/0016-76492009-008

    Article  Google Scholar 

  • Janoušek V, Moyen JF, Martin H, Erban V, Farrow C (2016) Geochemical Modelling of Igneous Processes—Principles and Recipes in R Language. Bringing the Power of R to a Geochemical Community. Springer, Berlin, pp 1–346. https://doi.org/10.1007/978-3-662-46792-3

  • Janoušek V, Holub FV, Verner K, Čopjaková R, Gerdes A, Hora JM, Košler J, Tyrrell S (2019) Two-pyroxene syenitoids from the Moldanubian Zone of the Bohemian Massif: peculiar magmas derived from a strongly enriched lithospheric mantle source. Lithos 342–343:239–262. https://doi.org/10.1016/j.lithos.2019.05.028

    Article  Google Scholar 

  • Janoušek V, Hanžl P, Svojtka M, Hora JM, Erban Kochergina YV, Gadas P, Holub FV, Gerdes A, Verner K, Hrdličková K, Daly JS, Buriánek D (2020) Ultrapotassic magmatism in the heyday of the Variscan Orogeny—the story of the Třebíč Pluton, the largest durbachitic body in the Bohemian Massif. Int J Earth Sci 109:1767–1810. https://doi.org/10.1007/s00531-020-01872-2

    Article  Google Scholar 

  • Jochum KP, Nohl U, Herwig K, Lammel E, Stoll B, Hofmann AW (2005) GeoReM: a new geochemical database for reference materials and isotopic standards. Geost Geoanal Res 29:333–338. https://doi.org/10.1111/j.1751-908X.2005.tb00904.x

    Article  Google Scholar 

  • Ke S, Teng FZ, Li SG, Gao T, Liu SA, He YS, Mo XX (2016) Mg, Sr, and O isotope geochemistry of syenites from northwest Xinjiang, China: tracing carbonate recycling during Tethyan oceanic subduction. Chem Geol 437:109–119. https://doi.org/10.1016/j.chemgeo.2016.05.002

    Article  Google Scholar 

  • Konopásek J, Anczkiewicz R, Jeřábek P, Corfu F, Žáčková E (2019) Chronology of the Saxothuringian subduction in the West Sudetes (Bohemian Massif, Czech Republic and Poland). J Geol Soc, London 176:492–504. https://doi.org/10.1144/jgs2018-173

    Article  Google Scholar 

  • Košler J, Aftalion M, Bowes DR (1993) Mid–late Devonian plutonic activity in the Bohemian Massif: U–Pb zircon isotopic evidence from the Staré Sedlo and Mirotice gneiss complexes, Czech Republic. Neu Jb Mineral, Mh 1993:417–431

    Google Scholar 

  • Kotková J, Leichmann J, Novák M, Houzar S (2002) Crystalline rock clasts from the Visean conglomerates—the missing link in the evolution of the Moldanubian Zone? Geolines 14:48–49

    Google Scholar 

  • Krmíček L, Romer RL, Timmerman MJ, Ulrych J, Glodny J, Přichystal A, Sudo M (2020) Long-lasting (65 Ma) regionally contrasting late- to post-orogenic Variscan mantle-derived potassic magmatism in the Bohemian Massif. J Petrol 61:egaa072. https://doi.org/10.1093/petrology/egaa072

    Article  Google Scholar 

  • Kubínová Š, Faryad SW, Verner K, Schmitz MD, Holub FV (2017) Ultrapotassic dykes in the Moldanubian Zone and their significance for understanding of the post-collisional mantle dynamics during Variscan Orogeny in the Bohemian Massif. Lithos 272–273:205–221. https://doi.org/10.1016/j.lithos.2016.12.007

    Article  Google Scholar 

  • Kusbach V, Janoušek V, Hasalová P, Schulmann K, Fanning CM, Erban V, Ulrich S (2015) Importance of crustal relamination in origin of the orogenic mantle peridotite–high-pressure granulite association: example from the Náměšť Granulite Massif (Bohemian Massif, Czech Republic). J Geol Soc, London 172:479–490. https://doi.org/10.1144/jgs2014-070

    Article  Google Scholar 

  • Lardeaux JM, Schulmann K, Faure M, Janoušek V, Lexa O, Skrzypek E, Edel JB, Štípská P (2014) The Moldanubian Zone in French Massif Central, Vosges/Schwarzwald and Bohemian Massif revisited: differences and similarities. In: Schulmann K, Martínez Catalán JR, Lardeaux JM, Janoušek V, Oggiano G (eds) The Variscan Orogeny: Extent, Timescale and the Formation of the European Crust. Geological Society London Special Publications, vol 405, pp 7–44. https://doi.org/10.1144/SP405.14

  • Lexa O, Schulmann K, Janoušek V, Štípská P, Guy A, Racek M (2011) Heat sources and trigger mechanisms of exhumation of HP granulites in Variscan orogenic root. J Metamorph Geol 29:79–102. https://doi.org/10.1111/j.1525-1314.2010.00906.x

    Article  Google Scholar 

  • Li WY, Teng FZ, Ke S, Rudnick RL, Gao S, Wu FY, Chappell BW (2010) Heterogeneous magnesium isotopic composition of the upper continental crust. Geochim Cosmochim Acta 74:6867–6884. https://doi.org/10.1016/j.gca.2010.08.030

    Article  Google Scholar 

  • Li WY, Teng FZ, Xiao Y, Huang J (2011) High-temperature inter-mineral magnesium isotope fractionation in eclogite from the Dabie Orogen, China. Earth Planet Sci Lett 304:224–230. https://doi.org/10.1016/j.epsl.2011.01.035

    Article  Google Scholar 

  • Li SG, Yang W, Ke S, Meng X, Tian HC, Xu LJ, He YS, Huang J, Wang XC, Xia QK, Sun WD, Yang XY, Ren ZY, Wei HQ, Liu YS, Meng FC, Yan J (2017) Deep carbon cycles constrained by a large-scale mantle Mg isotope anomaly in eastern China. Natl Sci Rev 4:111–120. https://doi.org/10.1093/nsr/nww070

    Article  Google Scholar 

  • Li MYH, Teng FZ, Zhou MF (2021) Phyllosilicate controls on magnesium isotopic fractionation during weathering of granites: implications for continental weathering and riverine system. Earth Planet Sci Lett 553:116613. https://doi.org/10.1016/j.epsl.2020.116613

    Article  Google Scholar 

  • Liew TC, Hofmann AW (1988) Precambrian crustal components, plutonic associations, plate environment of the Hercynian Fold Belt of Central Europe: indications from a Nd and Sr isotopic study. Contrib Mineral Petrol 98:129–138. https://doi.org/10.1007/BF00402106

    Article  Google Scholar 

  • Ling MX, Sedaghatpour F, Teng FZ, Hays PD, Strauss J, Sun WD (2011) Homogeneous magnesium isotopic composition of seawater: an excellent geostandard for Mg isotope analysis. Rapid Commun Mass Spectrom 25:2828–2836. https://doi.org/10.1002/rcm.5172

    Article  Google Scholar 

  • Linnemann U, Hofmann M, Romer RL, Gerdes A (2010) Transitional stages between the Cadomian and Variscan orogenies: basin development and tectonomagmatic evolution of the southern margin of the Rheic Ocean in the Saxo-Thuringian Zone (North Gondwana shelf). In: Linnemann U, Romer RL (eds) Pre-Mesozoic Geology of Saxo-Thuringia—from the Cadomian Active Margin to the Variscan Orogen. Schweizerbart, Stuttgart, pp 59–98

    Google Scholar 

  • Liu SA, Teng FZ, He Y, Ke S, Li S (2010) Investigation of magnesium isotope fractionation during granite differentiation: implication for Mg isotopic composition of the continental crust. Earth Planet Sci Lett 297:646–654. https://doi.org/10.1016/j.epsl.2010.07.019

    Article  Google Scholar 

  • Liu XM, Teng FZ, Rudnick RL, McDonough WF, Cummings ML (2014) Massive magnesium depletion and isotope fractionation in weathered basalts. Geochim Cosmochim Acta 135:336–349. https://doi.org/10.1016/j.gca.2014.03.028

    Article  Google Scholar 

  • Liu D, Zhao ZD, Zhu DC, Niu YL, Widom E, Teng FZ, DePaolo DJ, Ke S, Xu JF, Wang Q, Mo XX (2015) Identifying mantle carbonatite metasomatism through Os–Sr–Mg isotopes in Tibetan ultrapotassic rocks. Earth Planet Sci Lett 430:458–469. https://doi.org/10.1016/j.epsl.2015.09.005

    Article  Google Scholar 

  • Liu SA, Wang ZZ, Yang C, Li SG, Ke S (2020) Mg and Zn isotope evidence for two types of mantle metasomatism and deep recycling of magnesium carbonates. J Geophys Res Solid Earth 125:e2020JB020684. https://doi.org/10.1029/2020JB020684

    Article  Google Scholar 

  • Ma L, Teng FZ, Jin LX, Ke S, Yang W, Gu HO, Brantley SL (2015) Magnesium isotope fractionation during shale weathering in the Shale Hills Critical Zone Observatory: accumulation of light Mg isotopes in soils by clay mineral transformation. Chem Geol 397:37–50. https://doi.org/10.1016/j.chemgeo.2015.01.010

    Article  Google Scholar 

  • Maierová P, Schulmann K, Lexa O, Guillot S, Štípská P, Janoušek V, Čadek O (2016) European Variscan orogenic evolution as an analogue of Tibetan–Himalayan orogeny—insights from petrology and numerical modeling. Tectonics 35:1760–1780. https://doi.org/10.1002/2015TC004098

    Article  Google Scholar 

  • McDonough WF, Sun SS (1995) The composition of the Earth. Chem Geol 120:223–253. https://doi.org/10.1016/0009-2541(94)00140-4

    Article  Google Scholar 

  • Medaris LG Jr, Wang H, Jelínek E, Mihaljevič M, Jakeš P (2005) Characteristics and origins of diverse Variscan peridotites in the Gföhl Nappe, Bohemian Massif, Czech Republic. Lithos 82:1–23. https://doi.org/10.1016/j.lithos.2004.12.004

    Article  Google Scholar 

  • Medaris LG Jr, Ackerman L, Jelínek E, Toy V, Siebel W, Tikoff B (2009) The Sklené garnet peridotite: petrology, geochemistry, and structure of a mantle-derived boudin in Moldanubian granulite. J Geosci 54:301–323. https://doi.org/10.3190/jgeosci.052

    Article  Google Scholar 

  • Míková J, Denková P (2007) Modified chromatographic separation scheme for Sr and Nd isotope analysis in geological silicate samples. J Geosci 52:221–226. https://doi.org/10.3190/jgeosci.015

    Article  Google Scholar 

  • Mingram B (1998) The Erzgebirge, Germany, a subducted part of northern Gondwana: geochemical evidence for repetition of early Palaeozoic metasedimentary sequences in metamorphic thrust units. Geol Mag 135:785–801. https://doi.org/10.1017/S0016756898001769

    Article  Google Scholar 

  • Muriuki J, Nakamura D, Hirajima T, Svojtka M (2020) Mineralogical heterogeneity of UHP garnet peridotite in the Moldanubian Zone of the Bohemian Massif (Nové Dvory, Czech Republic). J Mineral Petrol Sci 115:1–20. https://doi.org/10.2465/jmps.190126

    Article  Google Scholar 

  • Naemura K, Hirajima T, Svojtka M (2009) The pressure–temperature path and the origin of phlogopite in spinel–garnet peridotites from the Blanský les Massif of the Moldanubian Zone, Czech Republic. J Petrol 50:1795–1827. https://doi.org/10.1093/petrology/egp052

    Article  Google Scholar 

  • Naemura K, Hirajima T, Svojtka M, Shimizu I, Iizuka T (2018) Fossilized melts in mantle wedge peridotites. Sci Rep 8:10116. https://doi.org/10.1038/s41598-018-28264-6

    Article  Google Scholar 

  • Němec D (1993) Orthopyroxene minettes and lamproites: their status and genetic significance. Geol Rundsch 82:631–639. https://doi.org/10.1007/BF00191490

    Article  Google Scholar 

  • O’Brien PJ (2000) The fundamental Variscan problem: high-temperature metamorphism at different depths and high-pressure metamorphism at different temperatures. In: Franke W, Haak V, Oncken O, Tanner D (eds) Orogenic Processes: Quantification and Modelling in the Variscan Belt. Geological Society London Special Publications, vol 179, pp 369–386. https://doi.org/10.1144/GSL.SP.2000.179.01.22

  • O’Brien PJ, Rötzler J (2003) High-pressure granulites: formation, recovery of peak conditions and implications for tectonics. J Metamorph Geol 21:3–20. https://doi.org/10.1046/j.1525-1314.2003.00420.x

    Article  Google Scholar 

  • Peccerillo A, Taylor SR (1976) Geochemistry of Eocene calc-alkaline volcanic rocks from the Kastamonu area, Northern Turkey. Contrib Mineral Petrol 58:63–81. https://doi.org/10.1007/BF00384745

    Article  Google Scholar 

  • Pin C, Zalduegui JFS (1997) Sequential separation of light rare-earth elements, thorium and uranium by miniaturized extraction chromatography: application to isotopic analyses of silicate rocks. Anal Chim Acta 339:79–89. https://doi.org/10.1016/S0003-2670(96)00499-0

    Article  Google Scholar 

  • Pin C, Gannoun A, Dupont A (2014) Rapid, simultaneous separation of Sr, Pb, and Nd by extraction chromatography prior to isotope ratios determination by TIMS and MC-ICP-MS. J Anal At Spectrom 29:1858–1870. https://doi.org/10.1039/C4JA00169A

    Article  Google Scholar 

  • Pogge von Strandmann PAE, Burton KW, James RH, van Calsteren P, Gislason SR, Sigfússon B (2008) The influence of weathering processes on riverine magnesium isotopes in a basaltic terrain. Earth Planet Sci Lett 276:187–197. https://doi.org/10.1016/j.epsl.2008.09.020

    Article  Google Scholar 

  • Pogge von Strandmann PAE, Elliott T, Marschall HR, Coath C, Lai YJ, Jeffcoate AB, Ionov DA (2011) Variations of Li and Mg isotope ratios in bulk chondrites and mantle xenoliths. Geochim Cosmochim Acta 75:5247–5268. https://doi.org/10.1016/j.gca.2011.06.026

    Article  Google Scholar 

  • Richter FM, Watson EB, Mendybaev RA, Teng FZ, Janney PE (2008) Magnesium isotope fractionation in silicate melts by chemical and thermal diffusion. Geochim Cosmochim Acta 72:206–220. https://doi.org/10.1016/j.gca.2007.10.016

    Article  Google Scholar 

  • Roden MF, Murthy VR (1985) Mantle metasomatism. Ann Rev Earth Planet Sci 13:269–296. https://doi.org/10.1146/annurev.ea.13.050185.001413

    Article  Google Scholar 

  • Sauer A (1893) Der Granitit von Durbach im nordlichen Schwarzwald und seine Grenzfacies von Glimmersyenit (Durbachit). Mitt Badischen Geol Landesanst 2:233–276

    Google Scholar 

  • Schaltegger U, Gaynor SP, Widmann P, Kotková J (2021) Comment on “Ultrapotassic magmatism in the heyday of the Variscan Orogeny: the story of the Třebíč Pluton, the largest durbachitic body in the Bohemian Massif” by Janoušek et al. Int J Earth Sci 110:1127–1132. https://doi.org/10.1007/s00531-020-01975-w

    Article  Google Scholar 

  • Schulmann K, Konopásek J, Janoušek V, Lexa O, Lardeaux JM, Edel JB, Štípská P, Ulrich S (2009) An Andean type Palaeozoic convergence in the Bohemian Massif. C R Geosci 341:266–286. https://doi.org/10.1016/j.crte.2008.12.006

    Article  Google Scholar 

  • Schulmann K, Lexa O, Janoušek V, Lardeaux JM, Edel JB (2014) Anatomy of a diffuse cryptic suture zone: an example from the Bohemian Massif, European Variscides. Geology 42:275–278. https://doi.org/10.1130/G35290.1

    Article  Google Scholar 

  • Shalev N, Farkaš J, Fietzke J, Novák M, Schuessler JA, Pogge von Strandmann PAE, Törber PB (2018) Mg isotope interlaboratory comparison of reference materials from Earth-surface low-temperature environments. Geost Geoanal Res 42:205–221. https://doi.org/10.1111/ggr.12208

    Article  Google Scholar 

  • Shen B, Jacobsen B, Lee CT, Yin QZ, Morton DM (2009) The Mg isotopic systematics of granitoids in continental arcs and implications for the role of chemical weathering in crust formation. Proc Natl Acad Sci USA 106:20652–20657. https://doi.org/10.1073/pnas.0910663106

    Article  Google Scholar 

  • Siebel W, Raschka H, Irber W, Kreuzer H, Lenz KL, Höhndorf A, Wendt I (1997) Early Palaeozoic acid magmatism in the Saxothuringian belt: new insights from a geochemical and isotopic study of orthogneisses and metavolcanic rocks from the Fichtelgebirge, SE Germany. J Petrol 38:203–230. https://doi.org/10.1093/petroj/38.2.203

    Article  Google Scholar 

  • Soder C, Romer RL (2018) Post-collisional potassic-ultrapotassic magmatism of the Variscan Orogen: implications for mantle metasomatism during continental subduction. J Petrol 59:1007–1034. https://doi.org/10.1093/petrology/egy053

    Article  Google Scholar 

  • Stracke A, Tipper ET, Klemme S, Bizimis M (2018) Mg isotope systematics during magmatic processes: inter-mineral fractionation in mafic to ultramafic Hawaiian xenoliths. Geochim Cosmochim Acta 226:192–205. https://doi.org/10.1016/j.gca.2018.02.002

    Article  Google Scholar 

  • Sun SS, McDonough WF (1989) Chemical and isotopic systematics of oceanic basalts: implications for mantle composition and processes. In: Saunders AD, Norry M (eds) Magmatism in the Ocean Basins. Geological Society of London Special Publications 42, pp 313–345. https://doi.org/10.1144/GSL.SP.1989.042.01.19

  • Svojtka M, Ackerman L, Medaris LG Jr, Hegner E, Valley JW, Hirajima T, Jelínek E, Hrstka T (2016) Petrological, geochemical and Sr–Nd–O isotopic constraints on the origin of garnet and spinel pyroxenites from the Moldanubian Zone of the Bohemian Massif. J Petrol 57:897–920. https://doi.org/10.1093/petrology/egw025

    Article  Google Scholar 

  • Tanaka T, Togashi S, Kamioka H, Amakawa H, Kagami H, Hamamoto T, Yuhara M, Orihashi Y, Yoneda S, Shimizu H, Kunimaru T, Takahashi K, Yanagi T, Nakano T, Fujimaki H, Shinjo R, Asahara Y, Tanimizu M, Dragusanu C (2000) JNdi-1: a neodymium isotopic reference in consistency with LaJolla neodymium. Chem Geol 168:279–281. https://doi.org/10.1016/S0009-2541(00)00198-4

    Article  Google Scholar 

  • Tappe S, Smart K, Torsvik T, Massuyeau M, de Wit M (2018) Geodynamics of kimberlites on a cooling Earth: clues to plate tectonic evolution and deep volatile cycles. Earth Planet Sci Lett 484:1–14. https://doi.org/10.1016/j.epsl.2017.12.013

    Article  Google Scholar 

  • Teng FZ (2017a) Magnesium isotope geochemistry. In: Teng FZ, Dauphas N, Watkins JM (eds) Non-Traditional Stable Isotopes: Retrospective and Prospective. Reviews in Mineralogy and Geochemistry, Vol. 82, pp 219–287. https://doi.org/10.2138/rmg.2017.82.7

  • Teng FZ (2017b) Magnesium isotopes. In: White WM (ed) Encyclopedia of Geochemistry: a Comprehensive Reference Source on the Chemistry of the Earth. Springer International Publishing, Cham, pp 1–5. https://doi.org/10.1007/978-3-319-39193-9_328-1

    Chapter  Google Scholar 

  • Teng FZ, Wadhwa M, Helz RT (2007) Investigation of magnesium isotope fractionation during basalt differentiation: implications for a chondritic composition of the terrestrial mantle. Earth Planet Sci Lett 261:84–92. https://doi.org/10.1016/j.epsl.2007.06.004

    Article  Google Scholar 

  • Teng FZ, Li WY, Ke S, Marty B, Dauphas N, Huang S, Wu FY, Pourmand A (2010) Magnesium isotopic composition of the Earth and chondrites. Geochim Cosmochim Acta 74:4150–4166. https://doi.org/10.1016/j.gca.2010.04.019

    Article  Google Scholar 

  • Teng FZ, Li WY, Ke S, Yang W, Liu SA, Sedaghatpour F, Wang SJ, Huang KJ, Hu Y, Ling MX, Xiao Y, Liu XM, Li XW, Gu HO, Sio CK, Wallace DA, Su BX, Zhao L, Chamberlin J, Harrington M, Brewer A (2015) Magnesium isotopic compositions of international geological reference materials. Geost Geoanal Res 39:329–339. https://doi.org/10.1111/j.1751-908X.2014.00326.x

    Article  Google Scholar 

  • Teng FZ, Hu Y, Chauvel C (2016) Magnesium isotope geochemistry in arc volcanism. Proc Natl Acad Sci USA 113:7082. https://doi.org/10.1073/pnas.1518456113

    Article  Google Scholar 

  • Tian HC, Yang W, Li SG, Ke S, Chu ZY (2016) Origin of low δ26Mg basalts with EM-I component: evidence for interaction between enriched lithosphere and carbonated asthenosphere. Geochim Cosmochim Acta 188:93–105. https://doi.org/10.1016/j.gca.2016.05.021

    Article  Google Scholar 

  • Tian HC, Teng FZ, Hou ZQ, Tian SH, Yang W, Chen XY, Song YC (2020) Magnesium and lithium isotopic evidence for a remnant oceanic slab beneath Central Tibet. J Geophys Res Solid Earth 125:e2019JB018197. https://doi.org/10.1029/2019JB018197

    Article  Google Scholar 

  • Tomek F, Žák J, Chadima M (2015) Granitic magma emplacement and deformation during early-orogenic syn-convergent transtension: the Staré Sedlo complex, Bohemian Massif. J Geodyn 87:50–66. https://doi.org/10.1016/j.jog.2015.02.007

    Article  Google Scholar 

  • Trubač J, Janoušek V, Žák J, Somr M, Kabele P, Švancara J, Gerdes A, Žáčková E (2017) Origin of reverse compositional and textural zoning in granite plutons by localized thermal overturn of stratified magma chambers. Lithos 277:315–336. https://doi.org/10.1016/j.lithos.2016.10.002

    Article  Google Scholar 

  • Turpin L, Velde D, Pinte G (1988) Geochemical comparison between minettes and kersantites from the Western European Hercynian Orogen: trace element and Pb–Sr–Nd isotope constraints on their origin. Earth Planet Sci Lett 87:73–86. https://doi.org/10.1016/0012-821X(88)90065-9

    Article  Google Scholar 

  • Uhlig D, Schuessler JA, Bouchez J, Dixon JL, von Blanckenburg F (2017) Quantifying nutrient uptake as driver of rock weathering in forest ecosystems by magnesium stable isotopes. Biogeosciences 14:3111–3128. https://doi.org/10.5194/bg-14-3111-2017

    Article  Google Scholar 

  • Valbracht PJ, Vrána S, Beetsma JJ, Fiala J, Matějka D (1994) Sr and Nd isotopic determinations in three Moldanubian granulite massifs in southern Bohemia. J Czech Geol Soc 39:114

    Google Scholar 

  • Vellmer C (1992) Stoffbestand und Petrogenese von Granuliten und granitischen Gesteinen der südlichen Böhmischen Masse in Niederösterreich. Unpublished PhD. thesis, Georg-August-Universität Göttingen, pp 1–111

  • Verner K, Žák J, Hrouda F, Holub FV (2006) Magma emplacement during exhumation of the lower- to mid-crustal orogenic root: the Jihlava syenitoid pluton, Moldanubian Unit, Bohemian Massif. J Struct Geol 28:1553–1567. https://doi.org/10.1016/j.jsg.2006.03.037

    Article  Google Scholar 

  • Verner K, Žák J, Nahodilová R, Holub FV (2008) Magmatic fabrics and emplacement of the cone-sheet-bearing Knížecí Stolec durbachitic pluton (Moldanubian Unit, Bohemian Massif): implications for mid-crustal reworking of granulitic lower crust in the Central European Variscides. Int J Earth Sci 97:19–33. https://doi.org/10.1007/s00531-006-0153-z

    Article  Google Scholar 

  • Villa IM, De Biévre P, Holden NE, Renne PR (2015) IUPAC–IUGS recommendation on the half life of 87Rb. Geochim Cosmochim Acta 164:382–385. https://doi.org/10.1016/j.gca.2015.05.025

    Article  Google Scholar 

  • Villa IM, Holden NE, Possolo A, Ickert RB, Hibbert DB, Renne PR (2020) IUPAC–IUGS recommendation on the half-lives of 147Sm and 146Sm. Geochim Cosmochim Acta 285:70–77. https://doi.org/10.1016/j.gca.2020.06.022

    Article  Google Scholar 

  • von Raumer JF, Finger F, Veselá P, Stampfli GM (2014) Durbachites–vaugnerites – a geodynamic marker in the central European Variscan Orogen. Terra Nova 26:85–95. https://doi.org/10.1111/ter.12071

    Article  Google Scholar 

  • Wang SJ, Teng FZ, Williams HM, Li SG (2012) Magnesium isotopic variations in cratonic eclogites: origins and implications. Earth Planet Sci Lett 359–360:219–226. https://doi.org/10.1016/j.epsl.2012.10.016

    Article  Google Scholar 

  • Wang SJ, Teng FZ, Li SG (2014) Tracing carbonate–silicate interaction during subduction using magnesium and oxygen isotopes. Nat Commun 5:5328. https://doi.org/10.1038/ncomms6328

    Article  Google Scholar 

  • Wang SJ, Teng FZ, Rudnick RL, Li SG (2015a) Magnesium isotope evidence for a recycled origin of cratonic eclogites. Geology 43:1071–1074. https://doi.org/10.1130/G37259.1

    Article  Google Scholar 

  • Wang SJ, Teng FZ, Rudnick RL, Li SG (2015b) The behavior of magnesium isotopes in low-grade metamorphosed mudrocks. Geochim Cosmochim Acta 165:435–448. https://doi.org/10.1016/j.gca.2015.06.019

    Article  Google Scholar 

  • Wang SJ, Teng FZ, Li SG, Zhang LF, Du JX, He YS, Niu YL (2017) Tracing subduction zone fluid-rock interactions using trace element and Mg–Sr–Nd isotopes. Lithos 290–291:94–103. https://doi.org/10.1016/j.lithos.2017.08.004

    Article  Google Scholar 

  • Wenzel T, Mertz DF, Oberhänsli R, Becker T, Renne PR (1997) Age, geodynamic setting, and mantle enrichment processes of a K-rich intrusion from the Meissen Massif (northern Bohemian Massif) and implications for related occurrences from the mid-European Hercynian. Geol Rundsch 86:556–570. https://doi.org/10.1007/s005310050163

    Article  Google Scholar 

  • Whitney DL, Evans BW (2010) Abbreviations for names of rock-forming minerals. Am Mineral 95:185–187. https://doi.org/10.2138/am.2010.3371

    Article  Google Scholar 

  • Wu FY, Liu XC, Ji WQ, Wang JM, Yang L (2017) Highly fractionated granites: recognition and research. Sci China Earth Sci 60:1201–1219. https://doi.org/10.1007/s11430-016-5139-1

    Article  Google Scholar 

  • Yang W, Teng FZ, Zhang HF, Li SG (2012) Magnesium isotopic systematics of continental basalts from the North China craton: implications for tracing subducted carbonate in the mantle. Chem Geol 328:185–194. https://doi.org/10.1016/j.chemgeo.2012.05.018

    Article  Google Scholar 

  • Yang W, Teng FZ, Li WY, Liu SA, Ke S, Liu YS, Zhang HF, Gao S (2016) Magnesium isotopic composition of the deep continental crust. Am Mineral 101:243–252. https://doi.org/10.2138/am-2016-5275

    Article  Google Scholar 

  • Young ED, Galy A (2004) The isotope geochemistry and cosmochemistry of magnesium. In: Johnson CM, Beard BL, Albaréde F (eds) Geochemistry of Non-Traditional Stable Isotopes. Reviews in Mineralogy and Geochemistry, Vol. 55, pp 197–230. https://doi.org/10.2138/gsrmg.55.1.197

  • Zachovalová K, Leichmann J (2004) Contribution to the knowledge of provenance of pebbles from the Upper Visean conglomerates in the Drahany Uplands: V. Durbachites. Acta Mus Moraviae, Sci Geol 89:161–172 (in Czech with English summary)

    Google Scholar 

  • Žák J, Holub FV, Verner K (2005) Tectonic evolution of a continental magmatic arc from transpression in the upper crust to exhumation of mid-crustal orogenic root recorded by episodically emplaced plutons: the Central Bohemian Plutonic Complex (Bohemian Massif). Int J Earth Sci 94:385–400. https://doi.org/10.1007/s00531-005-0482-3

    Article  Google Scholar 

  • Žák J, Verner K, Holub FV, Kabele P, Chlupáčová M, Halodová P (2012) Magmatic to solid state fabrics in syntectonic granitoids recording early Carboniferous orogenic collapse in the Bohemian Massif. J Struct Geol 36:27–42. https://doi.org/10.1016/j.jsg.2011.12.011

    Article  Google Scholar 

  • Žák J, Verner K, Janoušek V, Holub FV, Kachlík V, Finger F, Hajná J, Tomek F, Vondrovic L, Trubač J (2014) A plate-kinematic model for the assembly of the Bohemian Massif constrained by structural relationships around granitoid plutons. In: Schulmann K, Martínez Catalán JR, Lardeaux JM, Janoušek V, Oggiano G (eds) The Variscan Orogeny: Extent, Timescale and the Formation of the European Crust. Geological Society London Special Publications, vol 405, pp 169–196. https://doi.org/10.1144/SP405.9

Download references

Acknowledgements

Authors would like to acknowledge the late František V. Holub (1949–2015), an expert on ultrapotassic igneous rocks and a superb teacher, to whose memory is dedicated this contribution. We are indebted to Simon Couzinié, Fritz Finger, Jean-François Moyen, Rolf L. Romer, Karel Schulmann and Jürgen von Raumer for invaluable discussions of petrogenesis and geodynamic context of the Variscan igneous rocks, as we are to Patrizia Fiannacca for inspiring advice and insightful comments to the earlier version of this manuscript. Vojtěch Erban, John M. Hora, Zuzana Rodovská and Jitka Míková (Czech Geological Survey, Prague) are thanked for technical assistance and analytical help in the isotopic laboratory. The manuscript was improved significantly by detailed reviews of Mike Fowler and an anonymous reviewer and further benefited from the careful editorial work of editor-in-chief Wolf-Christian Dullo.

Funding

This work was supported by the Czech Grant Agency (GACR) project 18-24378S (to VJ).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vojtěch Janoušek.

Supplementary Information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Janoušek, V., Erban Kochergina, Y.V., Andronikov, A.V. et al. Decoupling of Mg from Sr–Nd isotopic compositions in Variscan subduction-related plutonic rocks from the Bohemian Massif: implications for mantle enrichment processes and genesis of orogenic ultrapotassic magmatic rocks. Int J Earth Sci (Geol Rundsch) 111, 1491–1518 (2022). https://doi.org/10.1007/s00531-022-02199-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00531-022-02199-w

Keywords

Navigation