Skip to main content
Log in

Growth and demise of a Paleogene isolated carbonate platform of the Offshore Indus Basin, Pakistan: effects of regional and local controlling factors

  • Original Paper
  • Published:
International Journal of Earth Sciences Aims and scope Submit manuscript

Abstract

Based on high-resolution seismic and well datasets, this paper examines the evolution and drowning history of a Paleocene–Eocene carbonate platform in the Offshore Indus Basin of Pakistan. This study uses the internal seismic architecture, well log data as well as the microfauna to reconstruct factors that governed the carbonate platform growth and demise. Carbonates dominated by larger benthic foraminifera assemblages permit constraining the ages of the major evolutionary steps and show that the depositional environment was tropical within oligotrophic conditions. With the aid of seismic stratigraphy, the carbonate platform edifice is resolved into seven seismic units which in turn are grouped into three packages that reflect its evolution from platform initiation, aggradation with escarpment formation and platform drowning. The carbonate factory initiated as mounds and patches on a Cretaceous–Paleocene volcanic complex. Further, the growth history of the platform includes distinct phases of intraplatform progradation, aggradation, backstepping and partial drownings. The youngest succession as late-stage buildup records a shift from benthic to pelagic deposition and marks the final drowning in the Early Eocene. The depositional trend of the platform, controlled by the continuing thermal subsidence associated with the cooling of volcanic margin lithosphere, was the major contributor of the accommodation space which supported the vertical accumulation of shallow water carbonate succession. Other factors such as eustatic changes and changes in the carbonate producers as a response to the Paleogene climatic perturbations played secondary roles in the development and drowning of these buildups.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  • Afzal J, Williams M, Aldridge RJ (2009) Revised stratigraphy of the lower Cenozoic succession of the Greater Indus Basin in Pakistan. J Micropalaeontol 28:7–23. doi:10.1144/jm.28.1.7

    Article  Google Scholar 

  • Afzal J, Williams M, Leng MJ et al (2011) Evolution of Paleocene to Early Eocene larger benthic foraminifer assemblages of the Indus Basin, Pakistan. Lethaia 44:299–320. doi:10.1111/j.1502-3931.2010.00247.x

    Article  Google Scholar 

  • Agrawal A, Rogers JJW (1992) Structure and tectonic evolution of the western continental margin of India: Evidence from subsidence studies for a 25–20 Ma plate reorganization in the Indian Ocean. In: Bartholomew MJ, Hyndman DW, Mogk DW, Mason R (eds) Basement tectonics 8: characterization and comparison of ancient and Mesozoic Continental Margins. Springer, Dordrecht, pp 583–590

    Chapter  Google Scholar 

  • Ahmad A, Ahmad N (2005) Paleocene petroleum system and its significance for exploration in the southwest lower Indus basin and nearby offshore of Pakistan. In: Proceedings of annual technical conference, 2005. Islamabad, pp 1–22

  • Akhter M, Butt AA (1999) Lower Tertiary biostratigraphy of the Kala Chitta Range, northern Pakistan. Revue de Paleobiologie 18:123–146

    Google Scholar 

  • Aubert O, Droxler AW (1996) Seismic stratigraphy and depositional signatures of the Maldive carbonate system (Indian Ocean). Mar Pet Geol 13:503–536. doi:10.1016/0264-8172(96)00008-6

    Article  Google Scholar 

  • Berggren WA (2005) A revised tropical to sub-tropical Paleogene planktonic foraminiferal zonation. J Foraminifer Res 35:279–298. doi:10.2113/35.4.279

    Article  Google Scholar 

  • Betzler C, Kroon D, Reijmer JJG (2000) Synchroneity of major Late Neogene sea level fluctuations and paleoceanographically controlled changes as recorded by two carbonate platforms. Paleoceanography 15:722–730. doi:10.1029/1999PA000481

    Article  Google Scholar 

  • Betzler C, Hübscher C, Lindhorst S et al (2009) Monsoon-induced partial carbonate platform drowning (Maldives, Indian Ocean). Geology 37:867–870

    Article  Google Scholar 

  • Betzler C, Fürstenau J, Lüdmann T et al (2013) Sea-level and ocean-current control on carbonate-platform growth, Maldives, Indian Ocean. Basin Res 25:172–196. doi:10.1111/j.1365-2117.2012.00554.x

    Article  Google Scholar 

  • Betzler C, Eberli GP, Kroon D et al (2016) The abrupt onset of the modern South Asian Monsoon winds. Sci Rep 6:29383. doi:10.1016/0031-0182(91)90075-3

    Article  Google Scholar 

  • Calvès G, Clift PD, Inam A (2008) Anomalous subsidence on the rifted volcanic margin of Pakistan: no influence from Deccan plume. Earth Planet Sci Lett 272:231–239. doi:10.1016/j.epsl.2008.04.042

    Article  Google Scholar 

  • Calvès G, Schwab AM, Huuse M et al (2011) Seismic volcanostratigraphy of the western Indian rifted margin: the pre-Deccan igneous province. J Geophys Res Solid Earth 116:1–28. doi:10.1029/2010JB000862

    Article  Google Scholar 

  • Carmichael SM, Akhter S, Bennett JK et al (2009) Geology and hydrocarbon potential of the offshore Indus Basin, Pakistan. Pet Geosci 15:107–116. doi:10.1144/1354-079309-826

    Article  Google Scholar 

  • Chatterjee S, Goswami A, Scotese CR (2013) The longest voyage: tectonic, magmatic, and paleoclimatic evolution of the Indian plate during its northward flight from Gondwana to Asia. Gondwana Res 23:238–267. doi:10.1016/j.gr.2012.07.001

    Article  Google Scholar 

  • Clift PD, Shimizu N, Layne GD et al (2001) Development of the Indus Fan and its significance for the erosional history of the Western Himalaya and Karakoram. Geol Soc Am Bull 113:1039–1051. doi:10.1130/0016-7606(2001)113<1039:DOTIFA>2.0.CO;2

    Article  Google Scholar 

  • Copley A, Avouac J-P, Royer J-Y (2010) India–Asia collision and the Cenozoic slowdown of the Indian plate: implications for the forces driving plate motions. J Geophys Res Solid Earth 115:B03410. doi:10.1029/2009JB006634

    Article  Google Scholar 

  • Courgeon S, Jorry SJ, Camoin GF et al (2016) Growth and demise of Cenozoic isolated carbonate platforms: new insights from the Mozambique Channel seamounts (SW Indian Ocean). Mar Geol 380:90–105. doi:10.1016/j.margeo.2016.07.006

    Article  Google Scholar 

  • de Groot P, Huck A, de Bruin G et al (2010) The horizon cube: a step change in seismic interpretation. Lead Edge 29:1048–1055. doi:10.1190/1.3485765

    Article  Google Scholar 

  • Duncan RA (1990) The volcanic record of the Reunion hotspot. In: Backman J, Peterson L, Duncan RA (eds) Proceedings of the Ocean Drilling Program, Scientific Results, vol 115, pp 3–10

  • Edwards RA, Minshull TA, White RS (2000) Extension across the Indian–Arabian plate boundary: the Murray Ridge. Geophys J Int 142:461–477. doi:10.1046/j.1365-246x.2000.00163.x

    Article  Google Scholar 

  • Embry AF (1993) Transgressive–regressive (T–R) sequence analysis of the Jurassic succession of the Sverdrup Basin, Canadian Arctic Archipelago. Can J Earth Sci 30:301–320. doi:10.1139/e93-024

    Article  Google Scholar 

  • Fontaine JM, Cussey R, Lacaze J et al (1987) Seismic interpretation of carbonate depositional environments. AAPG Bull 71:281–297

    Google Scholar 

  • Fürstenau J, Lindhorst S, Betzler C, Hübscher C (2010) Submerged reef terraces of the Maldives (Indian Ocean). Geo-Mar Lett 30:511–515. doi:10.1007/s00367-009-0174-2

    Article  Google Scholar 

  • Gaedicke C, Schlüter H-U, Roeser HA et al (2002) Origin of the northern Indus Fan and Murray Ridge, Northern Arabian Sea: interpretation from seismic and magnetic imaging. Tectonophysics 355:127–143. doi:10.1016/S0040-1951(02)00137-3

    Article  Google Scholar 

  • Hallock P (1987) Fluctuations in the trophic resource continuum: a factor in global diversity cycles? Paleoceanography 2:457–471. doi:10.1029/PA002i005p00457

    Article  Google Scholar 

  • Hallock P, Glenn EC (1986) Larger foraminifera: a tool for paleoenvironmental analysis of Cenozoic carbonate depositional facies. Palaios 1:55. doi:10.2307/3514459

    Article  Google Scholar 

  • Hallock P, Schlager W (1986) Nutrient excess and the demise of coral reefs and carbonate platforms. Palaios 1:389. doi:10.2307/3514476

    Article  Google Scholar 

  • Hallock P, Premoli Silva I, Boersma A (1991) Similarities between planktonic and larger foraminiferal evolutionary trends through Paleogene paleoceanographic changes. Palaeogeogr Palaeoclimatol Palaeoecol 83:49–64. doi:10.1016/0031-0182(91)90075-3

    Article  Google Scholar 

  • Haq B (1981) Paleogene paleoceanography: Early Cenozoic oceans revisited. Oceanol Acta Special Issue 4:71–82

    Google Scholar 

  • Haq BU, Hardenbol J, Vail PR (1987) Chronology of fluctuating sea levels since the Triassic. Science 235:1156–1167. doi:10.1126/science.235.4793.1156

    Article  Google Scholar 

  • Höntzsch S, Scheibner C, Kuss J et al (2011) Tectonically driven carbonate ramp evolution at the southern Tethyan shelf: the Lower Eocene succession of the Galala Mountains, Egypt. Facies 57:51–72. doi:10.1007/s10347-010-0229-x

    Article  Google Scholar 

  • Höntzsch S, Scheibner C, Brock JP, Kuss J (2013) Circum-Tethyan carbonate platform evolution during the Palaeogene: the Prebetic platform as a test for climatically controlled facies shifts. Turk J Earth Sci 22:891–918. doi:10.3906/yer-1207-8

    Article  Google Scholar 

  • Hottinger L (1971) Larger foraminifera common to Mediterranean and Indian Paleocene and Eocene formations. Ann Hung Geol Inst 54:143–150

    Google Scholar 

  • Jerram DA, Single RT, Hobbs RW, Nelson CE (2009) Understanding the offshore flood basalt sequence using onshore volcanic facies analogues: an example from the Faroe–Shetland basin. Geol Mag 146:353. doi:10.1017/S0016756809005974

    Article  Google Scholar 

  • Jones B, Desrochers A (1992) Shallow platform carbonates. In: Walker R, James N (eds) Facies models—response to sealevel changes. Geological Association of Canada, St. John’s, pp 277–301

    Google Scholar 

  • Jorry S, Davaud E, Caline B (2003) Controls on the distribution of Nummulite facies: a case study from the Late Ypresian El Garia Formation (Kesra Plateau, Central Tunisia). J Pet Geol 26:283–306. doi:10.1111/j.1747-5457.2003.tb00031.x

    Article  Google Scholar 

  • Jorry SJ, Hasler C-A, Davaud E (2006) Hydrodynamic behaviour of Nummulites: implications for depositional models. Facies 52:221–235. doi:10.1007/s10347-005-0035-z

    Article  Google Scholar 

  • Kent DV, Muttoni G (2008) Equatorial convergence of India and Early Cenozoic climate trends. Proc Natl Acad Sci USA 105:16065–16070

    Article  Google Scholar 

  • Kim W, Fouke BW, Petter AL et al (2012) Sea-level rise, depth-dependent carbonate sedimentation and the paradox of drowned platforms: slowly drowned platforms. Sedimentology 59:1677–1694. doi:10.1111/j.1365-3091.2012.01321.x

    Article  Google Scholar 

  • Lucia FJ (2007) Carbonate reservoir characterization. Springer, Berlin

    Google Scholar 

  • Malod JA, Droz L, Kemal BM, Patriat P (1997) Early spreading and continental to oceanic basement transition beneath the Indus deep-sea fan: northeastern Arabian Sea. Mar Geol 141:221–235. doi:10.1016/S0025-3227(97)00074-1

    Article  Google Scholar 

  • Miller K, Mountain G, Wright J, Browning J (2011) A 180-million-year record of sea level and ice volume variations from continental margin and deep-sea isotopic records. Oceanography 24:40–53. doi:10.5670/oceanog.2011.26

    Article  Google Scholar 

  • Mitchum RM, Vail PR, Sangree JB (1977) Seismic stratigraphy and global changes of sea level: Part 6. Stratigraphic interpretation of seismic reflection patterns in depositional sequences. In: Payton CE (eds) Seismic stratigraphy—applications to hydrocarbon exploration, vol 26. American Association of Petroleum Geologists, Tulsa, pp 117–134

  • Mohan M (1985) Geohistory analysis of Bombay High region. Mar Pet Geol 2:350–360. doi:10.1016/0264-8172(85)90030-3

    Article  Google Scholar 

  • Mresah MH (1993) Facies patterns and stratal geometries: clues to the nature of the platform margin during the Paleocene, northeast Sirte Basin, Libya. Sediment Geol 84:149–167. doi:10.1016/0037-0738(93)90052-7

    Article  Google Scholar 

  • Naini BR, Talwani M (1982) Structural framework and the evolutionary history of the continental margin of Western India: rifted margins: field investigations of margin structure and stratigraphy. In: Warkins JS, Drake CL (eds) Studies in continental margin geology, vol 34. American Association of Petroleum Geologists, Tulsa, pp 167–191

    Google Scholar 

  • Paumard V, Zuckmeyer E, Boichard R et al (2017) Evolution of Late Oligocene–Early Miocene attached and isolated carbonate platforms in a volcanic ridge context (Maldives type), Yadana field, offshore Myanmar. Mar Pet Geol 81:361–387. doi:10.1016/j.marpetgeo.2016.12.012

    Article  Google Scholar 

  • Purdy EG, Betram GT (1993) Carbonate concepts from the Maldives, Indian Ocean. American Association of Petroleum Geologists, Studies in Geology 34:1–57

    Google Scholar 

  • Qayyum F, de Paul G, Hemstra N (2012) Using 3D Wheeler diagrams in seismic interpretation—the HorizonCube method. First Break 30:103–109

    Google Scholar 

  • Qayyum F, Hemstra N, Singh R (2013) A modern approach to build 3D sequence stratigraphic framework. Oil Gas J 111:46–65

    Google Scholar 

  • Robinson SA (2011) Shallow-water carbonate record of the Paleocene–Eocene Thermal Maximum from a Pacific Ocean guyot. Geology 39:51–54. doi:10.1130/G31422.1

    Article  Google Scholar 

  • Ryan WBF, Carbotte SM, Coplan JO et al (2009) Global multi-resolution topography synthesis. Geochem Geophys Geosyst 10:Q03014. doi:10.1029/2008GC002332

    Article  Google Scholar 

  • Sandwell DT, Muller RD, Smith WHF et al (2014) New global marine gravity model from CryoSat-2 and Jason-1 reveals buried tectonic structure. Science 346:65–67. doi:10.1126/science.1258213

    Article  Google Scholar 

  • Sarg JF (1988) Carbonate sequence stratigraphy. In: Wilgus CK, Hastings BS, Posamentier H, van Wagnor J, Ross CA, Kendall CGSC (eds) Sea-level changes: an integrated approach. SEPM (Society of Sedimentary Geology) Special Publication No. 42, Tulsa, pp 155–182

  • Sarg JF, Markello J, Weber LJ (1999) The second-order cycle, carbonate-platform growth, and reservoir, source, and trap prediction. In: Harris PM, Saller AH, Simo JA (eds) Advances in carbonate sequence stratigraphy. SEPM (Society for Sedimentary Geology), Tulsa, pp 11–34

    Chapter  Google Scholar 

  • Scheibner C, Speijer RP (2008a) Decline of coral reefs during Late Paleocene to Early Eocene global warming. eEarth 3:19–26. doi:10.5194/ee-3-19-2008

    Article  Google Scholar 

  • Scheibner C, Speijer RP (2008b) Late Paleocene–Early Eocene Tethyan carbonate platform evolution—a response to long- and short-term paleoclimatic change. Earth Sci Rev 90:71–102. doi:10.1016/j.earscirev.2008.07.002

    Article  Google Scholar 

  • Scheibner C, Speijer RP (2009) Recalibration of the Tethyan shallow-benthic zonation across the Paleocene–Eocene boundary: the Egyptian record. Geol Acta 7:195–214. doi:10.1344/105.000000267

    Article  Google Scholar 

  • Scheibner C, Speijer RP, Marzouk AM (2005) Turnover of larger foraminifera during the Paleocene–Eocene Thermal Maximum and paleoclimatic control on the evolution of platform ecosystems. Geology 33:493. doi:10.1130/G21237.1

    Article  Google Scholar 

  • Scheibner C, Rasser MW, Mutti M (2007) The Campo section (Pyrenees, Spain) revisited: implications for changing benthic carbonate assemblages across the Paleocene–Eocene boundary. Palaeogeogr Palaeoclimatol Palaeoecol 248:145–168. doi:10.1016/j.palaeo.2006.12.007

    Article  Google Scholar 

  • Schlager W (1981) The paradox of drowned reefs and carbonate platforms. Geol Soc Am Bull 92:197. doi:10.1130/0016-7606(1981)92<197:TPODRA>2.0.CO;2

    Article  Google Scholar 

  • Schlager W (2005) Carbonate sedimentology and sequence stratigraphy. SEPM (Society for Sedimentary Geology), Tulsa

    Book  Google Scholar 

  • Schlager W, Camber O (1986) Submarine slope angles, drowning unconformities, and self-erosion of limestone escarpments. Geology 14:762. doi:10.1130/0091-7613(1986)14<762:SSADUA>2.0.CO;2

    Article  Google Scholar 

  • Scotese CR (2001) Atlas of Earth history, vol 1. Paleogeography. PALEOMAP Project, Arlington, Texas

  • Scotese CR, Summerhayes CP (1986) Computer model of palaeoclimate predicts coastal upwelling in the Mesozoic and Cenozoic. Geobyte 1:28–42

    Google Scholar 

  • Serra-Kiel J, Hottinger L, Caus E et al (1998) Larger foraminiferal biostratigraphy of the Tethyan Paleocene and Eocene. Bulletin de la Société Géologique de France 169:281–299

    Google Scholar 

  • Speijer RP, Wagner T (2002) Sea-level changes and black shales associated with the late Paleocene thermal maximum: organic-geochemical and micropaleontologic evidence from the southern Tethyan margin (Egypt–Israel). In: Koeberl C, MacLeod KG (eds) Catastrophic events and mass extinctions: impacts and beyond. Geological Society of America Special Paper 356, pp 533–549

  • Talwani M, Reif C (1998) Laxmi Ridge—a continental sliver in the Arabian Sea. Mar Geophys Res 20:259–271. doi:10.1023/A:1004674909280

    Article  Google Scholar 

  • Todal A, Edholm O (1998) Continental margin off Western India and Deccan large igneous province. Mar Geophys Res 20:273–291. doi:10.1023/A:1004640508371

    Article  Google Scholar 

  • Torsvik TH, Amundsen H, Hartz EH et al (2013) A Precambrian microcontinent in the Indian Ocean. Nat Geosci 6:223–227. doi:10.1038/ngeo1736

    Article  Google Scholar 

  • Wade BS, Pearson PN, Berggren WA, Pälike H (2011) Review and revision of Cenozoic tropical planktonic foraminiferal biostratigraphy and calibration to the geomagnetic polarity and astronomical time scale. Earth Sci Rev 104:111–142. doi:10.1016/j.earscirev.2010.09.003

    Article  Google Scholar 

  • Wandrey C, Law B, Shah HA (2004) Sembar-Goru/Ghazij composite total petroleum system, Indus and Sulaiman-Kirthar Geologic Provinces, Pakistan and India. U.S. Geological Survey Bulletin 2208-C 1:1–23

  • Ward WB (1999) Tectonic control on backstepping sequences revealed by mapping of Frasnian backstepped platforms, Devonian reef complexes, Napier Range, Canning Basin, Western Australia. In: Harris PM, Saller AH, Simo JA (eds) Advances in carbonate sequence stratigraphy. SEPM (Society for Sedimentary Geology) Special Publication No. 63, Tulsa, pp 47–74

  • White R, McKenzie D (1989) Magmatism at rift zones: the generation of volcanic continental margins and flood basalts. J Geophys Res Solid Earth 94:7685–7729. doi:10.1029/JB094iB06p07685

    Article  Google Scholar 

  • Whiting BM, Karner GD, Driscoll NW (1994) Flexural and stratigraphic development of the west Indian continental margin. J Geophys Res Solid Earth 99:13791–13811. doi:10.1029/94JB00502

    Article  Google Scholar 

  • Zachos J (2001) Trends, rhythms, and aberrations in global climate 65 Ma to present. Science 292:686–693. doi:10.1126/science.1059412

    Article  Google Scholar 

  • Zamagni J, Mutti M, Košir A (2008) Evolution of shallow benthic communities during the Late Paleocene–earliest Eocene transition in the Northern Tethys (SW Slovenia). Facies 54:25–43. doi:10.1007/s10347-007-0123-3

    Article  Google Scholar 

  • Zampetti V, Schlager W, van Konijnenburg J-H, Everts A-J (2004) Architecture and growth history of a Miocene carbonate platform from 3D seismic reflection data; Luconia province, offshore Sarawak, Malaysia. Mar Pet Geol 21:517–534. doi:10.1016/j.marpetgeo.2004.01.006

    Article  Google Scholar 

Download references

Acknowledgements

The authors wish to express sincere thanks to the Directorate General of Petroleum Concession (DGPC), Pakistan and Hydrocarbon Development Institute of Pakistan (HDIP) for their permission to release and publish the analyzed dataset. We would like to acknowledge the assistance of Mr. Muhammad Zafar Iqbal and Mr. Faisal Mehmood (HDIP) in the preparation of well cutting samples and thin sections. We thank Schlumberger for providing the Petrel application and dGB Netherland for providing OpendTect software. Stephan J. Jorry and Wolfgang Schlager are thanked for providing constructive reviews that greatly improved this manuscript. The University of Hamburg is gratefully acknowledged for funding and scholarship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Khurram Shahzad.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shahzad, K., Betzler, C., Ahmed, N. et al. Growth and demise of a Paleogene isolated carbonate platform of the Offshore Indus Basin, Pakistan: effects of regional and local controlling factors. Int J Earth Sci (Geol Rundsch) 107, 481–504 (2018). https://doi.org/10.1007/s00531-017-1504-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00531-017-1504-7

Keywords

Navigation