Skip to main content
Log in

The origin of the Avram Iancu U–Ni–Co–Bi–As mineralization, Băiţa (Bihor) metallogenic district, Bihor Mts., Romania

  • Original Paper
  • Published:
International Journal of Earth Sciences Aims and scope Submit manuscript

Abstract

The Băiţa metallogenic district in the Bihor Mountains is a historically important mining area in Romania. Uranium mining took place between 1952 and 1998 from various deposits, but very little is known about the geology and mineralogy of these deposits. In this paper, we describe geology and mineralogy of uranium mineralization of the Avram Iancu uranium mine from waste dump samples collected before complete remediation of the site. Texturally and mineralogically complex assemblages of nickeline, cobaltite–gersdorffite solid solution, native Bi, Bi-sulfosalts, molybdenite, and pyrite–chalcopyrite–sphalerite occur with uraninite, “pitchblende,” and brannerite in most of the ore samples. The association of nickel, cobalt, and arsenic with uranium is reminiscent of five-element association of vein type U–Ni–Co–Bi–As deposits; however, the Avram Iancu ores appear to be more replacement-type stratiform/stratabound. Avram Iancu ore samples contain multistage complex, skarn, uranium sulfide, arsenide assemblages that can be interpreted to have been formed in the retrograde cooling stages of the skarn hydrothermal system. This mineralizing system may have built-up along Upper Cretaceous–Paleogene “Banatite” intrusions of diorite-to-granite composition. The intrusions crosscut the underlying uraniferous Permian formations in the stacked NW-verging Biharia Nappe System. The mineralization forms stacked, multilayer replacement horizons, along carbonate-rich lithologies within the metavolcanic (tuffaceous) Muncel Series. Mineral paragenesis and some mineral chemistry suggest moderate-to-high <450, i.e., 350–310 °C, formation temperatures for the uranium sulfide stage along stratigraphically controlled replacement zones and minor veins. Uranium minerals formed abundantly in this early stage and include botryoidal, sooty and euhedral uraninite, brannerite, and coffinite. Later and/or lower-temperature mineral assemblages include heterogeneous, complexly zoned arsenide–sulfarsenide solid solutions associated with minute but abundant uranium minerals. Within the later arsenide–sulfarsenide mineral assemblage, there is great variation in Ni, Co, and S content with generally increasing arsenic content. Uranium minerals in this late-stage assemblage include very fine euhedral uraninite and brannerite inclusions in arsenide–sulfarsenide minerals. Native bismuth and Bi-sulfosalt krupkaite are observed in this As–S-rich assemblage strongly associated with cobaltite.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  • Aurelian F, Georgescu DP, Popescu M, Florescu MS (2007) Environmental impact assessment of the uranium mining activity in the Bihor district (Bucharest, Romania). In: Cidu R, Frau F (eds) IMWA Symposium 2007: Water in Mining Environments, 27th–31st May, 2007. Cagliari, Italy

    Google Scholar 

  • Balintoni I (2001) Short outlook on the structure of the Apuseni Mountains. In: Bucur II, Filipescu S, Sasaran E (eds) Fourth regional meeting of IFAA. Field Trip Guide, Cluj, pp 9–17

    Google Scholar 

  • Balintoni I, Puşte A, Balica C, Stan R (2002) Păiuşeni Unit—version 1. In: Dunkl I, Balintoni I, Frisch W, Janák M, Koroknai B, Milovanovic D, Pamić J, Székely B, Vrabec M (eds) Metamorphic Map and Database of Carpatho-Balkan-Dinaride Area. http://www.uni-tuebingen.de/geo/met-map/index.html

  • Bastin ES (1939) The nickel-cobalt-native silver ore-type. Econ Geol 34:1–40

    Article  Google Scholar 

  • Berza T, Contantinescu E, Vlad ŞN (1998) Upper Cretaceous magmatic series and associated mineralisation in the Carpathian–Balkan Orogen. Res Geol 48:291–306

    Article  Google Scholar 

  • Bleahu M, Mantea G, Bordea S, Panin S, Ştefanescu M, Siric K, Haas J, Kovács S, Cs Péró, Berczi-Makk A, Konrád G, Nagy E, Felgenhauerralisch E, Török Á (1994) Triassic facies types, evolution and paleogeographic relations of the Tiszia Megaunit. Acta Geol Hung 37:187–234

    Google Scholar 

  • Bordea S, Bleahu M, Bordea J (1975) Date noi stratigrafice si structurale asupra Bihorului de Vest, Unitatea de Urmt si Unitatea de Vetre. D Sea Sed Inst Geol Geof 3(61):61–83

    Google Scholar 

  • Cathelineau M (1988) Cation site occupancy in chlorites and illites as a function of temperature. Clay Min 23:171–485

    Article  Google Scholar 

  • Cathelineau M, Nieva D (1985) A chlorite solid solution geothermometer. Contrib Min Pet 91:235–244

    Article  Google Scholar 

  • Chovan M, Ozdín D (2003) Chemical composition of Ni, Co and Fe sulphoarsenides and arsenides in the hydrothermal siderite veins in the Western Carpathians (Slovakia). In: Fehér B, Szakáll S (eds) Mineral Sciences in the Carpathians, Miskolc, Hungary, March 6–7, 2003. Acta Min Pet Szeged, Abstr Series 1:19

  • Cioflică G, Vlad ŞN (1979) Bi-sulphosalts related to Laramian skarns of the Bihor Mountains (northern Apuseni, Romania). Rev Rom Géol Géophys Géogr Sér Géol 23:15–21

    Google Scholar 

  • Cioflică G, Vlad ŞN, Iosof D, Panican A (1974) Thermal and metasomatic metamorphism of the Paleozoic Arieşeni unit (Băiţa Bihorului). St Cerc Geofiz Geogr Geol 19:43–68

    Google Scholar 

  • Cioflică G, Vlad Ş, Volanschi E, Stoici S (1977) Magnesian skarns and related ores from Băiţa Bihorului. St Cerc Geofiz Geogr Geol 22:39–57

    Google Scholar 

  • Cioflică G, Jude R, Lupulescu M, Simon G, Damian G (1995) New data on the Bi-minerals from the mineralizations related to Paleocene magmatites in Romania. Rom J Miner 76:9–23

    Google Scholar 

  • Cook NJ (1997) Bismuth and bismuth–antimony sulphosalts from Neogene vein mineralization, Baia Borşa area, Maramures, Romania. Min Mag 61:387–409

    Article  Google Scholar 

  • Cook NJ, Ciobanu CL (2004) Bismuth tellurides and sulphosalts from the Larga hydrothermal system, Metaliferi Mts., Romania: paragenesis and genetic significance. Min Mag 68(2):301–321

    Article  Google Scholar 

  • Császár G (2005) Regional geology of Hungary and its surroundings. Magyarország és környezetének regionális földtana (in Hungarian). ELTE Eötvös Press, Budapest, pp 213–253

    Google Scholar 

  • Csontos L, Vörös A (2004) Mesozoic plate tectonic reconstruction of the Carpathian region. Palaeogeogr Palaeoclimatol Palaeoecol 210(1):1–56

    Article  Google Scholar 

  • Dewaele S, Muchez P, Vets J, Fernandez-Alonzo M, Tack L (2006) Multiphase origin of the Cu–Co ore deposits in the western part of the Lufilian fold-and-thrust belt, Katanga (Democratic Republic of Congo). J Afr Earth Sci 46:455–469

    Article  Google Scholar 

  • Dill HG (2010) The “chessboard” classification scheme of mineral deposits: mineralogy and geology from aluminum to zirconium. Earth Sci Rev 100:1–420

    Article  Google Scholar 

  • Fülöp J (1989) Introduction to geology of Hungary. Bevezetés Magyarország geológiájába (in Hungarian). Akadémiai Kiadó, Budapest

    Google Scholar 

  • Gheorghe-Sorescu A, Litescu C, Dinca M (2011) Nuclear and waste activities in Romania. R2D2P Workshop on review of a Decommissioning Plan, Bucharest–Magurele, Romania, 4–8 of July, 2011

  • Golebiowska B, Pieczka A, Parafiniuk J (2006) Cu(Ag)–Pb–Bi(Sb) sulphosalts from Redziny (western Sudetes, Poland). Min Pol Spec Pap 28:78–80

    Google Scholar 

  • Halahyjová-Andrusová G (1964) About structures of Ni–Co–Fe sulphoarsenides and arsenides from Dobšiná. Geol Zborrnik Slov Akad Vied 15:87–91 (in Slovak)

    Google Scholar 

  • Halls C, Stumpfl EF (1972) The five-element (Ag–Bi–Co–Ni–As) vein deposit—a critical appraisal for the geological environments in which it occurs and of the theories affecting it origin. Proceedings 24th international geological congress, Montreal, Sec. 4, p 540

  • Hawthorne FC, Oberti R, Harlow GE, Maresch WV, Martin RF, Schumacher JC, Welch MD (2012) Nomenclature of the amphibole supergroup. Am Min 97:2031–2048

    Article  Google Scholar 

  • Hem SR, Makovicky E (2004a) The system Fe–Co–Ni–As–S. I. phase relations in the (Fe Co, Ni)As0.5S1.5 section at 650° and 500 °C. Can Min 42:43–62

    Article  Google Scholar 

  • Hem SR, Makovicky E (2004b) The system Fe–Co–Ni–As–S. II. phase relations in the (Fe Co, Ni)As1.5S0.5 section at 650° and 500°C. Can Min 42:63–86

    Article  Google Scholar 

  • Hem SR, Makovicky E, Gervilla F (2001) Compositional trends in Fe Co, and Ni sulfarsenides and their crystal-chemical implications: results from the Arroyo de la Cueva deposits, Ronda peridotite, southern Spain. Can Min 39:831–853

    Article  Google Scholar 

  • IAEA (2009) Word Distribution of Uranium Deposits (UDEPO) with Uranium Deposit Classification. Vienna, Austria. IAEA-TECDOC-1629

  • IAEA UDEPO report: Uranium 2001: Resources, production and demand. By International Atomic Energy Agency (IAEA), OECD—Organization for Economic Co-operation and Development, OECD, p 352

  • Jowett EC (1991) Fitting iron and magnesium into hydrothermal chlorite geothermometer. GAC/MAC/SEG joint annual meeting (Toronto, May, 27–29, 1991), Programs with Abstracts 16:A62

  • Kissin SA (1992) Five-element (Ni–Co–As–Ag–Bi) Veins. Geosci Can 19(3):113–124

    Google Scholar 

  • Lanari P, Wagner T, Vidal O (2014a) A thermodynamic model for di-trioctahedral chlorite from experimental and natural data in the system MgO–FeO–Al2O3–SiO2–H2O: applications to P–T sections and geothermometry. Contrib Mineral Petrol 167(2):968

    Article  Google Scholar 

  • Lanari P, Wagner T, Vidal O (2014b) Erratum to: a thermodynamic model for di-trioctahedral chlorite from experimental and natural data in the system MgO–FeO–Al2O3–SiO2–H2O: applications to P–T sections and geothermometry. Contrib Mineral Petrol 168(2):1039

    Article  Google Scholar 

  • Leake BE, Woolley AR, Arps CES, Birch WD, Gilbert MC, Grice JD, Hawthorne FC, Kato A, Kisch HJ, Krivovichev VG, Linthout K, Laird J, Mandarino JA, Maresch WV, Nickel EH, Schumacher JC, Smith DC, Stephenson NCN, Ungaretti L, Whittaker EJW, Youzhi G (1997) Nomenclature of amphibolites: report of the Subcommittee on Amphiboles of the International Mineralogical Association, Commission on New Minerals and Mineral Names. Can Min 35:219–246

    Google Scholar 

  • Lebedev VI (2003) Ore-magmatic systems of arsenide-cobaltdeposits (Editor: A. A. Obolenskii—Kyzyl), p 123

  • Lefebure DV (1996) Five-element Veins Ag–Ni–Co–As ± (Bi,U), in Lefebure DV, Hõy T (Eds): Selected British Columbia mineral deposit profiles, vol 2—Metallic Deposits. British Columbia Ministry of Employment and Investment, Open File 1996 13:89–92

  • Lowry D, Stephens WE, Herd DA, Stanley CJ (1994) Bismuth sulphosalts within quartz veining hosted by the Loch Shin monzogranite, Scotland. Min Mag 58:39–47

    Article  Google Scholar 

  • Marincea Ş (2000) Fluoborite in magnesian skarns from Băiţa Bihor (Bihor Massif, Apuseni Mountains, Romania). N Jb Min Mon357–371

  • Marincea Ş (2001a) New data on szaibelyite from the type locality, Băiţa Bihor, Romania. Can Min 39:111–127

    Article  Google Scholar 

  • Marincea Ş (2001b) Magnesian borates and associated minerals in the Cacova Ierii skarn deposit (Apuseni Mountains, Romania). Genomos 8(1):1–7

    Google Scholar 

  • Marincea S (2004) A contribution to the study of kotoite: data on three Romanian occurrences. NJ Min Mon 6:253–274

    Google Scholar 

  • Mátyási S (1998) Mineralogical, geochemical and genetic study of uranium mineralizations from NW part of Bihor Mountains. Unpublished Ph.D. Thesis, University of Bucharest (in Romanian)

  • Mátyási S, Mátyási L, Vlas G (2001) Studiul mineralogici structural al mineralizatiilor polimetalice la nivelul orizontului XVIII Zona Antoniu si orizontul XVI zonele Baia Rosie si Terezia din cadrul Zacamântului Băiţa Bihor în vederea stabilirii potentialului economic. Arhiva SM Băiţa & GeoProspect Ltd Ştei, Romania

    Google Scholar 

  • Merten S, Matenco L, Foeken JPT, Andriessen PAM (2011) Toward understanding the post-collisional evolution o fan orogeny influenced by convergence at adjacent plate margins: late Cretaceous—Tertiary thermometric history of the Apuseni Mountains. Tectonics 30:28

    Article  Google Scholar 

  • Mihai S, Scradeanu D (2008). Developing a 3D data model for geohazard assessment in a former uraniferous mining site. In: Merkel BJ, Hasche-Berger A (Eds) Uranium mining and hydrogeology V 14.9.-18.9.2008 Freiberg, Germany

  • Moëlo Y, Makovicky E, Mozgova NN, Jambor JL, Cook N, Pring A, Paar W, Nickel EH, Graeser S, Karup-Møller S, Balici-Žunic T, Mumme WG, Vurro F, Topa D, Bindi L, Bente K, Shimizu M (2008) Sulphosalt systematics: a review. Report of the sub-committee af the IMA Commission on Ore Mineralogy. Eur J Mineral 20:7–46

    Article  Google Scholar 

  • Mrna F (1963) Deposit of Ag–Bi–Co–Ni ores in Jachymov. In: Guide to excursion, symposium: problems of postmagmatic ore deposition; some ore deposits of the Bohemian Massif. Czech Acad Sci

  • Mumme WG (1975) The crystal structure of krupkaite, CuPbBi3S6 from the Juno mine at Tennant Creek, Northern Territory, Australia. Am Min 60:300–308

    Google Scholar 

  • Onac BP (2002) Caves formed within upper cretaceous skarns at Băiţa, Bihor County, Romania: mineral deposition and speleogenesis. Can Min 40:1693–1703

    Article  Google Scholar 

  • Ondrus P, Veselovský F, Gabašová A, Drábek M, Dobeš P, Malý K, Hloušek J, Sejkora J (2003) Ore-forming processes and mineral parageneses of the Jáchymov ore district. J Czech Geol Soc 48(3–4):157–192

    Google Scholar 

  • Pană D (1998) Petrogenesis and tectonics of the basement rocks of the Apuseni Mountains: Significance for the Alpine tectonics of the Carpathian-Pannonian region. Ph.D. Thesis, Univ of Alberta, Canada

  • Petruk W (1971) Mineralogical characteristics of the deposits and textures of the ore minerals. In: The silver-arsenide deposits of the Cobalt—Gowganda Region, Ontario. Can Mineral 1 l:108–139

  • René M (2008) Anomalous rare earth element, yttrium and zirconium mobility associated with uranium mineralization. Terra Nova 20:52–58. doi:10.1111/j.1365-3121.2007.00786.x

    Article  Google Scholar 

  • Republica Socialista Romania Harta Geologica (1967) Geological map of Romania, 1:50000. map, L-34-XVII

  • Rex CB, Richard J (2011a) Technical Report Mineral Resource Novoveska Huta Uranium Project East-Central Slovakia, NI-43-101 technical Report. Tournigan Energy Ltd. by Tetra Tech

  • Rex CB, Richard J (2011b) Mineral Resource Update Kuriskova Uranium Project East-Central Slovakia, NI-43-101 technical Report. Tournigan Energy Ltd. by Tetra Tech

  • Robinson BW, Ohmoto H (1973) Mineralogy, fluid inclusions and stable isotopes of the Eoho Bay U–Ni–Ag–Cu deposits, Northwest Teritories. Can Econ Geol 68:635–656

    Article  Google Scholar 

  • Rozlozsnik P (1906) Additional data to the geology of High-Bihor area (report of the detailed geological mapping in 1905). A Magyar Kir. Földtani Intézet évi jelentése 1905-ről. (in Hungarian) Budapest, pp 104–105

  • Rozlozsnik P (1907) Geology of the southern part of Bihor-mts. Between Nagyhalmágy and Felsővidra. (report of the detailed geological mapping in 1906). (in Hungarian) Magyar Kir. Földtani Intézet évi jelentése 1906-ról, Budapest, pp 69–84

  • Rozlozsnik P (1937) The tectonical position of the Bihor-mts in the frame of Carpathians (in Hungarian). Math és Term Tud Ért 55:46–74

    Google Scholar 

  • Săndulescu M (1988) Cenozoic tectonic history of the Carpathians. AAPG Mem 45:17–25

    Google Scholar 

  • Schmid SM, Bernoulli D, Fügenschuh B, Matenco L, Schefer S, Schuster R, Tischler M, Ustaszewski K (2008) The Alpine–Carpathian–Dinaridic orogenic system: correlation and evolution of tectonic units. Swiss J Geosci 101:139–183

    Article  Google Scholar 

  • Staude S, Wagner T, Markl G (2007) Mineralogy, mineral compositions and fluid evolution at the Wenzel hydrothermal deposit, southern Germany: implications for the formation of Kongsberg-type silver deposits. Can Min 45:1147–1176

    Article  Google Scholar 

  • Stoici S (1983) The Baita Bihor metallogenic district. Ed Academiei RSR, Bucuresti (in Romanian with extended Engl abstr)

  • Stoicovici E, Stoici S (1972) Investigation of boron ores from superior area of the upper Black Körös basin (Băiţa Bihor). Studia Univ Babeş-Bolyai, Geol-Min 1:3–10

    Google Scholar 

  • Szádeczky Gy (1907) Data from the 1906 year geological mapping at Bihor-mts and Vlegyásza. Magyar Kir. Földt. Intézet évi jelentése 1906-ról (in Hungarian), Budapest, pp 51–68

  • Szepesházy K (1979) Tectonic relationship between The Hungarian Great Plain and Muntii Apuseni. M. Áll. Földtani Int. évi jelentése az 1978. évről (in Hungarian), 173–186

  • Tillberg M (2012) Ore-forming processes and tectonic control of the sediment-hosted Cu-Co deposits in the Central African Copperbelt. Department of Earth Sciences, University of Gothenburg, Project C92, p 14

  • Theron SJ (2013) The origin of the central african copperbelt: in a nutshell. In: The Southern African Institute of Mining and Metallurgy Base Metals Conference 2013, p 16

  • Topa D, Makovicky E, Paar WH (2002) Composition ranges and exsolution pairs for the members of the bismuthinite-aikinite series from Felbertal, Austria. Can Min 40:849–869

    Article  Google Scholar 

  • Udubaşa G (1999) Advances in mineralogy of Romania. Rom J Min 79:3–30

    Google Scholar 

  • Udubaşa G, Ilinca G, Marincea Ş, Sabău S, Radan S (1992) Minerals of Romania: the state of the art 1991. Rom J Min 75:1–51

    Google Scholar 

  • Vidal O, Parra T, Trotet F (2001) A thermodynamic model for Fe-Mg aluminous chlorite using data from phase equilibrium experiments and natural politic assemblages in the 100° to 600°C, 1 to 25 kb range. Am J Sci 6:557–592

    Article  Google Scholar 

  • Vidal O, Parra T, Vieillard P (2005) Thermodynamic properties of the Tschermak solid solution in Fe.chlorites: application to natural examples and possible role of oxidation. Am Min 90:359–370

    Article  Google Scholar 

  • von Quadt A, Peycheva I, Kamenov B, Fanger L, Heinrich CA (2002) The Elatitse porphyr copper deposit of the Panagyurishte ore district, Srednogorie zone, Bulgaria: U-Pb zircon geochronology and isotopegeochemical investigations of ore genesis. Geol Soc Spec Publ 204:119–135

    Article  Google Scholar 

  • Wagner T, Lorenz J (2002) Mineralogy of complex Co–Ni–Bi vein mineralization, Biber deposit, Spessart, Germany. Min Mag 66(3):385–407

    Article  Google Scholar 

  • Watkinson DH, Heslop JB, Ewert WD (1975) Nickel sulphide-arsenide assemblages associated with uranium mineralization, Zimmer Lake area, Northern Saskatchewan. Can Min 13:198–204

    Google Scholar 

  • Zajzon N, Bűdi N, Mátyási S, Szakáll S (2006) Preliminary study of the ore minerals of the Avram Iancu Co–Ni–U ore deposit, Bihor Mts., Romania. In: Papp G, Fehér B, Kristály F (eds) 3rd Mineral Sciences in the Carpathians, Miskolc, Hungary, March 9–10, 2006. Acta Min Petr Abstract Series (Szeged) 5:132

Download references

Acknowledgments

The authors are grateful for the technical assistance of Mr. Norbert Bűdi and Dr. György Lovas for some XRD and Mr. Árpád Kovács for some EDX analyses. Dr. Tamás Váczi is kindly acknowledged for providing a CLSM map of brannerite. Mr. Jim Sweeney is kindly acknowledged for native English proofreading of the manuscript. We also thank the more helpful comments and suggestions of our reviewers Prof. Ferenc Molnár and Prof. Harald Dill, which improved our paper. Some WDX standards were provided by the Department of Mineral Sciences, Smithsonian National Museum of Natural History, Washington, USA. The described work was carried out as part of the TÁMOP-4.2.2.A-11/1/KONV -2012-0005 project as a work of Center of Excellence of Sustainable Resource Management, in the framework of the New Széchenyi Plan. The realization of this project is supported by the European Union, cofinanced by the European Social Fund.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Norbert Zajzon.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zajzon, N., Szentpéteri, K., Szakáll, S. et al. The origin of the Avram Iancu U–Ni–Co–Bi–As mineralization, Băiţa (Bihor) metallogenic district, Bihor Mts., Romania. Int J Earth Sci (Geol Rundsch) 104, 1865–1887 (2015). https://doi.org/10.1007/s00531-015-1175-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00531-015-1175-1

Keywords

Navigation