Skip to main content
Log in

Non-radial solutions for the fractional Hénon equation with critical exponent

  • Published:
Calculus of Variations and Partial Differential Equations Aims and scope Submit manuscript

Abstract

We consider the following fractional Hénon type equation with critical growth:

$$\begin{aligned} {\left\{ \begin{array}{ll} (-\Delta )^{s}u=K(|y|)u^{\frac{N+2s}{N-2s}}, \hbox { }u>0, &{}\hbox { }y\in B_1(0), \\ \displaystyle u=0,&{}\hbox { } y\in B_{1}^{c}(0), \end{array}\right. } \end{aligned}$$
(0.1)

where K(|y|) is a bounded function defined in [0, 1], \(B_1(0)\) is the unit ball in \({\mathbb {R}}^{N}\), \(N\ge 3\) for \(\frac{3}{4} \le s<1\) and \(3\le N < 2s -1 +\frac{2}{3-4s}\) for \(\frac{11-\sqrt{41}}{8}< s<\frac{3}{4}\). We show that if \(K(1)>0\) and \(K'(1)>0\), then equation (0.1) has infinitely many non-radial positive solutions, whose energy can be made arbitrarily large. The most ingredients of the paper are using the Green representation and estimating the Green function and its regular part very carefully. For this purposes, some more extra ideas and techniques are needed. We believe that our method and techniques can be applied to other related problems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Applebaum, D.: Lévy processes and stochastic calculus, Second edition, Cambridge Stud. Adv. Math., 116 (2009)

  2. Bahri, A.: Critical points at infinity in some variational problems, Pitman Res. Notes Math. Ser., 182 (1989)

  3. Barrios, B., Colprado, E., de Pablo, A., Sánchez, U.: On some critical problems for the fractional Laplacian operator. J. Differential Equations 252(11), 6133–6162 (2012)

    Article  MathSciNet  Google Scholar 

  4. Brändle, C., Colorado, E., de Pablo, A., Sánchez, U.: A concave-convex elliptic problem involving the fractional Laplacian. Proc. Roy. Soc. Edinburgh Sect. A 143(1), 39–71 (2013)

    Article  MathSciNet  Google Scholar 

  5. Cabré, X., Sire, Y.: Nonlinear equations for fractional Laplacians I: regularity, maximum principles, and Hamiltonian estimates. Ann. Inst. H. Poincaré Anal. Non Linéaire 31(1), 23–53 (2014)

    Article  MathSciNet  Google Scholar 

  6. Cabré, X., Tan, J.G.: Positive solutions of nonlinear problems involving the square root of the Laplacian. Adv. Math. 224(5), 2052–2093 (2010)

    Article  MathSciNet  Google Scholar 

  7. Cao, D., Peng, S.: The asymptotic behaviour of the ground state solutions for Hénon equation. J. Math. Anal. Appl. 278(1), 1–27 (2003)

    Article  MathSciNet  Google Scholar 

  8. Guo, Y.X., Li, B.: Infinitely many non-radial solutions for the polyharmonic Hénon equation with a critical exponent. Proc. Roy. Soc. Edinburgh Sect. A 147(2), 371–396 (2017)

    Article  MathSciNet  Google Scholar 

  9. Guo, Y.X., Nie, J.J.: Infinitely many non-radial solutions for the prescribed curvature problem of fractional operator. Discrete Contin. Dyn. Syst. 36(2), 6873–6898 (2016)

    MathSciNet  MATH  Google Scholar 

  10. Hénon, M.: Numerical experiments on the stability of spherical stellar systems. Astronom. and Astrophys. 24, 229–238 (1973)

    Google Scholar 

  11. Jin, T.L., Li, Y.Y., Xiong, J.G.: On a fractional Nirenberg problem, part I: Blow up analysis and compactness of solutions. J. Eur. Math. Soc. (JEMS) 16(6), 1111–1171 (2014)

    Article  MathSciNet  Google Scholar 

  12. Lieb, E.: Sharp constants in the Hardy-Littlewood-Sobolev and related inequalities. Ann. of Math. (2) 118(2), 349–374 (1983)

    Article  MathSciNet  Google Scholar 

  13. Do Nezza, E., Palatucci, G., Valdinoci, E.: Hitchhiker’s guide to the fractional Sobolev spaces. Bull. Sci. Math. 136(5), 521–573 (2012)

    Article  MathSciNet  Google Scholar 

  14. Ni, W.M.: A nonlinear Dirichlet problem on the unit ball and its applications. Indiana Univ. Math. J. 31(6), 801–807 (1982)

    Article  MathSciNet  Google Scholar 

  15. del Pino, M., Felmer, P., Musso, M.: Two-bubble solutions in the super-critical Bahri-Coron’s problem. Calc. Var. Partial Differential Equations 16(2), 113–145 (2003)

    Article  MathSciNet  Google Scholar 

  16. Rey, O.: The role of the Green’s function in a nonlinear elliptic equation involving the critical Sobolev exponent. J. Funct. Anal. 89(1), 1–52 (1990)

    Article  MathSciNet  Google Scholar 

  17. Serra, E.: Non-radial positive solutions for the Hénon equation with critical growth. Calc. Var. Partial Differential Equations 23(3), 301–326 (2005)

    Article  MathSciNet  Google Scholar 

  18. Smets, D., Su, J., Willem, M.: Non-radial ground states for the Hénon equation. Commun. Contemp. Math. 4(3), 467–480 (2002)

    Article  MathSciNet  Google Scholar 

  19. Tan, J.G.: The Brezis-Nirenberg type problem involving the square root of the Laplacian. Calc. Var. Partial Differential Equations 42(1–2), 21–41 (2011)

    Article  MathSciNet  Google Scholar 

  20. Tan, J.G., Xiong, J.G.: A Harnack inequality for fractional Laplace equations with lower order terms, Discrete Contin. Dyn, Syst. 31(3), 975–983 (2011)

    MathSciNet  MATH  Google Scholar 

  21. Wei, J.C., Yan, S.S.: Infinitely many nonradial solutions for the Hénon equation with critical growth. Rev. Mat. Iberoam. 29(3), 997–1020 (2013)

    Article  MathSciNet  Google Scholar 

  22. Wei, J.C., Yan, S.S.: Infinitely many solutions for the prescribed scalar curvature problem on \({\mathbb{S}}^{N}\). J. Funct. Anal. 258(9), 3048–3081 (2010)

    Article  MathSciNet  Google Scholar 

  23. Yan, S.S., Yang, J.F., Yu, X.H.: Equations involving fractional Laplacian operator: compactness and application. J. Funct. Anal. 269(1), 49–79 (2015)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yuxia Guo.

Additional information

Communicated by M. del Pino.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This work is supported by NSFC (12031015)

Appendices

Appendix A. The estimate of the projection

In both appendices, we always assume that

$$\begin{aligned} x_j=\left( r\cos \frac{2(j-1)\pi }{k},r\sin \frac{2(j-1)\pi }{k},0\right) ,\hbox { }j=1,...,k, \end{aligned}$$

where 0 is the zero vector in \({\mathbb {R}}^{N-2}\), and \(r\in [ \mu (1-\frac{r_0}{k}), \mu (1-\frac{r_1}{k}) ]\). Recall that \( {\bar{x}}_j=\frac{1}{\mu }x_j. \) G(xy) be the Green function of \((-\Delta )^{s}\) in \(B_{1}(0)\) with homogenous Dirichlet boundary condition. H(xy) be the part of the Green function. \(PU_{x,\Lambda }\) is the solution of (1.4) and \(r_3 =\min ( r_0,1)\).

For \(l=1,..,N\), we denote \(\partial _l PU_{x,\Lambda }(y) = \frac{\partial PU_{x,\Lambda } (y) }{\partial x_l}\), \(\partial _l U_{x,\Lambda }(y) = \frac{\partial U_{x,\Lambda } (y) }{\partial x_l} \), and \( \partial _l H(x,y) = \frac{\partial H }{\partial x_l}(x,y)\). For \(l=N+1\), we set \(\partial _l PU_{x,\Lambda }(y) = \frac{\partial PU_{x,\Lambda } (y) }{\partial \Lambda }\), and \(\partial _l U_{x,\Lambda }(y) = \frac{\partial U_{x,\Lambda } (y) }{\partial \Lambda } \).

Lemma A.1

Assume \(N\ge 3\). For any \(i=1,...,k\), if \(y\in B_{{\frac{\mu r_3}{8k}}}(x_j)\) and \(j\ne i\), then

$$\begin{aligned}&U_{x_i,\Lambda }(y) - PU_{x_i,\Lambda }(y) \nonumber \\&\quad = \frac{A_{N,s}H(\bar{x_i},\mu ^{-1}y)}{ \Lambda ^{\frac{N-2s}{2}}\mu ^{N-2s}} + O\left( \frac{1}{\mu ^{N}|\bar{x_i} -\mu ^{-1} y |^{N} } +\frac{k^{2s}}{\mu ^{N}|\bar{x_i} -\mu ^{-1}y |^{N-2s}}\right) , \end{aligned}$$
(A.1)
$$\begin{aligned}&\partial _l U_{x_i,\Lambda }(y) - \partial _l PU_{x_i,\Lambda }(y) \nonumber \\ {}&\quad = \frac{A_{N,s}\partial _l H(\bar{x_i},\mu ^{-1}y)}{\Lambda ^{\frac{N-2s}{2}}\mu ^{N-2s+1}} + O\left( \frac{1}{\mu ^{N+1}|\bar{x_i} -\mu ^{-1} y |^{N+1} } +\frac{k^{2s+1}}{\mu ^{N+1}|\bar{x_i} -\mu ^{-1}y |^{N-2s}}\right) , \nonumber \\ {}&\quad l=1,..,N, \end{aligned}$$
(A.2)

and

$$\begin{aligned} \begin{aligned}&\partial _{N+1} U_{x_i,\Lambda }(y) - \partial _{N+1} PU_{x_i,\Lambda }(y) \\ {}&\quad = \frac{-(N-2s)A_{N,s} H(\bar{x_i},\mu ^{-1}y)}{2\Lambda ^{\frac{N-2s+2}{2}}\mu ^{N-2s}} + O\left( \frac{1}{\mu ^{N}|\bar{x_i} -\mu ^{-1} y |^{N} } +\frac{k^{2s}}{\mu ^{N}|\bar{x_i} -\mu ^{-1}y |^{N-2s}}\right) , \end{aligned}\nonumber \\ \end{aligned}$$
(A.3)

where \(A_{N,s}\) is a constant only depend on N and s. If \(y\in B_{{\frac{\mu r_3}{8k}}}(x_i)\), then

$$\begin{aligned} U_{x_i,\Lambda }(y) - PU_{x_i,\Lambda }(y)= & {} \frac{A_{N,s}H(\bar{x_i},\mu ^{-1}y)}{\Lambda ^{\frac{N-2s}{2}}\mu ^{N-2s}} + O\left( \frac{k^{N}}{\mu ^{N}}\right) , \end{aligned}$$
(A.4)
$$\begin{aligned} \partial _l U_{x_i,\Lambda }(y) - \partial _l PU_{x_i,\Lambda }(y)= & {} \frac{A_{N,s}\partial _l H(\bar{x_i},\mu ^{-1}y)}{\Lambda ^{\frac{N-2s}{2}}\mu ^{N-2s+1}} + O(\frac{k^{N+1}}{\mu ^{N+1}}), \quad l=1,..,N,\qquad \end{aligned}$$
(A.5)

and

$$\begin{aligned} \partial _{N+1} U_{x_i,\Lambda }(y) - \partial _{N+1} PU_{x_i,\Lambda }(y) = \frac{-(N-2s)A_{N,s} H(\bar{x_i},\mu ^{-1}y)}{2\Lambda ^{\frac{N-2s+2}{2}} \mu ^{N-2s}} + O\left( \frac{k^{N}}{\mu ^{N}}\right) .\qquad \end{aligned}$$
(A.6)

Proof

Let \({\bar{PU}}_{x_i,\Lambda }(x) = \mu ^{\frac{N-2s}{2}}PU_{x_i,\Lambda }(\mu x)\), then

$$\begin{aligned} {\left\{ \begin{array}{ll} (-\Delta )^{s}{\bar{PU}}_{x_i,\Lambda }(x) = \big (\mu ^{\frac{N-2s}{2}}U_{x_i,\Lambda }(\mu x)\big )^{2^{*}_{s}-1}, &{}\hbox { in } B_{1}(0), \\ \displaystyle {\bar{PU}}_{x_i,\Lambda }(x) = 0,&{} x \in B^{c}_{1}(0). \end{array}\right. } \end{aligned}$$
(A.7)

So,

$$\begin{aligned} \begin{aligned}&\mu ^{\frac{N-2s}{2}}U_{x_i,\Lambda }(\mu y) - {\bar{PU}}_{x_i,\Lambda }(y) \\&\quad = \int _{{\mathbb {R}}^{N}}\frac{C_{1,N,s}}{|x-y|^{N-2s}}\frac{C_{2,N,s}(\Lambda \mu )^{\frac{N+2s}{2}}}{ (1 + (\Lambda \mu |x-\bar{x_i}|)^{2})^{ \frac{N+2s}{2}} }\\&\qquad - \int _{B_{1}(0)}G(x,y) \frac{C_{2,N,s}(\Lambda \mu )^{\frac{N+2s}{2}}}{ (1 + (\Lambda \mu |x-\bar{x_i}|)^{2})^{ \frac{N+2s}{2}} } \\&\quad = \int _{{\mathbb {R}}^{N}\setminus B_{1}(0)}\frac{C_{1,N,s}}{|x-y|^{N-2s}}\frac{C_{2,N,s}(\Lambda \mu )^{\frac{N+2s}{2}}}{ (1 + (\Lambda \mu |x-\bar{x_i}|)^{2})^{ \frac{N+2s}{2}} } \\ {}&\qquad + \int _{B_{1}(0)}H(x,y) \frac{C_{2,N,s}(\Lambda \mu )^{\frac{N+2s}{2}}}{ (1 + (\Lambda \mu |x-\bar{x_i}|)^{2})^{ \frac{N+2s}{2}} } \\ {}&\quad =I_1 +I_2. \end{aligned} \end{aligned}$$
(A.8)

Case 1: \( y\in B_{\frac{r_3}{8k}}(\bar{x_i})\), it is easy to check

$$\begin{aligned} |I_1| = O\left( \frac{k^{N}}{\mu ^{\frac{N+2s}{2} } }\right) , \end{aligned}$$
(A.9)

and

$$\begin{aligned} I_2 =&\int _{B_{1}(0)\setminus B_{\frac{r_0}{2k}}(\bar{x_i}) } H(x,y) \frac{C_{2,N,s}(\Lambda \mu )^{\frac{N+2s}{2}}}{ (1 + (\Lambda \mu |x-\bar{x_i}|)^{2})^{ \frac{N+2s}{2}} } \nonumber \\ {}&+ \int _{ B_{\frac{r_0}{2k}(\bar{x_i})} }H(x,y) \frac{C_{2,N,s}(\Lambda \mu )^{\frac{N+2s}{2}}}{ (1 + (\Lambda \mu |x-\bar{x_i}|)^{2})^{ \frac{N+2s}{2}} } \nonumber \\ =&\int _{ B_{\frac{r_0}{2k}(\bar{x_i})} }H(\bar{x_i},y) \frac{C_{2,N,s}(\Lambda \mu )^{\frac{N+2s}{2}}}{ (1 + (\Lambda \mu |x-\bar{x_i}|)^{2})^{ \frac{N+2s}{2}} } \nonumber \\&+ O\left( \int _{ B_{\frac{r_0}{2k}(\bar{x_i})} }|\bar{x_{i}} -x|^2|\nabla ^2 H(\bar{x_i} +t(\bar{x_i}-x),y) |\frac{C_{2,N,s}(\Lambda \mu )^{\frac{N+2s}{2}}}{ (1 + (\Lambda \mu |x-\bar{x_i}|)^{2})^{ \frac{N+2s}{2}} }\right) \nonumber \\ {}&+O\left( \frac{k^{N}}{\mu ^{\frac{N+2s}{2} }}\right) \nonumber \\=&\frac{A_{N,s}H(\bar{x_i},y)}{\Lambda ^{\frac{N-2s}{2}}\mu ^{\frac{N-2s}{2}}} + O\left( \frac{k^{N}}{\mu ^{\frac{N+2s}{2} }}\right) . \end{aligned}$$
(A.10)

So,

$$\begin{aligned} \mu ^{\frac{N-2s}{2}}U_{x_i,\Lambda }(\mu y) - {\bar{PU}}_{x_i,\Lambda }(y) = \frac{A_{N,s}H(\bar{x_i},y)}{\Lambda ^{\frac{N-2s}{2}}\mu ^{\frac{N-2s}{2}}} + O(\frac{k^{N}}{\mu ^{\frac{N+2s}{2} }}). \end{aligned}$$
(A.11)

That is, if \(y\in B_{{\frac{\mu r_3}{8k}}}({\bar{x}}_i)\), then

$$\begin{aligned} U_{x_i,\Lambda }(y) - PU_{x_i,\Lambda }(y) = \frac{A_{N,s}H(\bar{x_i},\mu ^{-1}y)}{\Lambda ^{\frac{N-2s}{2}}\mu ^{N-2s}} + O\left( \frac{k^{N}}{\mu ^{N}}\right) . \end{aligned}$$

Case 2: \( y \in B_{{\frac{r_3}{8k}}}(\bar{x_j})\), where \( j\ne i\). In this case, it is easy to check

$$\begin{aligned} I_1 =O\left( \frac{1}{\mu ^{\frac{N+2s}{2}}|\bar{x_i} -y |^{N} } +\frac{k^{2s}}{\mu ^{\frac{N+2s}{2}}|\bar{x_i} -y |^{N-2s}}\right) , \end{aligned}$$

and

$$\begin{aligned} I_2&=\int _{B_{1}(0)\setminus B_{\frac{|y-\bar{x_i}|}{2}}(\bar{x_i}) } H(x,y) \frac{C_{2,N,s}(\Lambda \mu )^{\frac{N+2s}{2}}}{ (1 + (\Lambda \mu |x-\bar{x_i}|)^{2})^{ \frac{N+2s}{2}} } \nonumber \\&\quad + \int _{ B_{\frac{|y-\bar{x_i}|}{2}(\bar{x_i}) } \cap B_{1}(0)}H(x,y) \frac{C_{2,N,s}(\Lambda \mu )^{\frac{N+2s}{2}}}{ (1 + (\Lambda \mu |x-\bar{x_i}|)^{2})^{ \frac{N+2s}{2}} } \nonumber \\&=\int _{ B_{\frac{r_3}{8k}(\bar{x_i})} }H(\bar{x_i},y) \frac{C_{2,N,s}(\Lambda \mu )^{\frac{N+2s}{2}}}{ (1 + (\Lambda \mu |x-\bar{x_i}|)^{2})^{ \frac{N+2s}{2}} } \nonumber \\&\quad + O( \int _{B_{\frac{|y-\bar{x_i}|}{2}(\bar{x_i})} }|\bar{x_{i}} -x|^2|\nabla ^2 H(\bar{x_i} +t(\bar{x_i}-x),y) |\frac{C_{2,N,s}(\Lambda \mu )^{\frac{N+2s}{2}}}{ (1 + (\Lambda \mu |x-\bar{x_i}|)^{2})^{ \frac{N+2s}{2}} }) \nonumber \\&\quad +O\left( \int _{ B_{\frac{|y-\bar{x_i}|}{2}(\bar{x_i}) } \setminus B_{\frac{r_3}{8k}(\bar{x_i})} } |H(x,y)| \frac{C_{2,N,s}(\Lambda \mu )^{\frac{N+2s}{2}}}{ (1 + (\Lambda \mu |x-\bar{x_i}|)^{2})^{ \frac{N+2s}{2}} }\right) \nonumber \\&\quad +O\left( \frac{1}{\mu ^{\frac{N+2s}{2}}|\bar{x_i} -y |^{N} }\right) \nonumber \\&=\frac{A_{N,s}H(\bar{x_i},y)}{\Lambda ^{\frac{N-2s}{2} }\mu ^{\frac{N-2s}{2}}} + O(\frac{1}{\mu ^{\frac{N+2s}{2}}|\bar{x_i} -y |^{N} }+\frac{k^{2s}}{\mu ^{\frac{N+2s}{2}}|\bar{x_i} -y |^{N-2s}}). \end{aligned}$$
(A.12)

So,

$$\begin{aligned} \begin{aligned}&\mu ^{\frac{N-2s}{2}}U_{x_i,\Lambda }(\mu y) - {\bar{PU}}_{x_i,\Lambda }(y) \\ {}&\quad = \frac{A_{N,s}H(\bar{x_i},y)}{\Lambda ^{\frac{N-2s}{2} }\mu ^{\frac{N-2s}{2}}} + O \left( \frac{1}{\mu ^{\frac{N+2s}{2}}|\bar{x_i} -y |^{N} }+\frac{k^{2s}}{\mu ^{\frac{N+2s}{2}}|\bar{x_i} -y |^{N-2s}}\right) . \end{aligned} \end{aligned}$$
(A.13)

That is, if \(y\in B_{{\frac{\mu \min (r_0,1)}{8k}}}(x_j)\), then

$$\begin{aligned}&U_{x_i,\Lambda }(y) - PU_{x_i,\Lambda }(y) \nonumber \\&\quad = \frac{A_{N,s}H(\bar{x_i},\mu ^{-1}y)}{ \Lambda ^{\frac{N-2s}{2}}\mu ^{N-2s}} + O \left( \frac{1}{\mu ^{N}|\bar{x_i} -\mu ^{-1} y |^{N} } +\frac{k^{2s}}{\mu ^{N}|\bar{x_i} -\mu ^{-1}y |^{N-2s}}\right) . \end{aligned}$$
(A.14)

Since for \( l=1,...,N+1\),

$$\begin{aligned} {\left\{ \begin{array}{ll} (-\Delta )^{s}\partial _l PU_{x_i,\Lambda }(x) = \partial _l (U_{x_i,\Lambda }(\mu x))^{2^{*}_{s}-1}, &{}\hbox { in } B_{1}(0), \\ \displaystyle {\bar{PU}}_{x_i,\Lambda }(x) = 0, &{}x \in B^{c}_{1}(0). \end{array}\right. } \end{aligned}$$
(A.15)

Similar to (A.1) and (A.2), we can prove (A.3)-(A.6). \(\square \)

Appendix B. Energy expansion

In this section, we will give the expansion of the energy \(I(W_{r,\Lambda })\). Recall that \(\mu =k^{\frac{N-2s+1}{N-2s}}\), \( d=1-\frac{r}{\mu }\),

$$\begin{aligned} I(u)&=\frac{1}{2}\int _{B_{\mu }(0)}|(-\Delta )^{\frac{s}{2}} u|^{2} -\frac{1}{2^{*}_s}\int _{B_{\mu }(0)}K\left( \frac{|y|}{\mu }\right) |u|^{2^{*}_s},\\ U_{x_j,\Lambda }(y)&= C_{N,s}\frac{\Lambda ^{\frac{N-2s}{2}}}{(1+\Lambda ^{2}|y-x_j|^{2})^{\frac{N-2s}{2}}}, \end{aligned}$$

and

$$\begin{aligned} W_{r,\Lambda }(y)=\sum _{j=1}^{k}PU_{x_j,\Lambda }(y), \end{aligned}$$

where \(PU_{x_j,\Lambda }(y) \) is the solution of (1.4).

Proposition B.1

If \(N\ge 3\) for \(\frac{3}{4} \le s<1\) and \(3\le N < 2s -1 +\frac{2}{3-4s} \) for \(\frac{11-\sqrt{41}}{8}< s<\frac{3}{4}\), then we have

$$\begin{aligned} I(W_{r,\Lambda })= & {} k\big (A+\frac{B_{1}H(\bar{x_1},\bar{x_1})}{\Lambda ^{N-2s}\mu ^{N-2s}} +B_2K'(1)d -\sum _{j=2}^{k}\frac{B_{1}G(\bar{x_j},\bar{x_1})}{\Lambda ^{N-2s}\mu ^{N-2s}} + O\big (\frac{1}{\mu ^{1+\sigma }}\big ) \big )\nonumber \\= & {} k\big ( A + \frac{A_1}{\Lambda ^{N-2s}\mu ^{N-2s}d^{N-2s}} +A_2 d -\frac{A_3k^{N-2s}}{\Lambda ^{N-2s}\mu ^{N-2s}} \nonumber \\&\times \sum _{i=2}^{+\infty }\frac{1}{((i-1)\pi )^{N-2s}}\int _{1}^{\big ( \frac{(dk)^{2}}{((i-1)\pi )^{2}} \!+\!1 \big )^{\frac{1}{2}}} (v^2-1)^{s-1}v^{1-N} dv \!+\! O\big (\frac{1}{\mu ^{1+\sigma }}\big )\big ),\qquad \nonumber \\ \end{aligned}$$
(B.1)

where A, \(A_1\), \(A_2\), \(A_3\), \(B_1\) and \(B_2\) are positive constants.

Proof

By the symmetry, we have

$$\begin{aligned} \begin{aligned}&\int _{B_{\mu }(0)}|(-\Delta )^{\frac{s}{2}} W_{r,\Lambda ]}|^{2}\\&\quad =\sum _{j=1}^{k}\sum _{i=1}^{k}\int _{B_{\mu }(0)}U_{x_j,\Lambda }^{2^{*}_s-1}PU_{x_i,\Lambda } \\ {}&\quad = k\big ( \int _{B_{\mu }(0)} U_{x_1,\Lambda }^{2^{*}_s} -\int _{B_{\mu }(0)} U_{x_1,\Lambda }^{2^{*}_s-1}(U_{x_1,\Lambda }-PU_{x_1,\Lambda } ) +\sum _{i=2}^{k}\int _{B_{\mu }(0)} U_{x_1,\Lambda }^{2^{*}_s-1}PU_{x_i,\Lambda } \big ) \\ {}&\quad = k\big ( \int _{{\mathbb {R}}^{N}} U_{x_1,\Lambda }^{2^{*}_s} - \frac{\bar{B_1}H(\bar{x_1}, \bar{x_1} )}{(\Lambda \mu )^{N-2s}} + \frac{\bar{B_1}\sum _{i=2}^{k}G( \bar{x_i}, \bar{x_1} )}{(\Lambda \mu )^{N-2s}} +O\left( \frac{1}{\mu ^{1+\sigma }}\right) \big ), \end{aligned}\nonumber \\ \end{aligned}$$
(B.2)

where \( \bar{B_1} =\displaystyle \int _{{\mathbb {R}}^{N}} U_{x_1,\Lambda }^{2^{*}_s-1}. \)

Let

$$\begin{aligned} \Omega _j =\left\{ y:\hbox { }y=(y',y'')\in B_{\mu }(0),\hbox { } \left\langle \frac{y'}{|y'|},\frac{x_j}{|x_j|} \right\rangle \ge \cos \frac{\pi }{k} \right\} . \end{aligned}$$

Then,

$$\begin{aligned} \begin{aligned}&\int _{B_{\mu }(0)}K\big (\frac{|y|}{\mu }\big ) |W_{r,\Lambda }|^{2^{*}_s}\\&\quad =k\int _{\Omega _1} K\big (\frac{|y|}{\mu }\big )|W_{r,\Lambda }|^{2^{*}_s} \\ {}&\quad =k\big ( \int _{\Omega _1}K\big (\frac{|y|}{\mu }\big ) (PU_{x_1,\Lambda })^{2^{*}_s} -2^{*}_s \int _{\Omega _1}\sum _{i=2}^{k}(PU_{x_{1,\Lambda }})^{2^{*}_s-1}PU_{x_i,\Lambda } \\ {}&\qquad +O\big (\int _{\Omega _1}\big | K\big (\frac{|y|}{\mu }\big )-1 \big | \sum _{i=2}^{k}U_{x_{1,\Lambda }}^{2^{*}_s-1}U_{x_i,\Lambda } \\ {}&\qquad + \int _{\Omega _1} (U_{x_{1,\Lambda }})^{2^{*}_s-2} \big (\sum _{i=2}^{k}U_{x_i,\Lambda }\big )^{2} + \int _{\Omega _1} \big (\sum _{i=2}^{k}U_{x_i,\Lambda }^{2^{*}_s} \big ) \big ). \end{aligned} \end{aligned}$$
(B.3)

Note that for \(y \in \Omega _1\), \(|y-x_i|\ge |y-x_1|\). Thus

$$\begin{aligned} \begin{aligned} (U_{x_{1,\Lambda }})^{2^{*}_s-2}\left( \sum _{i=2}^{k}U_{x_i,\Lambda }\right) ^{2} \le \frac{C}{(1+|y-x_1|)^{N+\theta }}\sum _{i=2}^{k}\frac{1}{|x_i-x_1|^{N-\theta }}, \end{aligned} \end{aligned}$$
(B.4)

and

$$\begin{aligned} \begin{aligned} \left( \sum _{i=2}^{k}U_{x_i,\Lambda }\right) ^{2^{*}_s} \le \frac{C}{(1+|y-x_1|)^{N+\theta }}\sum _{i=2}^{k}\frac{1}{|x_i-x_1|^{N-\theta }}. \end{aligned} \end{aligned}$$
(B.5)

where \(\theta \) is a small positive constant. We can chose \(\theta \) small enough, then

$$\begin{aligned} \int _{\Omega _1} (U_{x_{1,\Lambda }})^{2^{*}_s-2}\big (\sum _{i=2}^{k}U_{x_i,\Lambda }\big )^{2} + \int _{\Omega _1} \big (\sum _{i=2}^{k}U_{x_i,\Lambda }\big )^{2^{*}_s} = O\big (\big (\frac{k}{\mu }\big )^{N-\theta }\big ) =O\big ( \frac{1}{\mu ^{1+\sigma }}\big ).\qquad \end{aligned}$$
(B.6)

On the other hand, it is easy to show that

$$\begin{aligned} \begin{aligned} \int _{\Omega _1}\sum _{i=2}^{k}(PU_{x_{1,\Lambda }})^{2^{*}_s-1}PU_{x_i,\Lambda }&= \sum _{i=2}^{k}\frac{{\bar{B}}_1G(\bar{x_i},\bar{x_1} )}{(\Lambda \mu )^{N-2s}} +O\big (\big (\frac{k}{\mu }\big )^{N}\big ) \\ {}&=\sum _{i=2}^{k}\frac{{\bar{B}}_1G(\bar{x_i},\bar{x_1} )}{(\Lambda \mu )^{N-2s}}+O\big ( \frac{1}{\mu ^{1+\sigma }}\big ), \end{aligned} \end{aligned}$$
(B.7)

and

$$\begin{aligned} \begin{aligned} \int _{\Omega _1}| K\big (\frac{|y|}{\mu }\big )-1 | \sum _{i=2}^{k}U_{x_{1,\Lambda }}^{2^{*}_s-1}U_{x_i,\Lambda } = O\big ( \frac{1}{\mu ^{1+\sigma }}\big ). \end{aligned} \end{aligned}$$
(B.8)

Moreover

$$\begin{aligned} \begin{aligned}&\int _{\Omega _1}K\big (\frac{|y|}{\mu }\big )\big (PU_{x_1,\Lambda }\big )^{2^{*}_s} \\&\quad = \int _{B_{\frac{r_3 \mu }{8k}}(x_2)}K\big (\frac{|y|}{\mu }\big )\big (PU_{x_1,\Lambda }\big )^{2^{*}_s} + O\big ( \frac{1}{\mu ^{1+\sigma }}\big ) \\&\quad =\int _{B_{\frac{r_3 \mu }{8k}}(x_2)}(PU_{x_1,\Lambda })^{ 2^{*}_s }+ \int _{B_{\frac{r_3 \mu }{8k}}(x_2)}\big (K\big (\frac{|y|}{\mu }\big ) -1 \big )U_{x_1,\Lambda }^{ 2^{*}_s } \\ {}&\qquad +O\big ( \int _{B_{\frac{r_3 \mu }{8k}}(x_2)} \big |K\big (\frac{|y|}{\mu }\big ) -1\big |U_{x_1,\Lambda }^{ 2^{*}_s -1}\frac{H({\bar{x}}_{1},\mu ^{-1}y)}{\mu ^{N-2s}} \big ) + O\big ( \frac{1}{\mu ^{1+\sigma }}\big ) \\ {}&\quad =\int _{{\mathbb {R}}^{N}}U_{0,1}^{ 2^{*}_s } -2^{*}_s\frac{{\bar{B}}_1H({\bar{x}}_1,{\bar{x}}_1)}{ (\Lambda \mu )^{N-2s} } + \int _{B_{\frac{r_3 \mu }{8k}}(x_2)}\big (K\big (\frac{|y|}{\mu }\big ) -1 \big )U_{x_1,\Lambda }^{ 2^{*}_s } +O\big ( \frac{1}{\mu ^{1+\sigma }}\big ). \end{aligned} \end{aligned}$$
(B.9)

However,

$$\begin{aligned} \begin{aligned} \int _{B_{\frac{r_3 \mu }{8k}}(x_2)}\big (K\big (\frac{|y|}{\mu }\big ) -1 \big )U_{x_1,\Lambda }^{ 2^{*}_s }&= \big ( K(|{\bar{x}}_1|) -1 \big )\int _{{\mathbb {R}}^{N}}U_{0,1}^{ 2^{*}_s } + O\big (\frac{1}{k^{2}}\big ) \\ {}&= -K'(1)d\int _{{\mathbb {R}}^{N}}U_{0,1}^{ 2^{*}_s } + O\big ( \frac{1}{\mu ^{1+\sigma }}\big ). \end{aligned} \end{aligned}$$
(B.10)

Thus, we have proved

$$\begin{aligned} \begin{aligned} \int _{B_{\mu }(0)} K\big (\frac{|y|}{\mu }\big ) |W_{r,\Lambda }|^{2^{*}_s}&= k\big (\int _{{\mathbb {R}}^{N}}U_{0,1}^{ 2^{*}_s } -K'(1)d\int _{{\mathbb {R}}^{N}}U_{0,1}^{ 2^{*}_s } - 2^{*}_s \frac{{\bar{B}}_1H({\bar{x}}_1,{\bar{x}}_1)}{ (\Lambda \mu )^{N-2s} } \\&\quad + \sum _{i=2}^{k}\frac{{\bar{B}}_1G({\bar{x}}_i,{\bar{x}}_1)}{ (\Lambda \mu )^{N-2s} } + O\big ( \frac{1}{\mu ^{1+\sigma }}\big ) \big ). \end{aligned} \end{aligned}$$
(B.11)

Combining (B.2) and (B.11), we can get

$$\begin{aligned} \begin{aligned} I(W_{r,\Lambda })=k\big ( A+\frac{B_{1}H(\bar{x_1},\bar{x_1})}{\Lambda ^{N-2s}\mu ^{N-2s}} +B_2K'(1)d -\sum _{i=2}^{k}\frac{B_{1}G(\bar{x_i},\bar{x_1})}{\Lambda ^{N-2s}\mu ^{N-2s}} + O(\frac{1}{\mu ^{1+\sigma }})\big ), \end{aligned}\nonumber \\ \end{aligned}$$
(B.12)

where A, \(B_1\) and \(B_2\) are positive constants.

Now, we estimate \(H( {\bar{x}}_1,{\bar{x}}_1)\) and \( G( {\bar{x}}_i,{\bar{x}}_1) \), \(i\ge 2\). Let \( {\bar{x}}_1^{*} = (\frac{1}{1-d},0,...,0 )\) be the reflection of \( {\bar{x}}_1 \) withe respect to the unit sphere. Then

$$\begin{aligned} H( {\bar{x}}_1,{\bar{x}}_1) = \frac{1}{2^{N-2s}d^{N-2s}}\big (1+O(d)\big ). \end{aligned}$$
(B.13)

We can compute that,

$$\begin{aligned}&\sum _{i=2}^{k} G( {\bar{x}}_i,{\bar{x}}_1) \nonumber \\&\quad = C\sum _{i=2}^{[\frac{k}{2}]}\frac{1}{\big (2( 1-d )\sin \frac{(i-1)\pi }{k} \big )^{N-2s}} \int _{1}^{ \big ( \frac{ d^{2}(2-d)^2 }{ \big ( 2( 1-d )\sin \frac{(i-1)\pi }{k} \big )^{2} } +1 \big )^{\frac{1}{2}} } (v^2-1)^{s-1}v^{1-N} dv\nonumber \\&\qquad +O(k^{N-2s-1})\nonumber \\&\quad = Ck^{N-2s}\sum _{i=2}^{+\infty }\frac{1}{2^{N-2s}((i-1)\pi )^{N-2s}}\int _{1}^{\big ( \frac{(dk)^{2}}{((i-1)\pi )^{2}} +1 \big )^{\frac{1}{2}}} (v^2-1)^{s-1}v^{1-N} dv \nonumber \\&\qquad + O(k^{N-2s-1}). \end{aligned}$$
(B.14)

In fact, for \(i\le k^{\alpha }\), where \(\alpha \in (\frac{1}{N-2s-1},1)\) is a fix constant, we have

$$\begin{aligned} \begin{aligned}&\frac{1}{\big (2( 1-d )\sin \frac{(i-1)\pi }{k} \big )^{N-2s}}\\&\quad = \frac{k^{N-2s}}{ (1-d)^{N-2s}2^{N-2s}((i-1)\pi )^{N-2s}}+ {\bar{O}}\big (\frac{k^{N-2s-2}}{(i-1)^{N-2s-2}}\big ) \\ {}&\quad =\frac{k^{N-2s}}{ 2^{N-2s}((i-1)\pi )^{N-2s}}+ {\bar{O}}\big (\frac{k^{N-2s-2}}{(i-1)^{N-2s-2}}\big ) +{\bar{O}}\big (\frac{k^{N-2s-1}}{(i-1)^{N-2s}}\big ) , \end{aligned} \end{aligned}$$
(B.15)

where \({\bar{O}}(f(i,k))\) means that, there is a constant C and \(k_0\) , for any \(k >k_0\) and any \( 2 \le i \le k^{\alpha } \),

$$\begin{aligned} | {\bar{O}}(f(i,k)) | \le C |f(i,k)|. \end{aligned}$$

On the other hand,

$$\begin{aligned}&\int _{1}^{ \big ( \frac{ d^{2}(2-d)^2 }{ \big ( 2( 1-d )\sin \frac{(i-1)\pi }{k} \big )^{2} } + \big )^{\frac{1}{2}} } (v^2-1)^{s-1}v^{1-N} dv \\ {}&\quad =\int _{1}^{ \big ( \frac{ d^{2}(2-d)^2 }{ \big ( 2( 1-d ) \big (\frac{(i-1)\pi }{k} + {\bar{O}}\big (\frac{(i-1)^3)}{k^3}\big ) \big ) \big )^{2} } +1 \big )^{\frac{1}{2}} } (v^2-1)^{s-1}v^{1-N} dv \\ {}&\quad =\int _{1}^{ \big ( \frac{ d^{2}(2-d)^2 }{ \big ( \big (2( 1-d ) \big (\frac{(i-1)\pi }{k}\big )^2 + {\bar{O}} \big (\frac{(i-1)^4)}{k^4}\big ) \big ) \big ) } +1 \big )^{\frac{1}{2}} } (v^2-1)^{s-1}v^{1-N} dv \\ {}&\quad =\int _{1}^{ \big ( \frac{ d^{2} }{ \big (\frac{(i-1)\pi }{k})^2 \big ) } +1 \big )^{\frac{1}{2}} } (v^2-1)^{s-1}v^{1-N} dv +{\bar{O}}\big (\frac{(i-1)^{2(1-s)}}{k^2}\big ) +{\bar{O}}\big (\frac{1}{(i-1)^{2s}k} \big ). \end{aligned}$$

Noting \(N \ge 3\), by direct computation, we have

$$\begin{aligned} \begin{aligned}&\sum _{i=2}^{[k^{\alpha }]}\frac{1}{\big (2( 1-d )\sin \frac{(i-1)\pi }{k} \big )^{N-2s}} \int _{1}^{ \big ( \frac{ d^{2}(2-d)^2 }{ \big ( 2( 1-d )\sin \frac{(i-1)\pi }{k} \big )^{2} } +1 \big )^{\frac{1}{2}} } (v^2-1)^{s-1}v^{1-N} dv \\ {}&\quad =k^{N-2s}\sum _{i=2}^{+\infty }\frac{1}{2^{N-2s}((i-1)\pi )^{N-2s}}\int _{1}^{\big ( \frac{(dk)^{2}}{((i-1)\pi )^{2}} +1 \big )^{\frac{1}{2}}} (v^2-1)^{s-1}v^{1-N} dv + O(k^{N-2s-1}) \\ {}&\qquad +O\big (\sum _{i=2}^{[k^{\alpha }]}\frac{1}{(i-1)^{N-2s}}\big ) \\ {}&\quad =k^{N-2s}\sum _{i=2}^{+\infty }\frac{1}{2^{N-2s}((i-1)\pi )^{N-2s}}\int _{1}^{\big ( \frac{(dk)^{2}}{((i-1)\pi )^{2}} +1 \big )^{\frac{1}{2}}} (v^2-1)^{s-1}v^{1-N} dv + O(k^{N-2s-1}) \\ {}&\qquad +O(k^{(N-2s)-\alpha (N-2s-1)}) \\ {}&\quad =k^{N-2s}\sum _{i=2}^{+\infty }\frac{1}{2^{N-2s}((i-1)\pi )^{N-2s}}\int _{1}^{\big ( \frac{(dk)^{2}}{((i-1)\pi )^{2}} +1 \big )^{\frac{1}{2}}} (v^2-1)^{s-1}v^{1-N} dv + O(k^{N-2s-1}). \end{aligned} \end{aligned}$$
(B.16)

Since

$$\begin{aligned} \sin \big (\frac{i-1}{k}\big ) \ge C|\frac{i-1}{k}|,\hbox { for } i=1,...,\big [\frac{k}{2}\big ], \end{aligned}$$

and

$$\begin{aligned} \int _1^{+\infty }(v^2-1)^{s-1}v^{1-N} dv < +\infty , \end{aligned}$$

it is easy to check

$$\begin{aligned}&\sum _{[k^{\alpha }]+1}^{\big [\frac{k}{2}\big ]}\frac{1}{\big (2( 1-d )\sin \frac{(i-1)\pi }{k} \big )^{N-2s}} \int _{1}^{ \big ( \frac{ d^{2}(2-d)^2 }{ \big ( 2( 1-d )\sin \frac{(i-1)\pi }{k} \big )^{2} } +1 \big )^{\frac{1}{2}} } (v^2-1)^{s-1}v^{1-N} dv\nonumber \\&\quad = O(k^{(N-2s)-\alpha (N-2s-1)}) =O(k^{N-2s-1}). \end{aligned}$$
(B.17)

Combining (B.16) and (B.17), we have (B.14).

Finally, combining (B.12), (B.13) and (B.14), we get (B.1).\(\square \)

Proposition B.2

If \(N\ge 3\) for \(\frac{3}{4} \le s<1\) and \(3\le N < 2s -1 +\frac{2}{3-4s} \) for \(\frac{11-\sqrt{41}}{8}< s<\frac{3}{4}\), then we have

$$\begin{aligned} \begin{aligned} \frac{\partial I(W_{r,\Lambda })}{\partial \Lambda }&=kB_1(N-2s)\big ( -\frac{ H(\bar{x_1},\bar{x_1})}{\Lambda ^{N-2s+1}\mu ^{N-2s}} +\sum _{j=2}^{k}\frac{ G(\bar{x_j},\bar{x_1})}{\Lambda ^{N-2s+1}\mu ^{N-2s}} + O\big (\frac{1}{\mu ^{1+\sigma }}\big )\big ) \\&= k \big ( -\frac{A_1(N-2s)}{\Lambda ^{N-2s+1}\mu ^{N-2s}d^{N-2s}} + \frac{A_3k^{N-2s}(N-2s)}{\Lambda ^{N-2s+1}\mu ^{N-2s}} \\&\quad \times \sum _{i=2}^{+\infty }\frac{1}{((i-1)\pi )^{N-2s}}\int _{1}^{\big ( \frac{(dk)^{2}}{((i-1)\pi )^{2}} +1 \big )^{\frac{1}{2}}} (v^2-1)^{s-1}v^{1-N} dv + O\big (\frac{1}{\mu ^{1+\sigma }}\big )\big ) , \end{aligned} \end{aligned}$$
(B.18)

and

$$\begin{aligned} \begin{aligned} \frac{\partial I(W_{r,\Lambda })}{\partial d}&=k\big ( \frac{B_{1}\frac{\partial H(\bar{x_1},\bar{x_1})}{ \partial d}}{\Lambda ^{N-2s}\mu ^{N-2s}} +B_2K'(1)-\sum _{j=2}^{k}\frac{B_1\frac{\partial G(\bar{x_j},\bar{x_1})}{ \partial d}}{{\Lambda ^{N-2s}\mu ^{N-2s}} }+ O(\frac{1}{\mu ^{\sigma }})\big ) \\&= k \big ( -\frac{A_1(N-2s)}{\Lambda ^{N-2s}\mu ^{N-2s}d^{N-2s+1}} +A_2 - \frac{A_3k^{N-2s}(N-2s)}{\Lambda ^{N-2s}\mu ^{N-2s}} \\&\quad \times \sum _{i=2}^{+\infty }\frac{1}{((i-1)\pi )^{N}}\big ( \frac{(dk)^{2}}{((i-1)\pi )^{2}} +1 \big )^{\frac{-N}{2}}dk^{2}(dk)^{2(s-1)} + O\big (\frac{1}{\mu ^{\sigma }} \big )\big ). \end{aligned} \end{aligned}$$
(B.19)

where \(A_1\), \(A_2\), \(A_3\), \(B_1\) and \(B_2\) are the same positive constants as in Proposition B.1.

Proof

We use \(\partial \) to denote either \(\frac{\partial }{\partial \Lambda }\) or \(\frac{\partial }{\partial d} \). Using the symmetry, we have

$$\begin{aligned} \partial I(W_{r,\Lambda })&= k\big (\frac{2^{*}_s-1}{2}\int _{B_{\mu }(0)}\sum _{i=1}^{k}U_{x_1,\Lambda }^{ 2^{*}_s-2 }\partial U_{x_1,\Lambda } PU_{x_i,\Lambda } + \frac{1}{2}\int _{B_{\mu }(0)}\sum _{i=1}^{k}U_{x_1,\Lambda }^{ 2^{*}_s-1 }\partial PU_{x_i,\Lambda } \\&\quad - \int _{\Omega _1}K\big (\frac{|y|}{\mu }\big ) W_{r,\Lambda }^{ 2^{*}_s-1} \partial W_{r,\Lambda } \big ). \end{aligned}$$

Then the proof of this proposition is similar to the proof of Proposition B.1, so we omit it. \(\square \)

Appendix C Basic estimates

In this section, we list some lemmas, whose proof can be found in [9] and [22].

For each fixed i and j, \(i \ne j\), consider the function

$$\begin{aligned} g_{i,j}(y) = \frac{1}{(1+|y-x_i|)^{\alpha }}\frac{1}{(1+|y-x_j|)^{\beta }}, \end{aligned}$$
(C.1)

where \(\alpha \ge 1\) and \(\beta \ge 1\) are constants.

Lemma C.1

For any constant \(0< \sigma <\min (\alpha ,\beta )\), there is a constant \(C>0\), such that

$$\begin{aligned} g_{i,j}(y)\le \frac{C}{|x_i-x_j|^{\sigma }}\left( \frac{1}{(1+|y-x_i|)^{\alpha +\beta -\sigma }} +\frac{1}{(1+|y-x_j|)^{\alpha +\beta -\sigma }} \right) . \end{aligned}$$

Lemma C.2

For any constant \(0< \sigma <N-2s\), there is a constant \(C>0\), such that

$$\begin{aligned} \int _{{\mathbb {R}}^{N}}\frac{1}{|y-z|^{N-2s}}\frac{1}{(1+|z|)^{2s+\sigma }}dz \le \frac{C}{(1+|y|)^{\sigma }}. \end{aligned}$$

Lemma C.3

Suppose that \(N\ge 3\), then there is a small \(\theta >0\), such that

$$\begin{aligned}&\int _{{\mathbb {R}}^{N}}\frac{1}{|y-z|^{N-2s}}W^{2^*_s-2}_{r,\Lambda }(z)\sum _{j=1}^k \frac{1}{(1+|z-x_j|)^{\frac{N-2s}{2}+\tau }}dz \\&\quad \le C\sum _{j=1}^k\frac{1}{(1+|y-x_j|)^{\frac{N+2s}{2}+\tau +\theta }}, \end{aligned}$$

where \( W_{r,\Lambda } = \sum _{j=1}^k PU_{x_j,\Lambda }.\)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Guo, Y., hu, Y. & Liu, T. Non-radial solutions for the fractional Hénon equation with critical exponent. Calc. Var. 61, 172 (2022). https://doi.org/10.1007/s00526-022-02287-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00526-022-02287-4

Mathematics Subject Classification

Navigation