Skip to main content
Log in

Infinity Laplacian equations with singular absorptions

  • Published:
Calculus of Variations and Partial Differential Equations Aims and scope Submit manuscript

Abstract

In this work, we study regularity properties for nonvariational singular elliptic equations ruled by the infinity Laplacian. We obtain optimal \(C^{1,\alpha }\) regularity along the free boundary. We also show existence of solutions, nondegeneracy properties and fine geometric estimates for the free boundary.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Alt, H.W., Phillips, D.: A free boundary problem for semilinear elliptic equations. J. Reine Angew. Math. 368, 63–107 (1986)

    MathSciNet  MATH  Google Scholar 

  2. Araújo, D.J., Leitão, R., Teixeira, E.V.: Infinity Laplacian equation with strong absorptions. J. Funct. Anal. 270, 2249–2267 (2016)

    Article  MathSciNet  Google Scholar 

  3. Araújo, D.J., Ricarte, G.C., Teixeira, E.V.: Singularity perturbed equations of degenerate type. Ann. Inst. H. Poincaré Anal. Non Linéaire 34, 655–678 (2017)

    Article  MathSciNet  Google Scholar 

  4. Araújo, D.J., Teixeira, E.V.: Geometric approach to nonvariational singular elliptic equations. Arch. Ration. Mech. Anal. 209, 1019–1054 (2013)

    Article  MathSciNet  Google Scholar 

  5. Araújo, D.J., Teixeira, E.V., Urbano, J.M.: On a two-phase free boundary problem ruled by the infinity Laplacian. Isr. J. Math. 245, 773–785 (2021)

    Article  MathSciNet  Google Scholar 

  6. Aronsson, G.: Extension of functions satisfying Lipschitz conditions. Ark. Mat. 6, 551–561 (1967)

    Article  MathSciNet  Google Scholar 

  7. Aronsson, G.: On the partial differential equation \({u_{x}}^2 u_{xx} + 2u_{x} u_{y} u_{xy} + u_{y}^2 u_{yy} = 0\). Ark. Mat. 7, 395–425 (1968)

  8. Aronsson, G., Crandall, M.G., Juutinen, P.: A tour of the theory of absolutely minimizing functions. Bull. Am. Math. Soc. 41, 439–505 (2004)

    Article  MathSciNet  Google Scholar 

  9. Bardi, M., Da Lio, F.: On the strong maximum principle for fully nonlinear degenerate elliptic equations. Arch. Math. 73, 276–285 (1999)

    Article  MathSciNet  Google Scholar 

  10. Caffarelli, L., Karp, L., Shahgholian, H.: Regularity of a free boundary with application to the Pompeiu problem. Ann. Math. 151, 269–292 (2000)

    Article  MathSciNet  Google Scholar 

  11. Crandall, M.G., Ishii, H., Lions, P.-L.: User’s guide to viscosity solutions of second order partial differential equations. Bull. Am. Math. Soc. (N.S.) 27(1), 1–67 (1992)

    Article  MathSciNet  Google Scholar 

  12. Crandall, M.G., Evans, L.C., Gariepy, R.F.: Optimal Lipschitz extensions and the infinity Laplacian. Calc. Var. Partial Differ. Equ. 13, 123–139 (2001)

    Article  MathSciNet  Google Scholar 

  13. Crasta, G., Fragalà, I.: Bernoulli free boundary problem for the infinity Laplacian. SIAM J. Math. Anal. 52, 821–844 (2020)

    Article  MathSciNet  Google Scholar 

  14. Diehl, N., Teymurazyan, R.: Reaction-diffusion equations for the infinity Laplacian. Nonlinear Anal. 199, 111956, 12pp (2020)

  15. Evans, L.C., Gangbo, W.: Differential equations methods for the Monge–Kantorovich mass transfer problem. Mem. Am. Math. Soc. 137(653), 1–66 (1999)

    MathSciNet  MATH  Google Scholar 

  16. Evans, L.C., Savin, O.: \(C^{1,\alpha }\) regularity for infinity harmonic functions in two dimensions. Calc. Var. Partial Differ. Equ. 32, 325–347 (2008)

    Article  Google Scholar 

  17. Evans, L.C., Smart, C.K.: Everywhere differentiability of infinity harmonic functions. Calc. Var. Partial Differ. Equ. 42, 289–299 (2011)

    Article  MathSciNet  Google Scholar 

  18. Giaquinta, M., Giusti, E.: Differentiability of minima of non-differentiable functionals. Invent. Math. 72, 285–298 (1983)

    Article  MathSciNet  Google Scholar 

  19. Giaquinta, M., Giusti, E.: Sharp estimates for the derivatives of local minima of variational integrals. Bollettino U.M.I. 6(3–A), 239–248 (1984)

    MathSciNet  MATH  Google Scholar 

  20. Ishii, H., Lions, P.-L.: Viscosity solutions of fully nonlinear second-order elliptic partial differential equations. J. Differ. Equ. 83, 26–78 (1990)

    Article  MathSciNet  Google Scholar 

  21. Jensen, R.: Uniqueness of Lipschitz extensions minimizing the sup-norm of the gradient. Arch. Ration. Mech. Anal. 123, 51–74 (1993)

    Article  MathSciNet  Google Scholar 

  22. Koch, H., Zhang, Y.R.-Y., Zhou, Y.: Some sharp Sobolev regularity for inhomogeneous infinity Laplace equation in plane. J. Math. Pures Appl. (9) 132, 483–521 (2019)

    Article  MathSciNet  Google Scholar 

  23. Koch, H., Zhang, Y.R.-Y., Zhou, Y.: An asymptotic sharp Sobolev regularity for planar infinity harmonic functions. J. Math. Pures Appl. (9) 132, 457–482 (2019)

    Article  MathSciNet  Google Scholar 

  24. Koskela, P., Rodhe, S.: Hausdorff dimension and mean porosity. Math. Ann. 309, 593–609 (1997)

    Article  MathSciNet  Google Scholar 

  25. Lindgren, E.: On the regularity of solutions of the inhomogeneous infinity Laplace equation. Proc. Am. Math. Soc. 142, 277–288 (2014)

    Article  MathSciNet  Google Scholar 

  26. Lu, G., Wang, P.: Inhomogeneous infinity Laplace equation. Adv. Math. 217, 1838–1868 (2008)

    Article  MathSciNet  Google Scholar 

  27. Peres, Y., Schramm, O., Sheffield, S., Wilson, D.: Tug-of-war and the infinity Laplacian. J. Am. Math. Soc. 22, 167–210 (2009)

    Article  MathSciNet  Google Scholar 

  28. Phillips, D.: A minimization problem and the regularity of solutions in the presence of a free boundary. Indiana Univ. Math. J. 32, 1–17 (1983)

    Article  MathSciNet  Google Scholar 

  29. Phillips, D.: Hausdorff measure estimates of a free boundary for a minimum problem. Commun. Partial Differ. Equ. 8, 1409–1454 (1983)

    Article  MathSciNet  Google Scholar 

  30. Rossi, J.D., Teixeira, E.V., Urbano, J.M.: Optimal regularity at the free boundary for the infinity obstacle problem. Interfaces Free Boundaries 17, 381–398 (2015)

    Article  MathSciNet  Google Scholar 

  31. Ricarte, G.C., Silva, J.V., Teymurazyan, R.: Cavity type problems ruled by infinity Laplacian operator. J. Differ. Equ. 262, 2135–2157 (2017)

    Article  MathSciNet  Google Scholar 

  32. Savin, O.: \(C^1\) regularity for infinity harmonic functions in two dimensions. Arch. Ration. Mech. Anal. 176, 351–361 (2005)

    Article  MathSciNet  Google Scholar 

  33. Teixeira, E.V.: Nonlinear elliptic equations with high order singularities. Potential Anal. 48(3), 325–335 (2018)

    Article  MathSciNet  Google Scholar 

  34. Teixeira, E.V.: Regularity for the fully nonlinear dead-core problem. Math. Ann. 364, 1121–1134 (2016)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

The authors would like to thank the anonymous referee for the careful and detailed reading and for your valuable suggestions and corrections. This paper is part of the second author’s Ph.D. thesis. GSS acknowledges support from CAPES-Brazil and would like to thank the Department of Mathematics at Universidade Federal da Paraíba for the pleasant and productive period during his Ph.D. program at that institution. DJA thanks the Abdus Salam International Centre for Theoretical Physics (ICTP) for the great hospitality during his research visits. DJA and GSS are partially supported by CNPq and grant 2019/0014 Paraíba State Research Foundation (FAPESQ).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Damião J. Araújo.

Additional information

Communicated by O. Savin.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Araújo, D.J., Sá, G.S. Infinity Laplacian equations with singular absorptions. Calc. Var. 61, 132 (2022). https://doi.org/10.1007/s00526-022-02241-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00526-022-02241-4

Mathematics Subject Classification

Navigation