Skip to main content
Log in

Geometric Approach to Nonvariational Singular Elliptic Equations

  • Published:
Archive for Rational Mechanics and Analysis Aims and scope Submit manuscript

Abstract

In this work we develop a systematic geometric approach to study fully nonlinear elliptic equations with singular absorption terms, as well as their related free boundary problems. The magnitude of the singularity is measured by a negative parameter (γ - 1), for 0 < γ < 1, which reflects on lack of smoothness for an existing solution along the singular interface between its positive and zero phases.We establish existence as well as sharp regularity properties of solutions. We further prove that minimal solutions are non-degenerate and we obtain fine geometric-measure properties of the free boundary \({\mathfrak{F} = \partial{u > 0}}\). In particular, we show sharp Hausdorff estimates which imply local finiteness of the perimeter of the region {u > 0} and the \({\mathcal{H}^{n-1}}\) almost-everywhere weak differentiability property of \({\mathfrak{F}}\).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Alt H.M., Caffarelli L.A.: Existence and regularity for a minimum problem with free boundary. J. Reine Angew. Math. 325, 105–144 (1981)

    MathSciNet  MATH  Google Scholar 

  2. Alt H.M., Phillips D.: A free boundary problem for semilinear elliptic equations. J. Reine Angew. Math. 368, 63–107 (1986)

    MathSciNet  MATH  Google Scholar 

  3. Barles G.: A weak Bernstein method for fully nonlinear elliptic equations. Differ. Integral Equ. 4(2), 241–262 (1991)

    MathSciNet  MATH  Google Scholar 

  4. Barles G., Chasseigne E., Imbert C.: Hölder continuity of solutions of second-order non-linear elliptic integro-differential equations. J. Eur. Math. Soc. (JEMS) 13(1), 1–26 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  5. Caffarelli L.A.: The regularity of free boundaries in higher dimensions. Acta Math. 139(3–4), 155–184 (1977)

    Article  MathSciNet  Google Scholar 

  6. Caffarelli L.A.: Interior a priori estimates for solutions of fully nonlinear equations. Ann. Math. (2) 130(1), 189–213 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  7. Caffarelli, L.A., Cabré, X.: Fully Nonlinear Elliptic Equations. American Mathematical Society Colloquium Publications, Vol. 43. American Mathematical Society, Providence, 1995

  8. Caffarelli L., Karp L., Shahgholian H.: Regularity of a free boundary with application to the Pompeiu problem. Ann. Math. 151, 269–292 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  9. Crandall M.G., Ishii H., Lions P.-L.: User’s guide to viscosity solutions of second order partial differential equations. Bull. Am. Math. Soc. (N.S.) 27(1), 1–67 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  10. Crandall M.G., Rabinowitz P.H., Tartar L.: On a Dirichlet problem with a singular nonlinearity. Commun. Partial Differ. Equ. 2(2), 193–222 (1977)

    Article  MathSciNet  MATH  Google Scholar 

  11. Felmer, P., Quaas, A., Sirakov, B.: Existence and regularity results for fully nonlinear equations with singularities. Math. Ann. 1–24. doi:10.1007/s00208-011-0741-5

  12. Giaquinta M., Giusti E.: Differentiability of minima of non-differentiable functionals. Invent. Math. 72, 285–298 (1983)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  13. Giaquinta M., Giusti E.: Sharp estimates for the derivatives of local minima of variational integrals. Bollettino U.M.I. 6(3-A), 239–248 (1984)

    MathSciNet  Google Scholar 

  14. Imbert C., Silvestre L.: C 1,α regularity of solutions of some degenerate fully non-linear elliptic equations. Adv. Math. 233, 196–206 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  15. Ishii H., Lions P.-L.: Viscosity solutions of fully nonlinear second-order elliptic partial differential equations. J. Differ Equ. 83(1), 26–78 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  16. Krylov, N.V., Safonov, M.V.: An estimate of the probability that a diffusion process hits a set of positive measure. Dokl. Akad. Nauk. SSSR 245, 235–255 (1979) [English translation in Sov. Math. Dokl. 20, 235–255 (1979)]

    Google Scholar 

  17. Lee K.-A., Shahgholian H.: Regularity of a free boundary for viscosity solutions of nonlinear elliptic equations. Commun. Pure Appl. Math. 54(1), 43–56 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  18. Nadirashvili N., Vladut S.: Nonclassical solutions of fully nonlinear elliptic equations II. Hessian equations and octonions. Geom. Funct. Anal. 21, 483–498 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  19. Phillips D.: A minimization problem and the regularity of solutions in the presence of a free boundary. Indiana Univ. Math. J. 32, 1–17 (1983)

    Article  MathSciNet  MATH  Google Scholar 

  20. Phillips D.: Hausdorff measure estimates of a free boundary for a minimum problem. Commun. Partial Differ. Equ. 8, 1409–1454 (1983)

    Article  MATH  Google Scholar 

  21. Ricarte G., Teixeira E.: Fully nonlinear singularly perturbed equations and asymptotic free boundaries. J. Funct Anal. 261(6), 1624–1673 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  22. Silvestre, L., Teixeira, E.: Asymptotic regularity estimates for fully nonlinear equations. Preprint

  23. Teixeira E.V.: A variational treatment for general elliptic equations of the flame propagation type: regularity of the free boundary. Ann. Inst. H. Poincaré Anal. Non Linéaire 25(4), 633–658 (2008)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  24. Teixeira, E.V.: Universal moduli of continuity for solutions to fully nonlinear elliptic equations. Preprint. http://arxiv.org/abs/1111.2728

  25. Weiss G.: Partial regularity for weak solutions of an elliptic free boundary problem. Commun. Partial Differ. Equ. 23(3–4), 439–455 (1998)

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eduardo V. Teixeira.

Additional information

Communicated by V. Šverák

Rights and permissions

Reprints and permissions

About this article

Cite this article

Araújo, D., Teixeira, E.V. Geometric Approach to Nonvariational Singular Elliptic Equations. Arch Rational Mech Anal 209, 1019–1054 (2013). https://doi.org/10.1007/s00205-013-0633-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00205-013-0633-9

Keywords

Navigation