Skip to main content
Log in

Time-asymptotics of physical vacuum free boundaries for compressible inviscid flows with damping

  • Published:
Calculus of Variations and Partial Differential Equations Aims and scope Submit manuscript

Abstract

In this paper, we prove the leading term of time-asymptotics of the moving vacuum boundary for compressible inviscid flows with damping to be that for Barenblatt self-similar solutions to the corresponding porous media equations obtained by simplifying momentum equations via Darcy’s law plus the possible shift due to the movement of the center of mass, in the one-dimensional and three-dimensional spherically symmetric motions, respectively. This gives a complete description of the large time asymptotic behavior of solutions to the corresponding vacuum free boundary problems. The results obtained in this work are the first ones concerning the large time-asymptotics of physical vacuum boundaries for compressible inviscid fluids, to the best of our knowledge.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Barenblatt, G.: On one class of solutions of the one-dimensional problem of non-stationary filtration of a gas in a porous medium. Prikl. Mat. i. Mekh. 17, 739–742 (1953)

    MathSciNet  Google Scholar 

  2. Chemin, J.: Dynamique des gaz a masse totale finie. Asymptotic Anal. 3, 215–220 (1990)

    Article  MathSciNet  Google Scholar 

  3. Chemin, J.: Remarques sur la apparition de singularites dans les ecoulements euleriens compressibles. Commun. Math. Phys. 133, 323–329 (1990)

    Article  Google Scholar 

  4. Coutand, D., Lindblad, H., Shkoller, S.: A priori estimates for the free-boundary 3-D compressible Euler equations in physical vacuum. Commun. Math. Phys. 296, 559–587 (2010)

    Article  MathSciNet  Google Scholar 

  5. Coutand, D., Shkoller, S.: Well-posedness in smooth function spaces for the moving- boundary 1-D compressible Euler equations in physical vacuum. Commun. Pure Appl. Math. 64, 328–366 (2011)

    Article  MathSciNet  Google Scholar 

  6. Coutand, D., Shkoller, S.: Well-posedness in smooth function spaces for the moving-boundary three-dimensional compressible euler equations in physical vacuum. Arch. Ration. Mech. Anal. 206, 515–616 (2012)

    Article  MathSciNet  Google Scholar 

  7. Friedrichs, K.: Symmetric hyperbolic linear differential equations. Commun. Pure Appl. Math. 7, 345–392 (1954)

    Article  MathSciNet  Google Scholar 

  8. Gu, X., Lei, Z.: Local Well-posedness of the three dimensional compressible Euler-Poisson equations with physical vacuum. J. Math. Pures Appl. 105, 662–723 (2016)

    Article  MathSciNet  Google Scholar 

  9. Hadz̆ic̀, M., Jang, J.: Expanding large global solutions of the equations of compressible fluid mechanics, Invent. Math. 214, 1205–1266 (2018)

  10. Hadz̆ic̀, M., Jang, J.: A class of global solutions to the Euler-Poisson system, Comm. Math. Phys. 370, 475–505 (2019)

  11. Hadz̆ic̀, M., Jang, J.: Nonlinear stability of expanding star solutions of the radially symmetric mass-critical Euler-Poisson system. Commun. Pure Appl. Math. 71, 827–891 (2018)

  12. Hsiao, L., Liu, T.P.: Convergence to nonlinear diffusion waves for solutions of a system of hyperbolic conservation laws with damping. Commun. Math. Phys. 143, 599–605 (1992)

    Article  MathSciNet  Google Scholar 

  13. Huang, F., Marcati, P., Pan, R.: Convergence to the Barenblatt solution for the compressible Euler equations with damping and vacuum. Arch. Ration. Mech. Anal. 176, 1–24 (2005)

    Article  MathSciNet  Google Scholar 

  14. Huang, H., Pan, R., Wang, Z.: \(L^1\) convergence to the Barenblatt solution for compressible Euler equations with damping. Arch. Ration. Mech. Anal. 200, 665–689 (2011)

    Article  MathSciNet  Google Scholar 

  15. Jang, J., Masmoudi, N.: Well-posedness for compressible Euler with physical vacuum singularity. Commun. Pure Appl. Math. 62, 1327–1385 (2009)

    Article  MathSciNet  Google Scholar 

  16. Jang, J., Masmoudi, N.: Well-posedness of compressible Euler equations in a physical vacuum. Commun. Pure Appl. Math. 68, 61–111 (2015)

    Article  MathSciNet  Google Scholar 

  17. Kato, T.: The Cauchy problem for quasi-linear symmetric hyperbolic systems. Arch. Rational Mech. Anal. 58, 181–205 (1975)

    Article  MathSciNet  Google Scholar 

  18. Kreiss, H.: Initial boundary value problems for hyperbolic systems. Commun. Pure Appl. Math. 23, 277–296 (1970)

    Article  MathSciNet  Google Scholar 

  19. Kufner, A., Maligranda, L., Persson, L. E.: The Hardy inequality, Vydavatelsky Servis, Plzen, 2007. About its history and some related results

  20. Liu, T.-P.: Compressible flow with damping and vacuum. Jpn. J. Appl. Math. 13, 25–32 (1996)

    Article  MathSciNet  Google Scholar 

  21. Liu, T.-P., Yang, T.: Compressible Euler equations with vacuum. J. Differ. Equ. 140, 223–237 (1997)

    Article  MathSciNet  Google Scholar 

  22. Liu, T.-P., Yang, T.: Compressible flow with vacuum and physical singularity. Methods Appl. Anal. 7, 495–310 (2000)

    Article  MathSciNet  Google Scholar 

  23. Luo, T., Xin, Z., Zeng, H.: Well-posedness for the motion of physical vacuum of the three-dimensional compressible euler equations with or without self-gravitation. Arch. Rational Mech. Anal 213, 763–831 (2014)

    Article  MathSciNet  Google Scholar 

  24. Luo, T., Zeng, H.: Global existence of smooth solutions and convergence to Barenblatt solutions for the physical vacuum free boundary problem of compressible euler equations with damping. Commun. Pure Appl. Math. 69, 1354–1396 (2016)

    Article  MathSciNet  Google Scholar 

  25. Makino, T., Ukai, S.: On the existence of local solutions of the Euler–Poisson equation for the evolution of gaseous stars. J. Math. Kyoto Univ. 27, 387–399 (1987)

    MathSciNet  MATH  Google Scholar 

  26. Makino, T., Ukai, S., Kawashima, S.: On the compactly supported solution of the compressible Euler equation. Japan J Appl Math 3, 249–257 (1986)

    Article  MathSciNet  Google Scholar 

  27. Serre, D.: Expansion of a compressible gas in vacuum. Bull. Inst. Math. Acad. Sin. Taiwan 10, 695–716 (2015)

    MathSciNet  MATH  Google Scholar 

  28. Shkoller, S., Sideris, T.: Global existence of near-affine solutions to the compressible Euler equations. Arch. Ration. Mech. Anal. 234, 115–180 (2019)

    Article  MathSciNet  Google Scholar 

  29. Sideris, T.: Spreading of the free boundary of an ideal fluid in a vacuum. J. Differ. Equ. 257, 1–14 (2014)

    Article  MathSciNet  Google Scholar 

  30. Sideris, T.: Global existence and asymptotic behavior of affine motion of 3D ideal fluids surrounded by vacuum. Arch. Ration. Mech. Anal. 225, 141–176 (2017)

    Article  MathSciNet  Google Scholar 

  31. Yang, T.: Singular behavior of vacuum states for compressible fluids. J. Comput. Appl. Math. 190, 211–231 (2006)

    Article  MathSciNet  Google Scholar 

  32. Zeng, H.: Global resolution of the physical vacuum singularity for three-dimensional isentropic inviscid flows with damping in spherically symmetric motions. Arch. Ration. Mech. Anal. 226, 33–82 (2017)

    Article  MathSciNet  Google Scholar 

  33. Zeng, H.: Almost global solutions to the three-dimensional isentropic inviscid flows with damping in physical vacuum around Barenlatt solutions. Arch. Ration. Mech. Anal. 239, 553–597 (2021)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

This research was supported in part by NSFC Grants 11822107, 12171267 and 11671225. The author would like to thank Professor Chongchun Zeng for helpful discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Huihui Zeng.

Additional information

Communicated by A. Malchiodi.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zeng, H. Time-asymptotics of physical vacuum free boundaries for compressible inviscid flows with damping. Calc. Var. 61, 59 (2022). https://doi.org/10.1007/s00526-021-02161-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00526-021-02161-9

Mathematics Subject Classification

Navigation