Skip to main content
Log in

\(L^p\) bounds for boundary-to-boundary transport densities, and \(W^{1,p}\) bounds for the BV least gradient problem in 2D

  • Published:
Calculus of Variations and Partial Differential Equations Aims and scope Submit manuscript

Abstract

The least gradient problem (minimizing the total variation with given boundary data) is equivalent, in the plane, to the Beckmann minimal-flow problem with source and target measures located on the boundary of the domain, which is in turn related to an optimal transport problem. Motivated by this fact, we prove \(L^p\) summability results for the solution of the Beckmann problem in this setting, which improve upon previous results where the measures were themselves supposed to be  \(L^p\). In the plane, we carry out all the analysis for general strictly convex norms, which requires to first introduce the corresponding optimal transport tools. We then obtain results about the \(W^{1,p}\) regularity of the solution of the anisotropic least gradient problem in uniformly convex domains.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Ambrosio, L.: Lecture notes on optimal transport problems. In: Mathematical Aspects of Evolving Interfaces, Lecture Notes in Mathematics (1812), pp. 1–52. Springer, New York (2003)

  2. Ambrosio, L., Pratelli, A.: Existence and stability results in the \(L^1\) theory of optimal transportation. In: Caffarelli, L.A., Salsa, S. (eds.) Optimal Transportation and Applications, Lecture Notes in Mathematics (CIME Series, Martina Franca, 2001) 1813, pp. 123–160 (2003)

  3. Beckmann, M.: A continuous model of transportation. Econometrica 20, 643–660 (1952)

    Article  MathSciNet  Google Scholar 

  4. Bombieri, E., De Giorgi, E., Giusti, E.: Minimal cones and the Bernstein problem. Invent. Math. 7(3), 243–268 (1969)

    Article  MathSciNet  Google Scholar 

  5. Bouchitté, G., Buttazzo, G.: Characterization of optimal shapes and masses through Monge-Kantorovich equation. J. Eur. Math. Soc. 3(2), 139–168 (2001)

    Article  MathSciNet  Google Scholar 

  6. Bouchitté, G., Buttazzo, G., Seppecher, P.: Shape optimization solutions via Monge-Kantorovich equation. C. R. Acad. Sci. Paris Sér. I Math. 324(10), 1185–1191 (1997)

    Article  MathSciNet  Google Scholar 

  7. Bouchitté, G., Champion, T., Jimenez, C.: Completion of the space of measures in the Kantorovitch norm In: Acerbi, E.D., Mingione, G.R. (eds.) Proceedings of “Trends in the Calculus of Variations”, Parma, 2004, Rivista di Matematica della Università di Parma, serie 7 (4*), pp. 127–139 (2004)

  8. Brasco, L., Carlier, G., Santambrogio, F.: Congested traffic dynamics, weak flows and very degenerate elliptic equations. J. Math. Pures Appl. 93(6), 652–671 (2010)

    Article  MathSciNet  Google Scholar 

  9. Buckley, J.J.: Graphs of measurable functions. Proc. Am. Math. Soc. 44, 78–80 (1974)

    Article  MathSciNet  Google Scholar 

  10. Caffarelli, L., Feldman, M., McCann, R.: Constructing optimal maps for Monge’s transport problem as a limit of strictly convex costs. J. Am. Math. Soc. 15(1), 1–26 (2002)

    Article  MathSciNet  Google Scholar 

  11. Caravenna, L.: A proof of Sudakov theorem with strictly convex norms. Math. Z. 268, 371–407 (2011)

    Article  MathSciNet  Google Scholar 

  12. Carlier, G., Jimenez, C., Santambrogio, F.: Optimal transportation with traffic congestion and Wardrop equilibria. SIAM J. Control Optim. 47, 1330–1350 (2008)

    Article  MathSciNet  Google Scholar 

  13. Cellina, A.: On the bounded slope condition and the validity of the Euler Lagrange equation. SIAM J. Control Optim. 40(4), 1270–1279 (2001)

    Article  MathSciNet  Google Scholar 

  14. Champion, T., De Pascale, L.: The Monge problem for strictly convex norms in \({{\mathbb{R}}}^d\). J. Eur. Math. Soc. 12(6), 1355–1369 (2010)

    Article  MathSciNet  Google Scholar 

  15. Champion, T., De Pascale, L.: The Monge problem in \(R^d\). Duke Math. J. 157(3), 551–572 (2011)

    Article  MathSciNet  Google Scholar 

  16. De Pascale, L., Evans, L.C., Pratelli, A.: Integral estimates for transport densities. Bull. Lond. Math. Soc. 36(3), 383–395 (2004)

    Article  MathSciNet  Google Scholar 

  17. De Pascale, L., Pratelli, A.: Regularity properties for Monge transport density and for solutions of some shape optimization problem. Calc. Var. Partial Differ. Equ. 14(3), 249–274 (2002)

    Article  MathSciNet  Google Scholar 

  18. De Pascale, L., Pratelli, A.: Sharp summability for Monge transport density via interpolation. ESAIM Control Optim. Calc. Var. 10(4), 549–552 (2004)

    Article  MathSciNet  Google Scholar 

  19. Dweik, S., Santambrogio, F.: Summability estimates on transport densities with Dirichlet regions on the boundary via symmetrization techniques. ESAIM Control Optim. Calc. Var. 24(3), 1167–1180 (2018)

    Article  MathSciNet  Google Scholar 

  20. Evans, L.C., Gangbo, W.: Differential equations methods for the Monge-Kantorovich mass transfer problem. Mem. Amer. Math. Soc., 137, 653 (1999)

  21. Feldman, M., McCann, R.: Uniqueness and transport density in Monge’s mass transportation problem. Calc. Var. Partial Differ. Equ. 15(1), 81–113 (2002)

    Article  MathSciNet  Google Scholar 

  22. Gangbo, W., McCann, R.J.: Shape recognition via Wasserstein distance. Quart. Appl. Math. 58, 705–737 (2000)

    Article  MathSciNet  Google Scholar 

  23. Górny, W.: Planar least gradient problem: existence, regularity and anisotropic case arXiv:1608.02617

  24. Górny, W., Rybka, P., Sabra, A.: Special cases of the planar least gradient problem. Nonlinear Anal. 151, 66–95 (2017)

    Article  MathSciNet  Google Scholar 

  25. Hartman, P.: On the bounded slope condition. Pacific J. Math. 18(3), 495–511 (1966)

    Article  MathSciNet  Google Scholar 

  26. Mercier, G.: Continuity results for TV-minimizers. Indiana University Math. J. 67, 1499–1545 (2018)

    Article  MathSciNet  Google Scholar 

  27. Moradifam, A., Nachman, A., Tamasan, A.: Uniqueness of minimizers of weighted least gradient problems arising in conductivity imaging. Calc. Var. Partial Differ. Equ 57, 6 (2018)

    Article  Google Scholar 

  28. Mazon, J.M.: The Euler-Lagrange equation for the anisotropic least gradient problem. Nonlinear Anal. Real World Appl. 31, 452–472 (2016)

    Article  MathSciNet  Google Scholar 

  29. Mazon, J.M., Rossi, J.D., de Leon, S.S.: Functions of least gradient and 1-harmonic functions. Indiana Univ. J. Math. 63:1067–1084

  30. McCann, R., Sosio, M.: Hölder continuity for optimal multivalued mappings. SIAM J. Math. Anal. 43, 1855–1871 (2011)

    Article  MathSciNet  Google Scholar 

  31. Monge, G.: Mémoire sur la théorie des déblais et des remblais, Histoire de l’Académie Royale des Sciences de Paris, pp. 666–704 (1781)

  32. Lellmann, J., Lorenz, D.A., Schoenlieb, C., Valkonen, T.: Imaging with Kantorovich–Rubinstein discrepancy. SIAM J. Imaging Sci. 7(4), 2833–2859 (2014)

    Article  MathSciNet  Google Scholar 

  33. Santambrogio, F.: Absolute continuity and summability of transport densities: simpler proofs and new estimates. Calc. Var. Partial Differ. Equ. 36, 343–354 (2009)

    Article  MathSciNet  Google Scholar 

  34. Santambrogio, F.: Optimal transport for applied mathematicians. In: Progress in Nonlinear Differential Equations and their Applications 87, Birkhäuser Basel (2015)

  35. Trudinger, N., Wang, X.-J.: On the Monge mass transfer problem. Calc. Var. Partial Differ. Equ. 13, 19–31 (2001)

    Article  MathSciNet  Google Scholar 

  36. Spradlin, G., Tamasan, A.: Not all traces on the circle come from functions of least gradient in the disk. Indiana Uni. Math. J. 63, 1819–1837 (2014)

    Article  MathSciNet  Google Scholar 

  37. Stampacchia, G.: On some regular multiple integral problems in the calculus of variations. Commun. Pure Appl. Math. 16, 383–421 (1963)

    Article  MathSciNet  Google Scholar 

  38. Sternberg, P., Williams, G., Ziemer, W.P.: Existence, uniqueness, and regularity for functions of least gradient. J. Reine Angew. Math. 430, 35–60 (1992)

    MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Filippo Santambrogio.

Additional information

Communicated by L. Ambrosio.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dweik, S., Santambrogio, F. \(L^p\) bounds for boundary-to-boundary transport densities, and \(W^{1,p}\) bounds for the BV least gradient problem in 2D. Calc. Var. 58, 31 (2019). https://doi.org/10.1007/s00526-018-1474-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00526-018-1474-z

Mathematics Subject Classification

Navigation