Skip to main content
Log in

On the regularity of weak solutions to Burgers’ equation with finite entropy production

  • Published:
Calculus of Variations and Partial Differential Equations Aims and scope Submit manuscript

Abstract

Bounded weak solutions of Burgers’ equation \(\partial _tu+\partial _x(u^2/2)=0\) that are not entropy solutions need in general not be BV. Nevertheless it is known that solutions with finite entropy productions have a BV-like structure: a rectifiable jump set of dimension one can be identified, outside which u has vanishing mean oscillation at all points. But it is not known whether all points outside this jump set are Lebesgue points, as they would be for BV solutions. In the present article we show that the set of non-Lebesgue points of u has Hausdorff dimension at most one. In contrast with the aforementioned structure result, we need only one particular entropy production to be a finite Radon measure, namely \(\mu =\partial _t (u^2/2)+\partial _x(u^3/3)\). We prove Hölder regularity at points where \(\mu \) has finite \((1+\alpha )\)-dimensional upper density for some \(\alpha >0\). The proof is inspired by a result of De Lellis, Westdickenberg and the second author : if \(\mu _+\) has vanishing 1-dimensional upper density, then u is an entropy solution. We obtain a quantitative version of this statement: if \(\mu _+\) is small then u is close in \(L^1\) to an entropy solution.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ambrosio, L., De Lellis, C., Mantegazza, C.: Line energies for gradient vector fields in the plane. Calc. Var. Partial Differ. Equ. 9(4), 327–355 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  2. Ambrosio, L., Fusco, N., Pallara, D.: Functions of Bounded Variation and Free Discontinuity Problems. Oxford Mathematical Monographs. The Clarendon Press, Oxford University Press, New York (2000)

    MATH  Google Scholar 

  3. Ambrosio, L., Kirchheim, B., Lecumberry, M., Rivière, T.: On the rectifiability of defect measures arising in a micromagnetics model. In: Birman, M.S., Hildebrandt, S., Solonnikov, V.A., Uraltseva, N.N. (eds.) Nonlinear Problems in Mathematical Physics and Related Topics, II, vol. 2 of International Mathematical Series (New York), pp. 29–60. Kluwer/Plenum, New York (2002).

  4. Bellettini, G., Bertini, L., Mariani, M., Novaga, M.: \({\Gamma }\)-entropy cost for scalar conservation laws. Arch. Ration. Mech. Anal. 195(1), 261–309 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  5. Benton Jr., S.H.: The Hamilton–Jacobi Equation. Academic Press [Harcourt Brace Jovanovich, Publishers], New York-London (1977). (A global approach, Mathematics in Science and Engineering, Vol. 131)

    MATH  Google Scholar 

  6. Conti, S., De Lellis, C.: Sharp upper bounds for a variational problem with singular perturbation. Math. Ann. 338(1), 119–146 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  7. Crandall, M., Ishii, H., Lions, P.-L.: User’s guide to viscosity solutions of second order partial differential equations. Bull. Am. Math. Soc. (N.S.) 27(1), 1–67 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  8. Crandall, M., Lions, P.-L.: Viscosity solutions of Hamilton–Jacobi equations. Trans. Am. Math. Soc. 277(1), 1–42 (1983)

    Article  MathSciNet  MATH  Google Scholar 

  9. De Lellis, C., Ignat, R.: A regularizing property of the \(2D\)-eikonal equation. Commun. Partial Differ. Equ. 40(8), 1543–1557 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  10. De Lellis, C., Otto, F.: Structure of entropy solutions to the eikonal equation. J. Eur. Math. Soc. 5(2), 107–145 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  11. De Lellis, C., Otto, F., Westdickenberg, M.: Structure of entropy solutions for multi-dimensional scalar conservation laws. Arch. Ration. Mech. Anal. 170(2), 137–184 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  12. De Lellis, C., Otto, F., Westdickenberg, M.: Minimal entropy conditions for Burgers equation. Q. Appl. Math. 62(4), 687–700 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  13. De Lellis, C., Rivière, T.: The rectifiability of entropy measures in one space dimension. J. Math. Pures Appl. (9) 82(10), 1343–1367 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  14. De Lellis, C., Westdickenberg, M.: On the optimality of velocity averaging lemmas. Ann. Inst. H. Poincaré Anal. Non Linéaire 20(6), 1075–1085 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  15. DeSimone, A., Müller, S., Kohn, R., Otto, F.: A compactness result in the gradient theory of phase transitions. Proc. R. Soc. Edinb. A 131(04), 833–844 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  16. Giaquinta, M., Martinazzi, L.: An Introduction to the Regularity Theory for Elliptic Systems, Harmonic Maps and Minimal Graphs, second ed., vol. 11 of Appunti. Scuola Normale Superiore di Pisa (Nuova Serie) [Lecture Notes. Scuola Normale Superiore di Pisa (New Series)]. Edizioni della Normale, Pisa (2012)

    Google Scholar 

  17. Golse, F., Perthame, B.: Optimal regularizing effect for scalar conservation laws. Rev. Mat. Iberoam. 29(4), 1477–1504 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  18. Ignat, R., Merlet, B.: Entropy method for line-energies. Calc. Var. Partial Differ. Equ. 44(3–4), 375–418 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  19. Jabin, P.-E., Otto, F., Perthame, B.: Line-energy Ginzburg–Landau models: zero-energy states. Ann. Sc. Norm. Super. Pisa Cl. Sci. (5) 1(1), 187–202 (2002)

    MathSciNet  MATH  Google Scholar 

  20. Jabin, P.-E., Perthame, B.: Compactness in Ginzburg–Landau energy by kinetic averaging. Commun. Pure Appl. Math. 54(9), 1096–1109 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  21. Jabin, P.-E., Perthame, B.: Regularity in kinetic formulations via averaging lemmas. ESAIM Control Optim. Calc. Var. 8, 761–774 (2002). (A tribute to J. L. Lions)

    Article  MathSciNet  MATH  Google Scholar 

  22. Jin, W., Kohn, R.V.: Singular perturbation and the energy of folds. J. Nonlinear Sci. 10(3), 355–390 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  23. Kružkov, S .N.: First order quasilinear equations with several independent variables. Mat. Sb. (N.S.) 81(123), 228–255 (1970)

    MathSciNet  Google Scholar 

  24. Lecumberry, M.: Geometric Structure of Micromagnetic Walls and Shock Waves in Scalar Conservation Laws. Ph.D. thesis, Université de Nantes (2004)

  25. Lions, P.-L.: Generalized Solutions of Hamilton–Jacobi Equations, vol. 69 of Research Notes in Mathematics. Pitman (Advanced Publishing Program), Boston (1982)

    Google Scholar 

  26. Lions, P.-L., Perthame, B., Tadmor, E.: A kinetic formulation of multidimensional scalar conservation laws and related equations. J. Am. Math. Soc. 7(1), 169–191 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  27. Mariani, M.: Large deviations principles for stochastic scalar conservation laws. Probab. Theory Relat. Fields 147(3–4), 607–648 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  28. Oleĭnik, O .A.: Discontinuous solutions of non-linear differential equations. Uspehi Mat. Nauk (N.S.) 12 12(3(75)), 3–73 (1957)

  29. Poliakovsky, A.: Upper bounds for a class of energies containing a non-local term. ESAIM Control Optim. Calc. Var. 16(4), 856–886 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  30. Rivière, T.: Parois et vortex en micromagnétisme. Exp. No. XIV, 15. In: Journées “Équations aux Dérivées Partielles” (Forges-les-Eaux, 2002). Univ. Nantes, Nantes (2002)

  31. Silvestre, L.: Oscillation Properties of Scalar Conservation Laws. arXiv:1708.03401 (2017)

  32. Tartar, L.: The compensated compactness method applied to systems of conservation laws. In: Ball, J.M. (eds.) Systems of Nonlinear Partial Differential Equations (Oxford, 1982) (1983), vol. 111 of NATO Advanced Science Institutes Series C: Mathematical and Physical Sciences, pp. 263–285

  33. Varadhan, S.: Large deviations for the asymmetric simple exclusion process. In: Funaki, T., Osada, H. (eds.) Stochastic Analysis on Large Scale Interacting Systems, vol. 39 of Advanced Studies in Pure Mathematics. Mathematical Society, Japan, Tokyo, pp. 1–27 (2004).

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xavier Lamy.

Additional information

Communicated by C. De Lellis.

Appendix: Lipschitz estimate for the viscosity solution

Appendix: Lipschitz estimate for the viscosity solution

Let \(h\in W^{1,\infty }(Q)\) solve (6) almost everywhere. The viscosity solution \(\bar{h}\in W^{1,\infty }(Q)\) of (6) with \(\bar{h}=h\) on \(\partial _0 Q\) is given [25, §11] by the Hopf-Lax formula

$$\begin{aligned} \bar{h}(t,x)=\inf \left\{ h(s,y)+\frac{(x-y)^2}{2(t-s)}:(s,y)\in \partial _0 Q,\; s<t \right\} . \end{aligned}$$

Note that for \((t,x)\in Q\) the infimum is attained. Let \(L:={\left\| \partial _x h\right\| }_{L^\infty (Q)}\), so that the initial data \(h(0,\cdot )\) has Lipschitz constant \(\le L\) and the boundary data \(h(\cdot ,0)\) and \(h(\cdot ,1)\) have Lipschitz constants \(\le L^2/2\).

Lemma 10

It holds \({\left| \partial _x\bar{h}\right| }\le L\) a.e.

Proof

Let \((t_0,x_0)\in Q\) and denote by \((s_0,y_0)\) a point at which the infimum defining \(\bar{h}(t_0,x_0)\) is attained. Then for any small x it holds

$$\begin{aligned} \bar{h}(t_0,x_0+x)-\bar{h}(t_0,x_0)&=\bar{h}(t_0,x_0+x)-h(s_0,y_0)-\frac{(x_0-y_0)^2}{2(t_0-s_0)}\\&\le \frac{(x_0+x-y_0)^2}{2(t_0-s_0)} -\frac{(x_0-y_0)^2}{2(t_0-s_0)}\\&= \frac{x_0-y_0}{t_0-s_0} x + \frac{1}{2(t_0-s_0)}x^2, \end{aligned}$$

so that \({\left| \partial _ x\bar{h}(t_0,x_0)\right| }\le {\left| x_0-y_0\right| }/(t_0-s_0)\) and to prove (7) it suffices to show that the infimum defining \(\bar{h}(t_0,x_0)\) is attained at some \((s_0,y_0)\) with

$$\begin{aligned} \frac{{\left| x_0-y_0\right| }}{t_0-s_0}\le L. \end{aligned}$$
(28)

We show that for any \((s,y)\in \partial _0 Q\cap \lbrace s<t_0\rbrace \) with

$$\begin{aligned} \frac{{\left| x_0-y\right| }}{t_0-s} > L, \end{aligned}$$
(29)

there exists \((\tilde{s} ,\tilde{y})\in \partial _0 Q\cap \lbrace s<t_0\rbrace \) satisfying

$$\begin{aligned}&\frac{{\left| x_0-\tilde{y}\right| }}{t_0-\tilde{s}} < \frac{{\left| x_0-y\right| }}{t_0-s}\end{aligned}$$
(30)
$$\begin{aligned} \text {and}\quad&h(s_0,\tilde{y})+\frac{(x_0-\tilde{y})^2}{2(t_0-\tilde{s})} \le h(s_0, y)+\frac{(x_0-y)^2}{2(t_0-s)}, \end{aligned}$$
(31)

which proves (28).

There are two cases to consider, depending on which part of the parabolic boundary (sy) belongs to.

Case 1 \((s,y)\in \lbrace 0 \rbrace \times [0,1]\). We look for \((\tilde{s},\tilde{y})\) defined through \(\tilde{s}=0\) and

$$\begin{aligned} \frac{x_0-\tilde{y}}{t_0}=(1-\varepsilon )D,\quad D:=\frac{x_0-y}{t_0}, \end{aligned}$$

for some small \(\epsilon >0\), so that (30) is satisfied. On the other hand since \(h(0,\cdot )\) has Lipschitz constant \(\le L\), to show (31) it suffices to establish

$$\begin{aligned} L{\left| \tilde{y}-y\right| } \le \frac{(x_0-y)^2-(x_0-\tilde{y})^2}{2t_0} \quad \Longleftrightarrow \quad \frac{L}{D} \le (1- \frac{1}{2} \varepsilon ), \end{aligned}$$

which is satisfied for small enough \(\varepsilon \) since (29) amounts to \({\left| D\right| }>L\).

Case 2 \((s,y)\in (0,1)\times \lbrace 0,1 \rbrace \). We assume \(y=0\), the case \(y=1\) being similar. We look for \((\tilde{s},\tilde{y})\) defined through \(\tilde{y}=0\) and

$$\begin{aligned} \frac{x_0}{t_0-\tilde{s}}=(1-\varepsilon ) D,\quad D:=\frac{x_0}{t_0-s}, \end{aligned}$$

for some small \(\epsilon >0\), so that (30) is satisfied. On the other hand since \(h(1,\cdot )\) has Lipschitz constant \(\le L^2/2\), to show (31) it suffices to establish

$$\begin{aligned} \frac{L^2}{2}{\left| s-\tilde{s}\right| }\le \frac{x_0^2}{2}\left( \frac{1}{t_0-s}-\frac{1}{t_0-\tilde{s}}\right) \quad \Longleftrightarrow \quad \frac{L^2}{D^2}\le 1-\varepsilon , \end{aligned}$$

which is satisfied for small enough \(\varepsilon \) since (29) amounts to \({\left| D\right| }>L\). \(\square \)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lamy, X., Otto, F. On the regularity of weak solutions to Burgers’ equation with finite entropy production. Calc. Var. 57, 94 (2018). https://doi.org/10.1007/s00526-018-1380-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00526-018-1380-4

Mathematics Subject Classification

Navigation