Skip to main content

Advertisement

Log in

On the simultaneous homogenization and dimension reduction in elasticity and locality of \(\varGamma \)-closure

  • Published:
Calculus of Variations and Partial Differential Equations Aims and scope Submit manuscript

Abstract

We provide a framework for simultaneous homogenization and dimension reduction in the setting of linearized elasticity as well as non-linear elasticity for the derivation of homogenized von Kármán plate and bending rod models. The framework encompasses even perforated domains and domains with oscillatory boundary, provided that the corresponding extension operator can be constructed. Locality property of \(\varGamma \)-closure is established, i.e. every energy density obtained by the homogenization process can be in almost every point obtained as the limit of periodic energy densities.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Allaire, G.: Homogenization and two-scale convergence. SIAM J. Math. Anal. 23, 1482–1518 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  2. Ambrosio, L., Fusco, N., Pallara, D.: Functions of Bounded Variation and Free Discontinuity Problems. Oxford University Press, New York (2000)

    MATH  Google Scholar 

  3. Attouch, H.: Variational Convergence for Functions and Operators. Pitman (Advanced Publishing Program), Boston (1984)

    MATH  Google Scholar 

  4. Babadjian, J.F., Barchiesi, M.: A variational approach to the local character of G-closure: the convex case. Ann. l’Inst. Henri Poincaré (C) 26, 351–373 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  5. Braides, A.: \(\varGamma \)-convergence for Beginners. Oxford University Press, Oxford (2002)

    Book  Google Scholar 

  6. Braides, A., Zeppieri, C.I.: A note on equi-integrability in dimension reduction problems. Calc. Var. Partial Differ. Equ. 29, 231–238 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  7. Bukal, M., Pawelczyk, M., Velčić, I.: Derivation of homogenized Euler-Lagrange equations for von Kármán rods. J. Differ. Equ. (2017). doi:10.1016/j.jde.2017.02.009

    MATH  Google Scholar 

  8. Ciarlet, P.G.: Mathematical Elasticity. Vol. II: Theory of Plates. North-Holland Publishing Co, Amsterdam (1997)

    MATH  Google Scholar 

  9. Dal Maso, G.: An Introduction to \(\varGamma \)-convergence. Birkhäuser Boston Inc., Boston (1993)

    Book  Google Scholar 

  10. Damlamian, A., Vogelius, M.: Homogenization limits of the equations of elasticity in thin domains. SIAM J. Math. Anal. 18, 435–451 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  11. Ekeland, I., Temam, R.: Convex Analysis and Variational Problems. SIAM, Philadelphia (1999)

    Book  MATH  Google Scholar 

  12. Friesecke, G., James, R.D., Müller, S.: A hierarchy of plate models derived from nonlinear elasticity by gamma-convergence. Arch. Ration. Mech. Anal. 180, 183–236 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  13. Fonseca, I., Müller, S., Pedregal, P.: Analysis of concentration and oscillation effects generated by gradients. SIAM J. Math. Anal. 29, 736–756 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  14. Griso, G.: Asymptotic behavior of structures made of plates. Anal. Appl. 3, 325–356 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  15. Gustafsson, B., Mossino, J.: Compensated compactness for homogenization and reduction of dimension: the case of elastic laminates. Asymptot. Anal. 47, 139–169 (2006)

    MathSciNet  MATH  Google Scholar 

  16. Haddadou, H.: A property of the \(H\)-convergence for elasticity in perforated domains. Electron. J. Differ. Equ. 137, 1–11 (2006)

    MathSciNet  MATH  Google Scholar 

  17. Horgan, C.O.: Korn inequalities and their applications in continuum mechanics. SIAM Rev. 37, 491–511 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  18. Lurie, K.A., Cherkaev, A.V.: Exact estimates of the conductivity of a binary mixture of isotropic materials. Proc. R. Soc. Edinb. A 105, 21–38 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  19. Marohnić, M., Velčić, I.: Non-periodic homogenization of bending-torsion theory for inextensible rods from 3D elasticity. Ann. Mat. Pura Appl. 195, 1055–1079 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  20. Murat, F., Tartar, L.: \(H\)-Convergence. In: Cherkaev, A.V., Kohn, R. (eds.) Topics in the Mathematical Modelling of Composite Materials, pp. 21–43. Birkhäuser, Berlin (1997)

    Chapter  Google Scholar 

  21. Neukamm, S., Velčić, I.: Derivation of the homogenzed von-Karman plate equations from 3D nonlinear elasticity. Math. Models Meth. Appl. Sci. 23, 2701–2748 (2013)

    Article  MATH  Google Scholar 

  22. Oleinik, O.A., Shamaev, A.S., Yosifian, G.A.: Mathematical Problems in Elasticity and Homogenization. North-Holland Publishing Co, Amsterdam (1992)

    MATH  Google Scholar 

  23. Raitums, U.: On the local representation of G-closure. Arch. Ration. Mech. Anal. 158, 213–234 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  24. Tartar, L.: Estimations fines des coefficients homogénéisés. In: Kree, P. (eds) Ennio De Giorgi colloquium vol. 125 of Res. Notes in Math., pp. 168–187. Pitman, Boston (1985)

  25. Torquato, S.: Optimal design of heterogeneous materials. Annu. Rev. Mater. Res. 40, 101–129 (2010)

    Article  Google Scholar 

  26. Velčić, I.: On the general homogenization of von Kármán plate equations from 3D nonlinear elasticity. Anal. Appl. 15, 1–49 (2017)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Igor Velčić.

Additional information

Communicated by J.Ball.

This work has been supported by the Croatian Science Foundation under Grant agreement No. 9477 (MAMPITCoStruFl).

Appendix

Appendix

Theorem 4.1

(Korn’s inequalities, [17]) Let \(p>1, \varOmega \subset {\mathbb {R}}^3\) and \(\varGamma \subset \partial \varOmega \) of positive measure, then the following inequalities hold:

$$\begin{aligned} \Vert {\varvec{\psi }}\Vert _{W^{1,p}}^p&\le C_K\left( \Vert {\varvec{\psi }}\Vert _{L^p}^p + \Vert {\text {sym}}\,\nabla {\varvec{\psi }}\Vert _{L^p}^p\right) , \quad \forall {\varvec{\psi }}\in W^{1,p}(\varOmega ,{\mathbb {R}}^3), \end{aligned}$$
(59)
$$\begin{aligned} \Vert {\varvec{\psi }}\Vert _{W^{1,p}}^p&\le C_K^{\varGamma }(\Vert {{\varvec{\psi }}}\Vert ^p_{L^p(\varGamma )}+\left\| {\text {sym}}\,\nabla {\varvec{\psi }}\Vert _{L^p}^p\right) , \quad \forall {\varvec{\psi }}\in W^{1,p}(\varOmega ,{\mathbb {R}}^3), \end{aligned}$$
(60)

where positive constants \(C_K\) and \(C_K^{\varGamma }\) depend only on \(p, \varOmega \) and \(\varGamma \).

Theorem 4.2

(Griso’s decomposition, [14]) Let \(\omega \subset {\mathbb {R}}^2\) with Lipschitz boundary and \({\varvec{\psi }}\in H^1(\omega \times I,{\mathbb {R}}^3)\), then for arbitrary \(h>0\) the following identity holds

$$\begin{aligned} {\varvec{\psi }} = \hat{{\varvec{\psi }}}(x') + {\varvec{r}}(x')\wedge x_3{\varvec{e}}_3 + \bar{{\varvec{\psi }}}(x) = \left\{ \begin{array}{l} \hat{\psi }_1(x') + r_2(x')x_3 + \bar{\psi }_1(x)\\ \hat{\psi }_2(x') - r_1(x')x_3 + \bar{\psi }_2(x)\\ \hat{\psi }_3(x') + \bar{\psi }_3(x) \end{array} \right. , \end{aligned}$$
(61)

where

$$\begin{aligned} \hat{{\varvec{\psi }}}(x') = \int _I {\varvec{\psi }}(x',x_3){\mathrm {d}}x_3,\quad {\varvec{r}}(x') = \frac{3}{2}\int _Ix_3{\varvec{e}}_3\wedge {\varvec{\psi }}(x',x_3){\mathrm {d}}x_3. \end{aligned}$$
(62)

Moreover, the following inequality holds

$$\begin{aligned} \Vert {\text {sym}}\,\nabla _h(\hat{{\varvec{\psi }}} + {\varvec{r}}\wedge x_3{\varvec{e}}_3)\Vert _{L^2}^2 + \Vert \nabla _h\bar{{\varvec{\psi }}}\Vert _{L^2}^2 + \frac{1}{h^2}\Vert \bar{{\varvec{\psi }}}^h\Vert _{L^2}^2 \le C\Vert {\text {sym}}\,\nabla _h{\varvec{\psi }}\Vert _{L^2}^2, \end{aligned}$$
(63)

with constant \(C>0\) depending only on \(\omega \).

The following corollary is the direct consequence of Theorem 4.2 [relation (63), i.e. (65)], Poincare and Korn inequalities.

Corollary 4.2

(Korn’s inequalities for thin domains) Let \(\omega \subset {\mathbb {R}}^2\) and \(\varGamma \subset \partial \varOmega \) of positive measure, then the following inequalities hold

$$\begin{aligned} \Vert (\psi _1,\psi _2, h\psi _3)\Vert ^2_{H^1}&\le C_T\left( \Vert (\psi _1,\psi _2, h\psi _3)\Vert _{L^2}^2 + \Vert {\text {sym}}\,\nabla _h {\varvec{\psi }}\Vert _{L^2}^2\right) ,\\&\quad \forall {\varvec{\psi }}\in H^1(\omega \times I,{\mathbb {R}}^3);\,\\ \Vert (\psi _1,\psi _2, h\psi _3)\Vert _{H^1}^2&\le C_T^{\varGamma }(\Vert |(\psi _1,\psi _2, h\psi _3)\Vert ^2_{L^2(\varGamma )}+\left\| {\text {sym}}\,\nabla _h {\varvec{\psi }}\Vert _{L^2}^2\right) , \\&\quad \forall {\varvec{\psi }}\in H^1(\omega \times I,{\mathbb {R}}^3), \end{aligned}$$

where positive constants \(C_T\) and \(C_T^{\varGamma }\) depend only on \(\omega \) and \(\varGamma \).

The following lemma tells us additional information on the weak limit of sequence that has bounded symmetrized scaled gradients.

Lemma 4.3

Let \(\omega \subset {\mathbb {R}}^2\) be a bounded set with Lipschitz boundary and \((h_n)_n\) monotonically decreasing to zero sequence of positive reals. Let \(({\varvec{\psi }}^{h_n})_{n}\subset H^1(\omega \times I,{\mathbb {R}}^3)\) which for all \(n\in {\mathbb {N}}\) equals zero on \(\varGamma _d\times I\subset \partial \omega \times I\) of strictly positive surface measure, and

$$\begin{aligned} \limsup _{n\rightarrow \infty }\Vert {\text {sym}}\,\nabla _{h_n}{\varvec{\psi }}^{h_n}\Vert _{L^2} < \infty , \end{aligned}$$

then there exists a subsequence (still denoted by \((h_n)_n\)) for which it holds

$$\begin{aligned} {\text {sym}}\,\nabla _{h_n}{\varvec{\psi }}^{h_n} = \imath (-x_3\nabla '^2 v + {\text {sym}}\,\nabla ' {\varvec{w}}) + {\text {sym}}\,\nabla _{h_n}\bar{{\varvec{\psi }}}^{h_n}, \end{aligned}$$

for some \(v\in H_{\varGamma _d}^2(\omega ), {\varvec{w}}\in H_{\varGamma _d}^1(\omega ,{\mathbb {R}}^2)\) and a sequence \((\bar{{\varvec{\psi }}}^{h_n})_{n}\subset H^1(\omega \times I,{\mathbb {R}}^3)\) satisfies \(\bar{{\varvec{\psi }}}^{h_n} = 0\) on \(\varGamma _d\times I\) and \((\bar{\psi }_1^{h_n},{\bar{\psi }}_2^{h_n},h_n{\bar{\psi }}_3^{h_n})\rightarrow 0\) in the \(L^2\)-norm. Furthermore,

$$\begin{aligned} \Vert v\Vert _{L^2}^2 + \Vert {\varvec{w}}\Vert _{L^2}^2 \le \limsup _{n\rightarrow \infty }\left\| \left( \psi _1^{h_n},\psi _2^{h_n},h_n\psi _3^{h_n}\right) \right\| _{L^2}^2. \end{aligned}$$
(64)

Proof

Applying the Griso’s decomopsition (Theorem 4.2) on each \({{\varvec{\psi }}}^{h_n}\), we find

$$\begin{aligned} {{\varvec{\psi }}}^{h_n}(x) = \hat{{\varvec{\psi }}}^{h_n}(x') + {{\varvec{r}}}^{h_n}(x')\wedge x_3{{\varvec{e}}}_3 + \bar{{\varvec{u}}}^{h_n}(x), \end{aligned}$$

with sequences \(\hat{{\varvec{\psi }}}^{h_n}(x') = \int _I {\varvec{\psi }}^{h_n}(x',x_3){\mathrm {d}}x_3, {\varvec{r}}^{h_n}(x')= \frac{3}{2}\int _Ix_3{\varvec{e}}_3\wedge {\varvec{\psi }}^{h_n}(x',x_3){\mathrm {d}}x_3\) and \(\bar{{\varvec{\psi }}}^{h_n}\) satisfying the following a priori estimate

$$\begin{aligned}&\left\| {\text {sym}}\,\nabla '\left( \hat{\psi }_1^{h_n},{\hat{\psi }}_2^{h_n}\right) \right\| _{L^2}^2 + \frac{1}{12}\left\| {\text {sym}}\,\nabla '\left( r_2^{h_n},-r_1^{h_n}\right) \right\| _{L^2}^2 \nonumber \\&\quad + \frac{1}{2h_n^2}\left\| \partial _1\left( h_n\hat{\psi }_3^{h_n}\right) + r_2^{h_n}\right\| _{L^2}^2 \nonumber \\&\quad + \frac{1}{2h_n^2}\left\| \partial _2\left( h_n\hat{\psi }_3^{h_n}\right) - r_1^{h_n}\right\| _{L^2}^2\, + \Vert \nabla _{h_n}\bar{{\varvec{\psi }}}^{h_n}\Vert _{L^2}^2 \nonumber \\&\quad + \frac{1}{h_n^2}\Vert \bar{{\varvec{\psi }}}^{h_n}\Vert _{L^2}^2 \le C\Vert {\text {sym}}\,\nabla _{h_n}{\varvec{\psi }}^{h_n}\Vert _{L^2}^2 \le C. \end{aligned}$$
(65)

Together with the Korn’s inequality with boundary condition (cf. Theorem 4.1), the above estimate implies (on a subsequence)

$$\begin{aligned} (\hat{\psi }_1^{h_n},{\hat{\psi }}_2^{h_n}) \rightharpoonup {{\varvec{w}}}\quad \text {weakly in }H^1(\omega ,{\mathbb {R}}^2)\quad \text {and} \quad {{\varvec{r}}}^{h_n} \rightharpoonup {{\varvec{r}}}\quad \text {weakly in }H^1(\omega ,{\mathbb {R}}^2). \end{aligned}$$

Furthermore, using the triangle inequality and estimate (65)

$$\begin{aligned} \partial _1(h_n\hat{{\varvec{\psi }}}^{h_n}_3) \rightarrow -r_2\quad \text {and}\quad \partial _2(h_n\hat{{\varvec{\psi }}}^{h_n}_3) \rightarrow r_1 \quad \text {strongly in }L^2(\omega ). \end{aligned}$$

By the compactness of the trace operator, \({{\varvec{r}}}\in H^1_{\varGamma _d}(\omega ,{\mathbb {R}}^2)\), thus, by the Korn’s inequality, there exists \(v\in H^2_{\varGamma _d}(\omega )\) such that

$$\begin{aligned} h_n\hat{{\varvec{\psi }}}^{h_n}_3 \rightarrow v \quad \text { strongly in }H^1(\omega ),\quad \text {and}\quad r_1 = \partial _2 v,\quad r_2 = -\partial _1v. \end{aligned}$$

Defining

$$\begin{aligned} {\bar{{\varvec{\psi }}}}^{h_n}(x) = {\varvec{\psi }}^{h_n}(x) - \left( \begin{array}{c}{\varvec{w}}(x') \\ \dfrac{v(x')}{h_n}\end{array}\right) + x_3\left( \begin{array}{c} \nabla 'v(x') \\ 0 \end{array} \right) , \end{aligned}$$

it is easy to check \(\left( {\bar{\psi }}_1^{h_n},{\bar{\psi }}_2^{h_n},h_n{\bar{\psi }}_3^{h_n}\right) \rightarrow 0\) in the \(L^2\)-norm, which finishes the proof. \(\square \)

The following lemma is given in [26, Proposition 3.3]. It is a consequence of Theorem 4.2. It tells us how we can further decompose the sequence of deformations that has bounded symmetrized scaled gradient.

Lemma 4.4

Let \( A \subset {\mathbb {R}}^2\) with \(C^{1,1}\) boundary. Denote by \(\{A_i\}_{i=1,\dots ,k}\) the connected components of A. Let \(({{\varvec{\psi }}}^{h_n})_n \subset H^1(A \times I,{\mathbb {R}}^3)\) be such that

$$\begin{aligned}&\left( \psi _1^{h_n},\psi _2^{h_n},h_n\psi _3^{{h_n}}\right) \rightarrow 0, \text { strongly in } L^2,\quad \forall n \in {\mathbb {N}},\ \forall i=1, \dots ,k ,\ \int _{A_i} \psi _3^{h_n}=0, \\&\limsup _{n \rightarrow \infty } \Vert {\text {sym}}\,\nabla _{h_n} {\varvec{\psi }}^{h_n}\Vert _{L^2} \le M<\infty . \end{aligned}$$

Then there exist \((\varphi ^{h_n})_{n \in {\mathbb {N}}} \subset H^2(A), (\tilde{{{\varvec{\psi }}}}^{h_n})_{n \in {\mathbb {N}}} \subset H^1(A \times I ,{\mathbb {R}}^3)\) such that

$$\begin{aligned} {\text {sym}}\,\nabla _{h_n}{{\varvec{\psi }}}^{h_n}=-x_3\iota ({\text {sym}}\,\nabla '^2 \varphi ^{h_n})+{\text {sym}}\,\nabla _{h_n} \tilde{{\varvec{\psi }}}^{h_n}+o^{h_n}, \end{aligned}$$

where \(o^{h_n} \in L^2(A \times I,{\mathbb {R}}^{3 \times 3})\) is such that \(o^{h_n} \rightarrow 0\), strongly in \(L^2\), and the following properties hold

$$\begin{aligned}&\lim _{n \rightarrow \infty } \left( \Vert \varphi ^{h_n}\Vert _{H^1}+\Vert \tilde{{{\varvec{\psi }}}}^{h_n}\Vert _{L^2} \right) =0,\\&\limsup _{n \rightarrow \infty } \left( \Vert \varphi ^{h_n} \Vert _{H^2}+\Vert \nabla _{h_n} \tilde{{{\varvec{\psi }}}}^{h_n}\Vert _{L^2} \right) \le C(A) M. \end{aligned}$$

The following lemma is given in [26, Lemma 3.6]. Although the claim can be put in more general form (since the argument is simple truncation), we state it only in the form we need here.

Lemma 4.5

Let \(p\ge 1\) and \(A\subset {\mathbb {R}}^2\) be an open, bounded set. Let \(({{\varvec{\psi }}}^{h_n})_{n \in {\mathbb {N}}} \subset W^{1,p}(A \times I,{\mathbb {R}}^3)\) and \((\varphi ^{h_n})_{n \in {\mathbb {N}}} \subset W^{2,p}(A)\). Suppose that \(\left( |\nabla '^2 \varphi ^{h_n}|^p\right) _{n\in {\mathbb {N}}}\) and \(\left( | \nabla _{h_n} {{\varvec{\psi }}}^{h_n} |^p\right) _{n \in {\mathbb {N}}}\) are equi-integrable and

$$\begin{aligned} \lim _{n \rightarrow \infty } \left( \Vert \varphi ^{h_n} \Vert _{W^{1,p}}+\Vert {\varvec{\psi }}^{h_n} \Vert _{L^p} \right) =0. \end{aligned}$$

Then there exist sequences \((\tilde{\varphi }^{h_n})_{n \in {\mathbb {N}}} \subset W^{2,p}(A), (\tilde{\psi }^{h_n})_{n\in {\mathbb {N}}}\subset W^{1,p}(A \times I,{\mathbb {R}}^3)\) and a sequence of sets \((A_n)_{n\in {\mathbb {N}}}\) such that for each \(n \in {\mathbb {N}}, A_n \ll A_{n+1} \ll A\) and \(\cup _{n \in {\mathbb {N}}} A_n=A\) and

  1. (a)

    \(\tilde{\varphi }^{h_n}=0, \nabla ' \tilde{\varphi }^{h_n}=0\) in a neighborhood of \(\partial A\), \(\tilde{{{\varvec{\psi }}}}^{h_n}=0\) in a neighborhood of \(\partial A \times I\);

  2. (b)

    \(\tilde{{{\varvec{\psi }}}}^{h_n}={{\varvec{\psi }}}^{h_n} \text { on } A_n \times I,\ \tilde{\varphi }^{h_n}=\varphi ^{h_n} \text { on } A_n\);

  3. (c)

    \(\Vert \tilde{\varphi }^{h_n}-\varphi ^{h_n}\Vert _{W^{2,p}}\rightarrow 0,\ \Vert \tilde{{{\varvec{\psi }}}}^{h_n}-{{\varvec{\psi }}}^{h_n}\Vert _{W^{1,p}}\rightarrow 0, \Vert \nabla _{h_n} \tilde{{{\varvec{\psi }}}}^{h_n}-\nabla _{h_n}{{\varvec{\psi }}}^{h_n}\Vert _{L^p} \rightarrow 0\), as \(n \rightarrow \infty \).

The following two lemmas are given in [13] and [6]. The proof of the second claim in the first lemma is given in [26, Proposition A.5] as an adaptation of the result given in [13].

Lemma 4.6

Let \(p>1\) and \(A \subset {\mathbb {R}}^n\) be an open bounded set.

  1. (a)

    Let \(( w^n)_{n \in {\mathbb {N}}}\) be a bounded sequence in \(W^{1,p}(A)\). Then there exist a subsequence \(( w^{n(k)})_{k \in {\mathbb {N}}}\) and a sequence \(( z^k)_{k \in {\mathbb {N}}} \subset W^{1,p}(A)\) such that

    $$\begin{aligned} |\{ z^k \ne w^{n(k)} \}| \rightarrow 0 , \end{aligned}$$

    as \(k \rightarrow \infty \) and \(\big (|\nabla z_k|^p \big )_{k \in {\mathbb {N}}}\) is equi-integrable. Each \(z^k\) may be chosen to be Lipschitz function. If \( w^n \rightharpoonup w\) weakly in \(W^{1,p}\), then \(z^k \rightharpoonup w\) weakly in \(W^{1,p}\).

  2. (b)

    Let \(( w^n)_{n \in {\mathbb {N}}}\) be a bounded sequence in \(W^{2,p}(A)\). Then there exist a subsequence \(( w^{n(k)})_{k \in {\mathbb {N}}}\) and a sequence \(( z^k)_{k \in {\mathbb {N}}} \subset W^{2,p}(A)\) such that

    $$\begin{aligned} |\{ z^k \ne w^{n(k)} \}| \rightarrow 0 , \end{aligned}$$

    as \(k \rightarrow \infty \) and \(\big (|\nabla ^2 z^k|^p \big )_{k \in {\mathbb {N}}}\) is equi-integrable. Each \( z^k\) may be chosen such that \( z^k \in W^{2,\infty }(S)\). If \( w^n \rightharpoonup w\) weakly in \(W^{2,p}\), then \( z^k \rightharpoonup w\) weakly in \(W^{2,p}\).

Lemma 4.7

Let \(p>1\) and \(A \subset {\mathbb {R}}^2\) be an open bounded set with Lipschitz boundary. Let \((h_n)_{n\in {\mathbb {N}}}\) be a sequence of positive numbers converging to 0 and let \(({{\varvec{w}}}^{h_n})_{n \in {\mathbb {N}}} \subset W^{1,p} (A \times I, {\mathbb {R}}^3)\) be a bounded sequence satisfying:

$$\begin{aligned} \limsup _{n \in {\mathbb {N}}} \Vert \nabla _{h_n} {{\varvec{w}}}^{h_n}\Vert _{L^p}<+\infty . \end{aligned}$$

Then there exists a subsequence \(({{\varvec{w}}}^{h_{n(k)}})_{k \in {\mathbb {N}}}\) and a sequence \(({{\varvec{z}}}^{h_{n(k)}})_{k \in {\mathbb {N}}}\) such that

$$\begin{aligned} |{{\varvec{z}}}^{h_{n(k)}} \ne {{\varvec{w}}}^{h_{n(k)}} | \rightarrow 0, \end{aligned}$$

as \(k \rightarrow \infty \) and \(|\nabla _{h_{n(k)}} {{\varvec{z}}}^{h_{n(k)}}|^p\) is equi-integable. If \({{\varvec{w}}}^{h_{n}}\rightharpoonup {{\varvec{w}}} \in W^{1,p}(A,{\mathbb {R}}^3)\) weakly in \(W^{1,p}\), then \({{\varvec{z}}}^{h_{n(k)}}\rightharpoonup {{\varvec{w}}} \) in \(W^{1,p}\). Each \({{\varvec{z}}}^{h_{n(k)}}\) may be chosen such that \(|\nabla _{h_{n(k)}}{{\varvec{z}}}^{h_{n(k)}}|\) is bounded.

The following lemma is given in [26, Lemma 3.4]. For the sake of completeness, we will give also the proof.

Lemma 4.8

(continuity in \({{\varvec{M}}}\)) Under the uniform coerciveness and boundedness assumption (2), there exists a constant \(C>0\) depending only on \(\alpha \) and \(\beta \), such that for every sequence \((h_n)_{n}\) monotonically decreasing to zero and \(A \subset \omega \) open set with Lipschitz boundary it holds:

$$\begin{aligned} \left| \mathcal {K}_{(h_n)}^\pm ({{\varvec{M}}}_1,A)-\mathcal {K}_{(h_n)}^\pm ({{\varvec{M}}}_2,A)\right|\le & {} C \Vert {{\varvec{M}}}_1-{{\varvec{M}}}_2\Vert _{L^2}\left( \Vert {{\varvec{M}}}_1\Vert _{L^2}+\Vert {{\varvec{M}}}_2\Vert _{L^2}\right) ,\nonumber \\&\ \forall {{\varvec{M}}}_1, {{\varvec{M}}}_2 \in \mathcal S(\omega ), \end{aligned}$$
(66)

Proof

Due to relation (13), it is enough to assume \(A=\omega \). For fixed \({{\varvec{M}}}_1,\, {{\varvec{M}}}_2 \in \mathcal S(\omega )\) and \(r,\,h_n>0\) take arbitrary \({{\varvec{\psi }}}_{{{\varvec{M}}}_\alpha }^{r,h_n}\in H^1(\varOmega ,{\mathbb {R}}^3)\), which for \(\alpha =1,2\) satisfy:

$$\begin{aligned}&\int _\varOmega Q^{h_n}\left( x,\iota ({{\varvec{M}}}_\alpha )+\nabla _{h_n} {{\varvec{\psi }}}_{{{\varvec{M}}}_\alpha }^{r,h_n}\right) {\mathrm {d}}x \nonumber \\&\quad \le \inf _{\begin{array}{c} {{\varvec{\psi }}} \in H^1(\varOmega ,{\mathbb {R}}^3)\\ \Vert (\psi _1,\psi _2,h_n\psi _3)\Vert _{L^2} \le r \end{array}} \int _{\varOmega } Q^{h_n}\left( x,\iota ({{\varvec{M}}}_\alpha )+\nabla _{h_n} {{\varvec{\psi }}}\right) {\mathrm {d}}x + h_n. \nonumber \\&\Vert (\psi _{\alpha ,1}^{r,h_n},\psi _{\alpha ,2}^{r,h_n},h_n\psi _{\alpha ,3}^{r,h_n})\Vert _{L^2} \le r\, \end{aligned}$$
(67)

We want to prove that for every \(r>0\) we have

$$\begin{aligned}&\left| \int _{\varOmega } Q^{h_n}\left( x,\iota ({{\varvec{M}}}_1 )+\nabla _{h_n}{{\varvec{\psi }}}_{{{\varvec{M}}}_1 }^{r,h_n}\right) {\mathrm {d}}x - \int _{\varOmega } Q^{h_n}\left( x,\iota ({{\varvec{M}}}_2 )+\nabla _{h_n} {\varvec{\psi }}_{{{\varvec{M}}}_2}^{r,h_n}\right) {\mathrm {d}}x \right| \nonumber \\&\quad \le C \Vert {{\varvec{M}}}_1-{{\varvec{M}}}_2\Vert _{L^2}\left( \Vert {{\varvec{M}}}_1\Vert _{L^2}+\Vert {{\varvec{M}}}_2\Vert _{L^2}\right) + h_n. \end{aligned}$$
(68)

From that, (66) can be easily obtained by using (14) for a family of balls of radius r.

Let us prove (68). From (67) and (2), by testing with zero function, we can assume for \(\alpha =1,2\)

$$\begin{aligned} \alpha \Vert {{\varvec{M}}}_\alpha + {\text {sym}}\,\nabla _{h_n} {{\varvec{\psi }}}^{r,h_n}_{{{\varvec{M}}}_\alpha }\Vert ^2_{L^2} \le \int _{A \times I} Q^{h_n}\left( x,\iota ({{\varvec{M}}}_\alpha )+\nabla _{h_n} {{\varvec{\psi }}}_{{{\varvec{M}}}_\alpha }^{r,h_n}\right) {\mathrm {d}}x \le \beta \Vert {{\varvec{M}}}_{\alpha }\Vert ^2_{L^2}. \end{aligned}$$

From this we have for \(\alpha =1,2\)

$$\begin{aligned} \Vert {\text {sym}}\,\nabla _{h_n} {{\varvec{\psi }}}^{r,h_n}_{{{\varvec{M}}}_\alpha }\Vert ^2_{L^2} \le C(\alpha ,\beta ) \Vert {{\varvec{M}}}_{\alpha }\Vert ^2_{L^2}. \end{aligned}$$
(69)

Without any loss of generality we can also assume that

$$\begin{aligned} \int _{\varOmega } Q^{h_n} \left( x,\iota ({{\varvec{M}}}_1)+\nabla _{h_n} {\varvec{\psi }}_{{{\varvec{M}}}_1}^{r,h_n}\right) {\mathrm {d}}x \ge \int _{\varOmega } Q^{h_n}\left( x,\iota ({{\varvec{M}}}_2)+\nabla _{h_n} {{\varvec{\psi }}}_{{{\varvec{M}}}_2}^{r,h}\right) {\mathrm {d}}x. \end{aligned}$$
(70)

We have

$$\begin{aligned}&\left| \int _{\varOmega } Q^{h_n}\left( x,\iota ({{\varvec{M}}}_1)+\nabla _{h_n} {{\varvec{\psi }}}_{{{\varvec{M}}}_1}^{r,h_n}\right) {\mathrm {d}}x - \int _{\varOmega } Q^{h_n}\left( x,\iota ({{\varvec{M}}}_2)+\nabla _{h_n} {\varvec{\psi }}_{{{\varvec{M}}}_2}^{r,h_n}\right) {\mathrm {d}}x\right| \\&= \int _{\varOmega } Q^{h_n}\left( x,\iota ({{\varvec{M}}}_1)+\nabla _{h_n} {{\varvec{\psi }}}_{{{\varvec{M}}}_1}^{r,h_n}\right) {\mathrm {d}}x - \int _{\varOmega } Q^{h_n}\left( x,\iota ({{\varvec{M}}}_2)+\nabla _{h_n} {{\varvec{\psi }}}_{{{\varvec{M}}}_2}^{r,h_n}\right) {\mathrm {d}}x \\&= \int _{\varOmega } Q^{h_n}\left( x,\iota ({{\varvec{M}}}_1)+\nabla _{h_n} {{\varvec{\psi }}}_{{{\varvec{M}}}_1}^{r,{h_n}}\right) {\mathrm {d}}x - \int _{\varOmega } Q^{h_n}\left( x,\iota ({{\varvec{M}}}_1)+\nabla _{h_n} {\varvec{\psi }}_{2}^{r,h_n}\right) {\mathrm {d}}x \\&+ \int _{\varOmega } Q^{h_n}\left( x,\iota ({{\varvec{M}}}_1)+\nabla _{h_n} {{\varvec{\psi }}}_{{{\varvec{M}}}_2}^{r,h_n}\right) {\mathrm {d}}x - \int _{\varOmega } Q^{h_n}\left( x,\iota ({{\varvec{M}}}_2)+\nabla _{h_n} {\varvec{\psi }}_{{{\varvec{M}}}_2}^{r,h_n}\right) {\mathrm {d}}x \\&\le h_n + C(\alpha ,\beta ) \Vert {{\varvec{M}}}_1-{{\varvec{M}}}_2\Vert _{L^2}\left( \Vert {{\varvec{M}}}_1\Vert _{L^2}+\Vert {{\varvec{M}}}_2\Vert _{L^2}\right) , \end{aligned}$$

where we used (70), (3) and (69) respectively. This concludes the proof. \(\square \)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bukal, M., Velčić, I. On the simultaneous homogenization and dimension reduction in elasticity and locality of \(\varGamma \)-closure. Calc. Var. 56, 59 (2017). https://doi.org/10.1007/s00526-017-1167-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00526-017-1167-z

Mathematics Subject Classification

Navigation