Skip to main content
Log in

The obstacle problem for nonlinear integro-differential operators

  • Published:
Calculus of Variations and Partial Differential Equations Aims and scope Submit manuscript

Abstract

We investigate the obstacle problem for a class of nonlinear equations driven by nonlocal, possibly degenerate, integro-differential operators, whose model is the fractional p-Laplacian operator with measurable coefficients. Amongst other results, we will prove both the existence and uniqueness of the solutions to the obstacle problem, and that these solutions inherit regularity properties, such as boundedness, continuity and Hölder continuity (up to the boundary), from the obstacle.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Notes

  1. For preliminary results in this direction, it is worth mentioning the very recent paper [6], where optimal regularity results of the solution to the obstacle problem, and of the free boundary near regular points, have been achieved for linear integro-differential operators as in (1) in the case when \(p=2\).

  2. When needed, our definition of Tail can also be given in a more general way by replacing the ball \(B_r\) and the corresponding \(r^{sp}\) term by an open bounded set \(E\subset {\mathbb {R}}^n\) and its rescaled measure \(|E|^{sp/n}\), respectively. This is not the case in the present paper.

References

  1. Athanasopoulos, I., Caffarelli, L.A., Salsa, S.: The structure of the free boundary for lower dimensional obstacle problems. Am. J. Math. 130(2), 485–498 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  2. Bjorland, C., Caffarelli, L., Figalli, A.: Non-local gradient dependent operators. Adv. Math. 230, 1859–1894 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  3. Bouchaud, J.P., Georges, A.: Anomalous diffusion in disordered media: statistical mechanics models and physical interpretations. Phys. Rep. 195(4–5), 127–293 (1990)

    Article  MathSciNet  Google Scholar 

  4. Brasco, L., Lindgren, E.: Higher Sobolev regularity for the fractional \(p\)-Laplace equation in the superquadratic case. Adv. Math. http://cvgmt.sns.it/paper/2759/ (To appear) (2016)

  5. Caffarelli, L., Figalli, A.: Regularity of solutions to the parabolic fractional obstacle problem. J. Reine Angew. Math. 680, 191–233 (2013)

    MathSciNet  MATH  Google Scholar 

  6. Caffarelli, L., Ros-Oton, X., Serra, J.: Obstacle problems for integro-differential operators: regularity of solutions and free boundaries. arXiv:1601.05843 (Preprint) (2016)

  7. Caffarelli, L.A., Salsa, S., Silvestre, L.: Regularity estimates for the solution and the free boundary of the obstacle problem for the fractional Laplacian. Invent. Math. 171(2), 425–461 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  8. Caffarelli, L., Silvestre, L.: An extension problem related to the fractional Laplacian. Comm. Partial Differ. Equ. 32, 1245–1260 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  9. Caffarelli, L.A., Vasseur, A.: Drift diffusion equations with fractional diffusion and the quasi-geostrophic equation. Ann. Math. 171(3), 1903–1930 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  10. Cont, R., Tankov, P.: Financial Modelling with Jump Processes. Financ. Math. ser. Chapman & Hall/CRC Press, Boca Raton (2004)

    MATH  Google Scholar 

  11. Da Lio, F., Rivière, T.: \(3\)-Commutators estimates and the regularity of \(1/2\)-Harmonic maps into spheres. Anal. PDE 4, 149–190 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  12. Di Castro, A., Kuusi, T., Palatucci, G.: Nonlocal Harnack inequalities. J. Funct. Anal. 267(6), 1807–1836 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  13. Di Castro, A., Kuusi, T., Palatucci, G.: Local behavior of fractional \(p\)-minimizers. Ann. Inst. H. Poincaré Anal. Non Linéaire. 2016, doi:10.1016/j.anihpc.2015.04.003

  14. Di Nezza, E., Palatucci, G., Valdinoci, E.: Hitchhiker’s guide to the fractional Sobolev spaces. Bull. Sci. Math. 136, 521–573 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  15. Focardi, M.: Homogenization of random fractional obstacle problems via \(\Gamma \)-convergence. Comm. Partial Differ. Equ. 34, 1607–1631 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  16. Focardi, M.: Aperiodic fractional obstacle problems. Adv. Math. 225(6), 3502–3544 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  17. Franzina, G., Palatucci, G.: Fractional \(p\)-eigenvalues. Riv. Mat. Univ. Parma 5(2), 373–386 (2014)

    MathSciNet  MATH  Google Scholar 

  18. F. Hamel, X. Ros-Oton, Y. Sire, E. Valdinoci: A one-dimensional symmetry result for a class of nonlocal semilinear equations in the plane. Ann. Inst. H. Poincaré Anal. Non Linéaire. 2016, doi:10.1016/j.anihpc.2016.01.001

  19. Heinonen, J., Kilpeläinen, T., Martio, O.: Nonlinear Potential Theory of Degenerate Elliptic Equations. Dover Publications Inc., Mineola (2006)

    MATH  Google Scholar 

  20. Kinderlehrer, D., Stampacchia, G.: An Introduction to Variational Inequalities and Their Applications. Academic Press, New York (1980)

    MATH  Google Scholar 

  21. Korvenpää, J., Kuusi, T., Lindgren, E.: Equivalence of solutions to fractional \(p\)-Laplace type equations. arXiv:1605.03455 (Preprint) (2016)

  22. Korvenpää, J., Kuusi, T., Palatucci, G.: Hölder continuity up to the boundary for a class of fractional obstacle problems. Atti Accad. Naz. Lincei Rend. Lincei. Mat. Appl. 27, 355–367 (2016)

  23. Korvenpää, J., Kuusi, T., Palatucci, G.: Fractional superharmonic functions and the Perron method for nonlinear integro-differential equations. arXiv:1605.00906 (Preprint) (2016)

  24. Guan, Q., Gunzburger, M.: Analysis and approximation of a nonlocal obstacle problem. https://www.researchgate.net/publication/283619635 (Preprint) (2015)

  25. Kuusi, T., Mingione, G., Sire, Y.: Nonlocal equations with measure data. Comm. Math. Phys. 337(3), 1317–1368 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  26. Kuusi, T., Mingione, G., Sire, Y.: Nonlocal self-improving properties. Anal. PDE 8(1), 57–114 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  27. Iannizzotto, A., Mosconi, S., Squassina, M.: Global Hölder regularity for the fractional \(p\)-Laplacian. Rev. Mat. Iberoamericana. https://www.researchgate.net/publication/268150481 (To appear) (2016)

  28. Iannizzotto, A., Squassina, M.: Weyl-type laws for fractional \(p\)-eigenvalue problems. Asympt. Anal. 88, 233–245 (2014)

    MathSciNet  MATH  Google Scholar 

  29. Lindgren, E.: Hölder estimates for viscosity solutions of equations of fractional \(p\)-Laplace type. arXiv:1405.6612 (Preprint) (2015)

  30. Malý, J., Ziemer, W.P.: Fine Regularity of Solutions of Elliptic Partial Differential Equations. American Mathematical Society, Providence (1997)

    Book  MATH  Google Scholar 

  31. Mingione, G.: The Calderón-Zygmund theory for elliptic problems with measure data. Ann. Sc. Norm. Super. Pisa Cl. Sci. 6, 195–261 (2007)

    MathSciNet  MATH  Google Scholar 

  32. Mingione, G.: Gradient potential estimates. J. Eur. Math. Soc. 13, 459–486 (2011)

    MathSciNet  MATH  Google Scholar 

  33. Musina, R., Nazarov, A.I., Sreenadh, K.: Variational inequalities for the fractional Laplacian. arXiv:1511.07417 (Preprint) (2015)

  34. Palatucci, G., Pisante, A.: Improved Sobolev embeddings, profile decomposition, and concentration-compactness for fractional Sobolev spaces. Calc. Var. Partial Differ. Equ. 50(3–4), 799–829 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  35. Palatucci, G., Pisante, A.: A global compactness type result for Palais–Smale sequences in fractional Sobolev spaces. Nonlinear Anal. 117(3–4), 1–7 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  36. Palatucci, G., Savin, O., Valdinoci, E.: Local and global minimizers for a variational energy involving a fractional norm. Ann. Mat. Pura Appl. 192(4), 673–718 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  37. Petrosyan, A., Pop, C.: Optimal regularity of solutions to the obstacle problem for the fractional Laplacian with drift. J. Funct. Anal. 268(2), 417–472 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  38. Ros-Oton, X.: Boundary regularity, Pohozaev identities, and nonexistence results. In: Kuusi, T., Palatucci, G. (eds.) Recent Developments in the Nonlocal Theory. Book Series on Measure Theory. De Gruyter, Berlin (2016)

    Google Scholar 

  39. Ros-Oton, X., Serra, J.: Boundary regularity for fully nonlinear integro-differential equations. Duke Math. J. arXiv:1404.1197 (To appear) (2016)

  40. Salsa, S.: The problems of the obstacle in lower dimension and for the fractional Laplacian. In: Regularity Estimates for Nonlinear Elliptic and Parabolic Problems. Lecture Notes in Math., vol. 2045, pp. 153–244. Springer, Heidelberg (2012)

  41. Schikorra, A.: Nonlinear commutators for the fractional \(p\)-Laplacian and applications. Math. Ann. (2016). doi:10.1007/s00208-015-1347-0

    Google Scholar 

  42. Silvestre, L.: Regularity of the obstacle problem for a fractional power of the Laplace operator. Comm. Pure Appl. Math. 60(1), 67–112 (2007)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Giampiero Palatucci.

Additional information

Communicated by A. Malchiodi.

The first author has been supported by the Magnus Ehrnrooth Foundation (Grant Nos. ma2014n1, ma2015n3). The second author has been supported by the Academy of Finland. The third author is a member of Gruppo Nazionale per l’Analisi Matematica, la Probabilità e le loro Applicazioni (GNAMPA) of Istituto Nazionale di Alta Matematica “F. Severi” (INdAM), whose support is acknowledged. The results of this paper have been announced in the preliminary research report [22].

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Korvenpää, J., Kuusi, T. & Palatucci, G. The obstacle problem for nonlinear integro-differential operators. Calc. Var. 55, 63 (2016). https://doi.org/10.1007/s00526-016-0999-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00526-016-0999-2

Mathematics Subject Classification

Navigation