Skip to main content
Log in

Accuracy improvement in Ag:a-Si memristive synaptic device-based neural network through Adadelta learning method on handwritten-digit recognition

  • Original Article
  • Published:
Neural Computing and Applications Aims and scope Submit manuscript

Abstract

Traditional computing architecture (Von Neumann) that requires data transfer between the off-chip memory and processor consumes a large amount of energy when running machine learning (ML) models. Memristive synaptic devices are employed to eliminate this inevitable inefficiency in energy while solving cognitive tasks. However, the performances of energy-efficient neuromorphic systems, which are expected to provide promising results, need to be enhanced in terms of accuracy and test error rates for classification applications. Improving accuracy in such ML models depends on the optimal learning parameter changes from a device to algorithm-level optimisation. To do this, this paper considers the Adadelta, an adaptive learning rate technique, to achieve accurate results by reducing the losses and compares the accuracy, test error rates, and energy consumption of stochastic gradient descent (SGD), Adagrad and Adadelta optimisation methods integrated into the Ag:a-Si synaptic device neural network model. The experimental results demonstrated that Adadelta enhanced the accuracy of the hardware-based neural network model by up to 4.32% when compared to the Adagrad method. The Adadelta method achieved the best accuracy rate of 94%, while DGD and SGD provided an accuracy rate of 68.11 and 75.37%, respectively. These results show that it is vital to select a proper optimisation method to enhance performance, particularly the accuracy and test error rates of the neuro-inspired nano-synaptic device-based neural network models.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Data Availability

The data that support the findings of this study are not openly available due to reasons of sensitivity and are available from the corresponding author upon reasonable request.

Abbreviations

ACC:

Accuracy

Adadelta:

Adaptive delta

Adagrad:

Adaptive gradient

Ag:a-Si:

Silver (Ag) and amorphous silicon (a-Si)

ANN:

Artificial neural network

BL:

Bit line

CMOS:

Complementary metal-oxide-semiconductor

DGD:

Default gradient descent

eNVM:

Embedded non-volatile memory

FeFET:

Ferroelectric field-effect transistor

FFNN:

Feed-forward neural network

HfZrOx:

Hafnium (Hf), zirconium (Zr), and oxygen (O)

HZO:

Hafnium zinc oxide

LR:

Learning rate

LTD:

Long-term depression

LTP:

Long-term potentiation

ML:

Machine learning

MNIST:

Modified National Institute of Standards and Technology

NH:

Number of hidden neuron

NVM:

Non-volatile memory

SGD:

Stochastic gradient descent

WL:

Word line

References

  1. Wang P, Fan E, Wang P (2021) Comparative analysis of image classification algorithms based on traditional machine learning and deep learning. Pattern Recogn Lett 141:61–67. https://doi.org/10.1016/j.patrec.2020.07.042

    Article  Google Scholar 

  2. Sarpeshkar R (1998) Analog versus digital: extrapolating from electronics to neurobiology. Neural Comput 10(7):1601–1638. https://doi.org/10.1162/089976698300017052

    Article  Google Scholar 

  3. Zhu J, Zhang T, Yang Y, Huang R (2020) A comprehensive review on emerging artificial neuromorphic devices. Appl Phys Rev 7(1):011312. https://doi.org/10.1063/1.5118217

    Article  Google Scholar 

  4. Kim S, Kim H-D, Choi S-J (2019) Impact of synaptic device variations on classification accuracy in a binarized neural network. Sci Rep 9(1):15237. https://doi.org/10.1038/s41598-019-51814-5

    Article  Google Scholar 

  5. Burr GW, Shelby RM, Sidler S, Di Nolfo C, Jang J, Boybat I, Shenoy RS, Narayanan P, Virwani K, Giacometti EU et al (2015) Experimental demonstration and tolerancing of a large-scale neural network (165 000 synapses) using phase-change memory as the synaptic weight element. IEEE Trans Electron Devices 62(11):3498–3507. https://doi.org/10.1109/iedm.2014.7047135

    Article  Google Scholar 

  6. Jo SH, Chang T, Ebong I, Bhadviya BB, Mazumder P, Lu W (2010) Nanoscale memristor device as synapse in neuromorphic systems. Nano Lett 10(4):1297–1301. https://doi.org/10.1021/nl904092h

    Article  Google Scholar 

  7. Jerry M, Chen P-Y, Zhang J, Sharma P, Ni K, Yu S, Datta S (2017) Ferroelectric FET analog synapse for acceleration of deep neural network training. In: 2017 IEEE international electron devices meeting (IEDM), pp 2–6. https://doi.org/10.1109/iedm.2017.8268338

  8. Oh S, Kim T, Kwak M, Song J, Woo J, Jeon S, Yoo IK, Hwang H (2017) Hfzro x-based ferroelectric synapse device with 32 levels of conductance states for neuromorphic applications. IEEE Electron Device Lett 38(6):732–735. https://doi.org/10.1109/led.2017.2698083

    Article  Google Scholar 

  9. Liao Y, Deng N, Wu H, Gao B, Zhang Q, Qian H (2018) Weighted synapses without carry operations for RRAM-based neuromorphic systems. Front Neurosci 12:167. https://doi.org/10.3389/fnins.2018.00167

    Article  Google Scholar 

  10. Zeiler MD (2012) Adadelta: an adaptive learning rate method. arXiv preprint arXiv:1212.5701

  11. Deng L (2012) The mnist database of handwritten digit images for machine learning research [best of the web]. IEEE Signal Process Mag 29(6):141–142. https://doi.org/10.1109/msp.2012.2211477

    Article  Google Scholar 

  12. He H, Wu D (2019) Transfer learning for brain-computer interfaces: a Euclidean space data alignment approach. IEEE Trans Biomed Eng 67(2):399–410. https://doi.org/10.1109/tbme.2019.2913914

    Article  Google Scholar 

  13. Tang J, Yuan F, Shen X, Wang Z, Rao M, He Y, Sun Y, Li X, Zhang W, Li Y et al (2019) Bridging biological and artificial neural networks with emerging neuromorphic devices: fundamentals, progress, and challenges. Adv Mater 31(49):1902761. https://doi.org/10.1002/adma.201902761

    Article  Google Scholar 

  14. Ryu J-H, Kim B, Hussain F, Ismail M, Mahata C, Oh T, Imran M, Min KK, Kim T-H, Yang B-D et al (2020) Zinc tin oxide synaptic device for neuromorphic engineering. IEEE Access 8:130678–130686. https://doi.org/10.1109/access.2020.3005303

    Article  Google Scholar 

  15. Sahu DP, Jetty P, Jammalamadaka SN (2021) Graphene oxide based synaptic memristor device for neuromorphic computing. Nanotechnology 32(15):155701. https://doi.org/10.1088/1361-6528/abd978

    Article  Google Scholar 

  16. Guo T, Pan K, Sun B, Wei L, Yan Y, Zhou Y, Wu Y (2021) Adjustable leaky-integrate-and-fire neurons based on memristor-coupled capacitors. Mater Today Adv 12:100192. https://doi.org/10.1016/j.mtadv.2021.100192

    Article  Google Scholar 

  17. Ravenscroft D, Occhipinti LG (2021) 2d material memristor devices for neuromorphic computing. In: 2021 17th international workshop on cellular nanoscale networks and their applications (CNNA), pp 1–4. https://doi.org/10.1109/cnna49188.2021.9610802

  18. Sun J, Han J, Wang Y, Liu P (2021) Memristor-based neural network circuit of emotion congruent memory with mental fatigue and emotion inhibition. IEEE Trans Biomed Circuits Syst 15(3):606–616. https://doi.org/10.1109/tbcas.2021.3090786

    Article  Google Scholar 

  19. Xu W, Wang J, Yan X (2021) Advances in memristor-based neural networks. Front Nanotechnol 3:645995. https://doi.org/10.3389/fnano.2021.645995

    Article  Google Scholar 

  20. Lederer M, Kämpfe T, Ali T, Müller F, Olivo R, Hoffmann R, Laleni N, Seidel K (2021) Ferroelectric field effect transistors as a synapse for neuromorphic application. IEEE Trans Electron Devices 68(5):2295–2300. https://doi.org/10.1109/ted.2021.3068716

    Article  Google Scholar 

  21. Muñoz-Martín I, Bianchi S, Melnic O, Bonfanti AG, Ielmini D (2021) A drift-resilient hardware implementation of neural accelerators based on phase change memory devices. IEEE Trans Electron Devices 68(12):6076–6081. https://doi.org/10.1109/ted.2021.3118996

    Article  Google Scholar 

  22. Wang L, Shen X, Gao Z, Fu J, Yao S, Cheng L, Lian X (2022) Review of applications of 2d materials in memristive neuromorphic circuits. J Mater Sci 57(8):4915–4940. https://doi.org/10.1007/s10853-022-06954-x

    Article  Google Scholar 

  23. Zhou G, Wang Z, Sun B, Zhou F, Sun L, Zhao H, Hu X, Peng X, Yan J, Wang H et al (2022) Volatile and nonvolatile memristive devices for neuromorphic computing. Adv Electron Mater 8(7):2101127. https://doi.org/10.1002/aelm.202101127

    Article  Google Scholar 

  24. Pradeep J, Srinivasan E, Himavathi S (2011) Neural network based handwritten character recognition system without feature extraction. In: 2011 international conference on computer, communication and electrical technology (ICCCET), pp 40–44. https://doi.org/10.1109/icccet.2011.5762513. IEEE

  25. Bai K, An Q, Liu L, Yi Y (2020) A training-efficient hybrid-structured deep neural network with reconfigurable memristive synapses. IEEE Trans Very Large Scale Integr Syst 28(1):62–75. https://doi.org/10.1109/tvlsi.2019.2942267

    Article  Google Scholar 

  26. Davies T (1981) Kirchhoff’s circulation law applied to multi-loop kinematic chains. Mech Mach Theory 16(3):171–183. https://doi.org/10.1016/0094-114x(81)90033-1

    Article  Google Scholar 

  27. Yu S (2018) Neuro-inspired computing with emerging nonvolatile memorys. Proc IEEE 106(2):260–285. https://doi.org/10.1109/jproc.2018.2790840

    Article  Google Scholar 

  28. Hu M, Li H, Wu Q, Rose GS (2012) Hardware realization of BSB recall function using memristor crossbar arrays. In: DAC design automation conference 2012, pp 498–503. https://doi.org/10.1145/2228360.2228448

  29. Gul F (2020) Nano-scale single layer tio2-based artificial synaptic device. Appl Nanosci 10(2):611–616. https://doi.org/10.1007/s13204-019-01179-y

    Article  Google Scholar 

  30. Luo Y, Peng X, Yu S (2019) Mlp+ neurosimv3. 0: Improving on-chip learning performance with device to algorithm optimizations. In: Proceedings of the international conference on neuromorphic systems, pp 1–7. https://doi.org/10.1145/3354265.3354266

  31. Ilyas N, Li D, Li C, Jiang X, Jiang Y, Li W (2020) Analog switching and artificial synaptic behavior of ag/sio x: Ag/tio x/p++-si memristor device. Nanoscale Res Lett 15(1):1–11. https://doi.org/10.1186/s11671-020-3249-7

    Article  Google Scholar 

  32. Chen P-Y, Peng X, Yu S (2018) Neurosim: a circuit-level macro model for benchmarking neuro-inspired architectures in online learning. IEEE Trans Comput Aided Des Integr Circuits Syst 37(12):3067–3080. https://doi.org/10.1109/tcad.2018.2789723

    Article  Google Scholar 

  33. Mustapha A, Mohamed L, Ali K (2020) An overview of gradient descent algorithm optimization in machine learning: Application in the ophthalmology field. In: Smart applications and data analysis: third international conference, SADASC 2020, Marrakesh, Morocco, June 25–26, 2020, Proceedings 3, pp 349–359. https://doi.org/10.1007/978-3-030-45183-7_27. Springer

  34. Bottou L (2012) Stochastic gradient descent tricks. Neural networks: tricks of the trade, 2nd edn. Springer, Berlin, pp 421–436. https://doi.org/10.1007/978-3-642-35289-8_25

    Chapter  Google Scholar 

  35. Ruder S (2016) An overview of gradient descent optimization algorithms. arXiv preprint arXiv:1609.04747

  36. Duchi J, Hazan E, Singer Y (2011) Adaptive subgradient methods for online learning and stochastic optimization. J Mach Learn Res 12(7):2121–2159

    MathSciNet  MATH  Google Scholar 

  37. Dean J, Corrado G, Monga R, Chen K, Devin M, Mao M, Ranzato M, Senior A, Tucker P, Yang K, et al (2012) Large scale distributed deep networks. Adv Neural Infor Process Syst 25

  38. Kochenderfer MJ, Wheeler TA (2019) Algorithms for optimization. Mit Press, Cambridge, p 500

    MATH  Google Scholar 

  39. Li Y, Ren X, Zhao F, Yang S (2021) A zeroth-order adaptive learning rate method to reduce cost of hyperparameter tuning for deep learning. Appl Sci 11(21):10184. https://doi.org/10.3390/app112110184

    Article  Google Scholar 

  40. Zhang J, Hu F, Li L, Xu X, Yang Z, Chen Y (2019) An adaptive mechanism to achieve learning rate dynamically. Neural Comput Appl 31(10):6685–6698. https://doi.org/10.1007/s00521-018-3495-0

    Article  Google Scholar 

  41. Baldominos A, Saez Y, Isasi P (2019) A survey of handwritten character recognition with mnist and emnist. Appl Sci 9(15):3169. https://doi.org/10.3390/app9153169

    Article  Google Scholar 

  42. Chen P-Y, Yu S (2018) Technological benchmark of analog synaptic devices for neuroinspired architectures. Design Test 36(3):31–38. https://doi.org/10.1109/mdat.2018.2890229

    Article  MathSciNet  Google Scholar 

  43. Oymak S, Soltanolkotabi M (2019) Overparameterized nonlinear learning: gradient descent takes the shortest path. In: International conference on machine learning, PMLR, pp 4951–4960.

  44. Gao L, Wang I-T, Chen P-Y, Vrudhula S, Seo J-S, Cao Y, Hou T-H, Yu S (2015) Fully parallel write/read in resistive synaptic array for accelerating on-chip learning. Nanotechnology 26(45):455204. https://doi.org/10.1088/0957-4484/26/45/455204

    Article  Google Scholar 

  45. Woo J, Moon K, Song J, Lee S, Kwak M, Park J, Hwang H (2016) Improved synaptic behavior under identical pulses using alo x/hfo 2 bilayer Rram array for neuromorphic systems. Electron Device Lett 37(8):994–997. https://doi.org/10.1109/led.2016.2582859

    Article  Google Scholar 

  46. Beohar D, Rasool A (2021) Handwritten digit recognition of mnist dataset using deep learning state-of-the-art artificial neural network (ANN) and convolutional neural network (CNN). In: 2021 international conference on emerging smart computing and informatics (ESCI), pp 542–548. https://doi.org/10.1109/esci50559.2021.9396870

  47. He P, Zhou Y, Duan S, Hu X (2022) Memristive residual capsnet: a hardware friendly multi-level capsule network. Neurocomputing 496:1–10. https://doi.org/10.1016/j.neucom.2022.04.088

    Article  Google Scholar 

  48. Yang Y, Deng L, Wu S, Yan T, Xie Y, Li G (2020) Training high-performance and large-scale deep neural networks with full 8-bit integers. Neural Netw 125:70–82. https://doi.org/10.1016/j.neunet.2019.12.027

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yildiran Yilmaz.

Ethics declarations

Conflict of interest

The author declares that there is no conflict of interest in this study.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yilmaz, Y. Accuracy improvement in Ag:a-Si memristive synaptic device-based neural network through Adadelta learning method on handwritten-digit recognition. Neural Comput & Applic 35, 23943–23958 (2023). https://doi.org/10.1007/s00521-023-08995-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00521-023-08995-y

Keywords

Navigation