Skip to main content
Log in

A comparative assessment of tree-based predictive models to estimate geopolymer concrete compressive strength

  • Original Article
  • Published:
Neural Computing and Applications Aims and scope Submit manuscript

Abstract

Fly ash-based geopolymer concrete (FA-GPC) is a material that might be utilized to build a more sustainable construction industry; therefore, this paper aims to develop a novel approach for its compressive strength (CS) prediction. To achieve this goal, three tree-based machine learning methods, namely, Radom Forest (RF), Decision Tree (DT), and Extreme Gradient Boosting (XGBoost), were developed based on experimental databases considering fourteen key factors of FA-GPC. The results indicated that XGBoost outperformed other methods, as proved by excellent prediction metrics. The sensitivity analysis of XGBoost models was then discussed utilizing feature importance, mean Shapley additive explanations (SHAP), and Beeswarm-SHAP values. The findings indicated that FA content had the most crucial impact on the CS, followed by SiO2 and NaOH contents, among the other variables examined. Finally, the SHAP dependence plots technique was utilized to quantitatively discuss feature interactions and contributions to the CS of FA-GPC.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Data availability

Data will be made available on request.

References

  1. Bengar HA, Shahmansouri AA, Sabet NAZ, Kabirifar K, Tam VW (2020) Impact of elevated temperatures on the structural performance of recycled rubber concrete: experimental and mathematical modeling. Constr Build Mater 255:119374

    Article  Google Scholar 

  2. Metz B, Davidson O, De Coninck H (2005) Carbon dioxide capture and storage: special report of the intergovernmental panel on climate change. Cambridge University Press, Cambridge

    Google Scholar 

  3. Taylor M, Tam C, Gielen D (2006) Energy efficiency and CO2 emissions from the global cement industry. Korea 50:61–67

    Google Scholar 

  4. Farooq F, Rahman SKU, Akbar A, Khushnood RA, Javed MF (2020) A comparative study on performance evaluation of hybrid GNPs/CNTs in conventional and self-compacting mortar. Alex Eng J 59:369–379

    Article  Google Scholar 

  5. Sumanth Kumar B, Sen A, Rama Seshu D (2020) Shear strength of fly ash and GGBS based geopolymer concrete. Adv Sustain Constr Mater. https://doi.org/10.1007/978-981-15-3361-7_8

    Article  Google Scholar 

  6. Çelikten S, Sarıdemir M, Deneme İÖ (2019) Mechanical and microstructural properties of alkali-activated slag and slag+ fly ash mortars exposed to high temperature. Constr Build Mater 217:50–61

    Article  Google Scholar 

  7. Khale D, Chaudhary R (2007) Mechanism of geopolymerization and factors influencing its development: a review. J Mater Sci 42:729–746

    Article  Google Scholar 

  8. Davidovits J (1991) Geopolymers: Inorganic polymeric new materials. J Therm Anal Calorim 37:1633–1656. https://doi.org/10.1007/bf01912193

    Article  Google Scholar 

  9. Glasby T, Day J, Genrich R, Aldred J (2015) EFC geopolymer concrete aircraft pavements at Brisbane West Wellcamp Airport. Concrete 2015:1–9

    Google Scholar 

  10. Assi LN, Carter K, Deaver E, Ziehl P (2020) Review of availability of source materials for geopolymer/sustainable concrete. J Clean Prod 263:121477

    Article  Google Scholar 

  11. Shang J, Dai J-G, Zhao T-J, Guo S-Y, Zhang P, Mu B (2018) Alternation of traditional cement mortars using fly ash-based geopolymer mortars modified by slag. J Clean Prod 203:746–756

    Article  Google Scholar 

  12. Dwivedi A, Jain MK (2014) Fly ash–waste management and overview: a Review. Recent Res Sci Technol 6(1):30–35

    Google Scholar 

  13. Rafieizonooz M, Mirza J, Salim MR, Hussin MW, Khankhaje E (2016) Investigation of coal bottom ash and fly ash in concrete as replacement for sand and cement. Constr Build Mater 116:15–24

    Article  Google Scholar 

  14. Wang L, Chen L, Cho D-W, Tsang DC, Yang J, Hou D, Baek K, Kua HW, Poon C-S (2019) Novel synergy of Si-rich minerals and reactive MgO for stabilisation/solidification of contaminated sediment. J Hazard Mater 365:695–706

    Article  Google Scholar 

  15. Chen L, Wang L, Cho D-W, Tsang DC, Tong L, Zhou Y, Yang J, Hu Q, Poon CS (2019) Sustainable stabilization/solidification of municipal solid waste incinerator fly ash by incorporation of green materials. J Clean Prod 222:335–343

    Article  Google Scholar 

  16. Hardjito D, Wallah S, Sumajouw DMJ, Rangan B (2005) Fly ash-based geopolymer concrete. Aust J Struct Eng 6:77–86. https://doi.org/10.1080/13287982.2005.11464946

    Article  Google Scholar 

  17. Rangan BV (2008) Fly ash-based geopolymer concrete. Curtin University of Technology, Engineering Faculty. Research Report GC 4. Perth, Australia. 2008.[online]

  18. Davidovits J (1989) Geopolymers and geopolymeric materials. J Therm Anal 35:429–441. https://doi.org/10.1007/BF01904446

    Article  Google Scholar 

  19. Diaz-Loya EI, Allouche EN, Vaidya S (2011) Mechanical properties of fly-ash-based geopolymer concrete. ACI Mater J 108:300

    Google Scholar 

  20. Albitar M, Ali MM, Visintin P, Drechsler M (2017) Durability evaluation of geopolymer and conventional concretes. Constr Build Mater 136:374–385

    Article  Google Scholar 

  21. Davidovits J (1994) Properties of geopolymer cements

  22. Hardjito D (2005) Studies of fly ash-based geopolymer concrete, PhD Thesis, Curtin University

  23. Noushini A, Castel A, Aldred J, Rawal A (2020) Chloride diffusion resistance and chloride binding capacity of fly ash-based geopolymer concrete. Cement Concr Compos 105:103290

    Article  Google Scholar 

  24. Zhao R, Yuan Y, Cheng Z, Wen T, Li J, Li F, Ma ZJ (2019) Freeze-thaw resistance of Class F fly ash-based geopolymer concrete. Constr Build Mater 222:474–483

    Article  Google Scholar 

  25. Mehta A, Siddique R (2017) Sulfuric acid resistance of fly ash based geopolymer concrete. Constr Build Mater 146:136–143

    Article  Google Scholar 

  26. Duxson P, Fernández-Jiménez A, Provis JL, Lukey GC, Palomo A, van Deventer JS (2007) Geopolymer technology: the current state of the art. J Mater Sci 42:2917–2933

    Article  Google Scholar 

  27. Shahmansouri AA, Bengar HA, Jahani E (2019) Predicting compressive strength and electrical resistivity of eco-friendly concrete containing natural zeolite via GEP algorithm. Constr Build Mater 229:116883

    Article  Google Scholar 

  28. Shahmansouri AA, Bengar HA, Ghanbari S (2020) Compressive strength prediction of eco-efficient GGBS-based geopolymer concrete using GEP method. J Build Eng 31:101326

    Article  Google Scholar 

  29. Nguyen KT, Nguyen QD, Le TA, Shin J, Lee K (2020) Analyzing the compressive strength of green fly ash based geopolymer concrete using experiment and machine learning approaches. Constr Build Mater 247:118581

    Article  Google Scholar 

  30. Somna K, Jaturapitakkul C, Kajitvichyanukul P, Chindaprasirt P (2011) NaOH-activated ground fly ash geopolymer cured at ambient temperature. Fuel 90:2118–2124

    Article  Google Scholar 

  31. M.W. Ferdous, O. Kayali, A. Khennane (2013) A detailed procedure of mix design for fly ash based geopolymer concrete, in: Proceedings of the fourth asia-pacific conference on FRP in structures (APFIS 2013), Melbourne, Australia, pp. 11–13

  32. Panda B, Tan MJ (2018) Experimental study on mix proportion and fresh properties of fly ash based geopolymer for 3D concrete printing. Ceram Int 44:10258–10265

    Article  Google Scholar 

  33. Naghizadeh A, Ekolu SO (2019) Method for comprehensive mix design of fly ash geopolymer mortars. Constr Build Mater 202:704–717

    Article  Google Scholar 

  34. Rangan BV (2008) Design and manufacture of flyash-based geopolymer concrete. Concr Australia 34:37–43

    Google Scholar 

  35. Hardjito D, Wallah S, Sumajouw D, Rangan B (2004) Factors influencing the compressive strength of fly ash-based geopolymer concrete. Civil Eng Dimens 6(2):88–93

    Google Scholar 

  36. Singaram KK, Khan MA, Talakokula V (2021) Statistical analysis of fly ash and slag blended geopolymer concrete. Mater Today: Proceed. https://doi.org/10.1016/j.matpr.2021.12.026

    Article  Google Scholar 

  37. Nagajothi S, Elavenil S (2020) Influence of aluminosilicate for the prediction of mechanical properties of geopolymer concrete–artificial neural network. Silicon 12:1011–1021

    Article  Google Scholar 

  38. Ravali B, Krishna KBG, Kanth DR, Chari KJB, Prabhu SV, Ramesh R (2021) Empirical investigation on compressive strength of geopolymer and conventional concretes by nondestructive method. Adv Mater Sci Eng 2021:9575964. https://doi.org/10.1155/2021/9575964

    Article  Google Scholar 

  39. Khan MA, Memon SA, Farooq F, Javed MF, Aslam F, Alyousef R (2021) Compressive strength of fly-ash-based geopolymer concrete by gene expression programming and random forest. Adv Civil Eng 2021:6618407. https://doi.org/10.1155/2021/6618407

    Article  Google Scholar 

  40. Aneja S, Sharma A, Gupta R, Yoo D-Y (2021) Bayesian regularized artificial neural network model to predict strength characteristics of fly-ash and bottom-ash based geopolymer concrete. Materials. 14(7):1729. https://doi.org/10.3390/ma14071729

    Article  Google Scholar 

  41. Javed MF, Amin MN, Shah MI, Khan K, Iftikhar B, Farooq F, Aslam F, Alyousef R, Alabduljabbar H (2020) Applications of gene expression programming and regression techniques for estimating compressive strength of bagasse ash based concrete. Crystals 10:737

    Article  Google Scholar 

  42. Shahmansouri AA, Yazdani M, Ghanbari S, Bengar HA, Jafari A, Ghatte HF (2021) Artificial neural network model to predict the compressive strength of eco-friendly geopolymer concrete incorporating silica fume and natural zeolite. J Clean Prod 279:123697

    Article  Google Scholar 

  43. Dao DV, Ly H-B, Trinh SH, Le T-T, Pham BT (2019) Artificial intelligence approaches for prediction of compressive strength of geopolymer concrete. Materials 12:983

    Article  Google Scholar 

  44. Dauji S (2016) Prediction of compressive strength of concrete with decision trees. Int J Concr Technol 2:19–29

    Google Scholar 

  45. Sun Y, Li G, Zhang J, Qian D (2019) Prediction of the strength of rubberized concrete by an evolved random forest model. Adv Civil Eng. https://doi.org/10.1155/2019/5198583

    Article  Google Scholar 

  46. Farooq F, Nasir Amin M, Khan K, Rehan Sadiq M, Faisal Javed M, Aslam F, Alyousef R (2020) A comparative study of random forest and genetic engineering programming for the prediction of compressive strength of high strength concrete (HSC). Appl Sci 10:7330

    Article  Google Scholar 

  47. Ma H, Liu J, Zhang J, Huang J (2021) Estimating the compressive strength of cement-based materials with mining waste using support vector machine, decision tree, and random forest models, Advances in civil engineering

  48. Cui L, Chen P, Wang L, Li J, Ling H (2021) Application of extreme gradient boosting based on grey relation analysis for prediction of compressive strength of concrete, advances in civil engineering

  49. Zhang Y, Tong J, Wang Z, Gao F (2020) Customer transaction fraud detection using Xgboost model, in: 2020 International Conference on Computer Engineering and Application (ICCEA), IEEE, pp. 554–558

  50. Nguyen H, Bui X-N, Bui H-B, Cuong DT (2019) Developing an XGBoost model to predict blast-induced peak particle velocity in an open-pit mine: a case study. Acta Geophys 67:477–490

    Article  Google Scholar 

  51. Poona NK, Van Niekerk A, Nadel RL, Ismail R (2016) Random forest (RF) wrappers for waveband selection and classification of hyperspectral data. Appl Spectrosc 70:322–333

    Article  Google Scholar 

  52. Gholizadeh M, Jamei M, Ahmadianfar I, Pourrajab R (2020) Prediction of nanofluids viscosity using random forest (RF) approach. Chemom Intell Lab Syst 201:104010

    Article  Google Scholar 

  53. Fan L, Wang Z, Wang H (2013) Human activity recognition model based on decision tree, in: 2013 International Conference on Advanced Cloud and Big Data, IEEE, pp. 64–68

  54. Belle V, Papantonis I (2021) Principles and practice of explainable machine learning. Frontiers in big Data 39., (n.d.)

  55. Roscher R, Bohn B, Duarte MF, Garcke J (2020) Explainable machine learning for scientific insights and discoveries. IEEE Access 8:42200–42216. https://doi.org/10.1109/ACCESS.2020.2976199

    Article  Google Scholar 

  56. Xu F, Uszkoreit H, Du Y, Fan W, Zhao D, Zhu J (2019) Explainable AI: a brief survey on history, research areas, approaches and challenges. In: Tang J, Kan MY, Zhao D, Li S, Zan H (eds) Natural language processing and chinese computing. Springer, Cham, pp 563–574. https://doi.org/10.1007/978-3-030-32236-6_51

    Chapter  Google Scholar 

  57. Chakraborty D, Awolusi I, Gutierrez L (2021) An explainable machine learning model to predict and elucidate the compressive behavior of high-performance concrete. Result Eng 11:100245. https://doi.org/10.1016/j.rineng.2021.100245

    Article  Google Scholar 

  58. Tahmassebi A, Motamedi M, Alavi AH, Gandomi AH (2021) An explainable prediction framework for engineering problems: case studies in reinforced concrete members modeling. Eng Comput 39:609–626. https://doi.org/10.1108/EC-02-2021-0096

    Article  Google Scholar 

  59. Lundberg SM, Erion G, Chen H, DeGrave A, Prutkin JM, Nair B, Katz R, Himmelfarb J, Bansal N, Lee S-I (2020) From local explanations to global understanding with explainable AI for trees. Nat Mach Intell 2:56–67. https://doi.org/10.1038/s42256-019-0138-9

    Article  Google Scholar 

  60. Lundberg SM, Lee SI (2017) A unified approach to interpreting model predictions, Advances in Neural Information Processing Systems. 30

  61. Lundberg SM, Erion GG, Lee SI (2019) Consistent Individualized Feature Attribution for Tree Ensembles, arXiv:1802.03888

  62. Peng Y, Unluer C (2022) Analyzing the mechanical performance of fly ash-based geopolymer concrete with different machine learning techniques. Constr Build Mater 316:125785. https://doi.org/10.1016/j.conbuildmat.2021.125785

    Article  Google Scholar 

  63. Pavithra P, Srinivasula Reddy M, Dinakar P, Hanumantha Rao B, Satpathy BK, Mohanty AN (2016) A mix design procedure for geopolymer concrete with fly ash. J Clean Prod 133:117–125. https://doi.org/10.1016/j.jclepro.2016.05.041

    Article  Google Scholar 

  64. Xie T, Ozbakkaloglu T (2015) Behavior of low-calcium fly and bottom ash-based geopolymer concrete cured at ambient temperature. Ceram Int 41:5945–5958. https://doi.org/10.1016/j.ceramint.2015.01.031

    Article  Google Scholar 

  65. Aliabdo AA, Abd Elmoaty AEM, Salem HA (2019) Effect of water addition, plasticizer and alkaline solution constitution on fly ash based geopolymer concrete performance. Constr Build Mater 121:694–703. https://doi.org/10.1016/j.conbuildmat.2016.06.062

    Article  Google Scholar 

  66. Gunasekara C, Law DW, Setunge S (2016) Long term permeation properties of different fly ash geopolymer concretes. Constr Build Mater 124:352–362. https://doi.org/10.1016/j.conbuildmat.2016.07.121

    Article  Google Scholar 

  67. Deb PS, Nath P, Sarker PK (2014) The effects of ground granulated blast-furnace slag blending with fly ash and activator content on the workability and strength properties of geopolymer concrete cured at ambient temperature. Mater Design (1980-2015) 62:32–39. https://doi.org/10.1016/j.matdes.2014.05.001

    Article  Google Scholar 

  68. Topark-Ngarm P, Chindaprasirt P, Sata V (2015) Setting time, strength, and bond of high-calcium fly ash geopolymer concrete. J Mater Civ Eng 27:04014198. https://doi.org/10.1061/(ASCE)MT.1943-5533.0001157

    Article  Google Scholar 

  69. Phoo-ngernkham T, Phiangphimai C, Damrongwiriyanupap N, Hanjitsuwan S, Thumrongvut J, Chindaprasirt P (2018) A mix design procedure for alkali-activated high-calcium fly ash concrete cured at ambient temperature. Adv Mater Sci Eng 2018:e2460403. https://doi.org/10.1155/2018/2460403

    Article  Google Scholar 

  70. Ghafoor MT, Khan QS, Qazi AU, Sheikh MN, Hadi MNS (2021) Influence of alkaline activators on the mechanical properties of fly ash based geopolymer concrete cured at ambient temperature. Constr Build Mater 273:121752. https://doi.org/10.1016/j.conbuildmat.2020.121752

    Article  Google Scholar 

  71. Zhou H, Deng Z, Xia Y, Fu M (2016) A new sampling method in particle filter based on pearson correlation coefficient. Neurocomputing 216:208–215. https://doi.org/10.1016/j.neucom.2016.07.036

    Article  Google Scholar 

  72. Breiman L (2001) Random forests. Mach Learn 45:5–32

    Article  MATH  Google Scholar 

  73. Friedman JH (2001) Greedy function approximation: a gradient boosting machine. Ann Stat 29(5):1189–1232

    Article  MathSciNet  MATH  Google Scholar 

  74. Chen T, Guestrin C (2016) XGBoost: a scalable tree boosting system. Proceedings of the 22nd ACM SIGKDD international conference on knowledge discovery and data mining. (2016) 785–794. https://doi.org/10.1145/2939672.2939785.

  75. Zhang W, Zhang R, Wu C, Goh ATC, Lacasse S, Liu Z, Liu H (2020) State-of-the-art review of soft computing applications in underground excavations. Geosci Front 11:1095–1106. https://doi.org/10.1016/j.gsf.2019.12.003

    Article  Google Scholar 

  76. Charbuty B, Abdulazeez A (2021) Classification based on decision tree algorithm for machine learning. J Appl Sci Technol Trends 2(01):20–28

    Article  Google Scholar 

  77. Jafarzadeh H, Mahdianpari M, Gill E, Mohammadimanesh F, Homayouni S (2021) Bagging and boosting ensemble classifiers for classification of multispectral hyperspectral and polsar data: a comparative evaluation. Remote Sens 13:4405. https://doi.org/10.3390/rs13214405

    Article  Google Scholar 

  78. Khorsheed MS, Al-Thubaity AO (2013) Comparative evaluation of text classification techniques using a large diverse Arabic dataset. Lang Resour Evaluat 47:513–538. https://doi.org/10.1007/s10579-013-9221-8

    Article  Google Scholar 

  79. Ly H-B, Nguyen MH, Pham BT (2021) Metaheuristic optimization of Levenberg–Marquardt-based artificial neural network using particle swarm optimization for prediction of foamed concrete compressive strength. Neural Comput Applic. https://doi.org/10.1007/s00521-021-06321-y

    Article  Google Scholar 

  80. Dong W, Huang Y, Lehane B, Ma G (2020) XGBoost algorithm-based prediction of concrete electrical resistivity for structural health monitoring. Autom Constr 114:103155. https://doi.org/10.1016/j.autcon.2020.103155

    Article  Google Scholar 

  81. Xu J-G, Chen S-Z, Xu W-J, Shen Z-S (2021) Concrete-to-concrete interface shear strength prediction based on explainable extreme gradient boosting approach. Constr Build Mater 308:125088. https://doi.org/10.1016/j.conbuildmat.2021.125088

    Article  Google Scholar 

  82. Kang M-C, Yoo D-Y, Gupta R (2021) Machine learning-based prediction for compressive and flexural strengths of steel fiber-reinforced concrete. Constr Build Mater 266:121117. https://doi.org/10.1016/j.conbuildmat.2020.121117

    Article  Google Scholar 

  83. Ben Chaabene W, Flah M, Nehdi ML (2020) Machine learning prediction of mechanical properties of concrete: Critical review. Constr Build Mater 260:119889. https://doi.org/10.1016/j.conbuildmat.2020.119889

    Article  Google Scholar 

  84. Moon GD, Oh S, Choi YC (2016) Effects of the physicochemical properties of fly ash on the compressive strength of high-volume fly ash mortar. Constr Build Mater 124:1072–1080. https://doi.org/10.1016/j.conbuildmat.2016.08.148

    Article  Google Scholar 

  85. Cho YK, Jung SH, Choi YC (2019) Effects of chemical composition of fly ash on compressive strength of fly ash cement mortar. Constr Build Mater 204:255–264. https://doi.org/10.1016/j.conbuildmat.2019.01.208

    Article  Google Scholar 

  86. Lizcano M, Kim HS, Basu S, Radovic M (2012) Mechanical properties of sodium and potassium activated metakaolin-based geopolymers. J Mater Sci 47:2607–2616. https://doi.org/10.1007/s10853-011-6085-4

    Article  Google Scholar 

  87. Zhuang XY, Chen L, Komarneni S, Zhou CH, Tong DS, Yang HM, Yu WH, Wang H (2016) Fly ash-based geopolymer: clean production, properties and applications. J Clean Prod 125:253–267. https://doi.org/10.1016/j.jclepro.2016.03.019

    Article  Google Scholar 

  88. Amran M, Debbarma S, Ozbakkaloglu T (2021) Fly ash-based eco-friendly geopolymer concrete: a critical review of the long-term durability properties. Constr Build Mater 270:121857. https://doi.org/10.1016/j.conbuildmat.2020.121857

    Article  Google Scholar 

  89. Nguyen MH, Huynh T-P (2022) Turning incinerator waste fly ash into interlocking concrete bricks for sustainable development. Constr Build Mater 321:126385. https://doi.org/10.1016/j.conbuildmat.2022.126385

    Article  Google Scholar 

  90. Nguyen MH, Nguyen VT, Huynh T-P, Hwang C-L (2021) Incorporating industrial by-products into cement-free binders: effects on water absorption, porosity, and chloride penetration. Constr Build Mater 304:124675. https://doi.org/10.1016/j.conbuildmat.2021.124675

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to May Huu Nguyen or Hai-Bang Ly.

Ethics declarations

Conflict of interest

The authors declare that there is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nguyen, M.H., Mai, HV.T., Trinh, S.H. et al. A comparative assessment of tree-based predictive models to estimate geopolymer concrete compressive strength. Neural Comput & Applic 35, 6569–6588 (2023). https://doi.org/10.1007/s00521-022-08042-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00521-022-08042-2

Keywords

Navigation