Skip to main content
Log in

A new stochastic search algorithm bundled honeybee mating for solving optimization problems

  • Original Article
  • Published:
Neural Computing and Applications Aims and scope Submit manuscript

Abstract

This paper presents a new stochastic search technique to solve optimization problems. The new stochastic search of parallel vector evaluated honeybee mating optimization (VEHBMO) technique mimics the honeybee’s mating. The effectiveness of the proposed technique is compared with other stochastic optimization methods through standard benchmark functions. Also, the proposed VEHBMO is applied over real engineering problems of economic load dispatch and environmental/economic power dispatch problems. Obtained results confirm the validity of the proposed stochastic search technique.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. Battiti R, Brunato M, Mascia F (2008) Reactive search and intelligent optimization. Operations research/computer science interfaces Series, vol 45, 1st edn. Springer, p 100

  2. Rardin RL (1997) Optimization in operations research. Prentice Hall, p 919. ISBN 0-02-398415-5

  3. Strang G (1986) Introduction to applied mathematics. Wellesley-Cambridge Press, Wellesley, p xii + 758. ISBN 0-9614088-0-4. MR 870634. Vol. 69, issue. 9

  4. Banzhaf W, Nordin P, Keller RE, Francone FD (1998) Genetic programming: an introduction: on the automatic evolution of computer programs and its applications. Morgan Kaufmann, Los Altos

    MATH  Google Scholar 

  5. Crosby JL (1973) Computer simulation in genetics. Wiley, London

    MATH  Google Scholar 

  6. Fogel DB (2000) Evolutionary computation: towards a new philosophy of machine intelligence. IEEE Press Series on Computational Intelligence, New York

    Google Scholar 

  7. Kirkpatrick S, Gelatt CD, Vecchi MP (1983) Optimization by simulated annealing. Science 220(4598):671–680

    Article  MATH  MathSciNet  Google Scholar 

  8. Glover F (1989) Tabu search—part 1. ORSA J Comput 1(2):190–206

    Article  MATH  Google Scholar 

  9. Eiben AE, Raué PE, Ruttkay Zs (1994) Genetic algorithms with multi-parent recombination. In: PPSN III: proceedings of the international conference on evolutionary computation. The third conference on parallel problem solving from nature, vol 866, pp 78–87

  10. Kang TC (2005) On the mean convergence time of multi-parent genetic algorithms without selection. Adv Artif Life 3630:403–412

    Article  Google Scholar 

  11. Abedinia O, Naderi MS, Jalili A, Khamenepour B (2010) Optimal tuning of multi-machine power system stabilizer parameters using genetic-algorithm. In: Proceedings of international IEEE conference on power system technology, Hangzhou, China, pp 1–6

  12. The nature of mathematical programming, Mathematical Programming Glossary, INFORMS Computing Society

  13. Colorni A, Dorigo M, Maniezzo V (1992) Distributed optimization by ant colonies. In: Varela FJ, Bourgine P (eds) Proceedings of the first European conference on artificial life. MIT Press, Cambridge, pp 134–142

    Google Scholar 

  14. Dorigo M (1992) Optimization, learning and natural algorithms. PhD thesis, Politecnico di Milano, Italy

  15. Kennedy J, Eberhart R (1995) Particle swarm optimization. In: Proceedings of IEEE international conference on neural networks, IV, pp 1942–1948

  16. Abedinia O, Amjady N, Shayanfar HA, Ghasemi A (2012) Optimal congest management based VEPSO an electricity market. Int J Tech Phys Probl Eng 4(2):56–62 Issue 11

    Google Scholar 

  17. Abedinia O, Naderi MS, Jalili A, Mokhtarpour A (2011) A novel hybrid GA-PSO technique for optimal tuning of fuzzy controller to improve multi-machine power system stability. Int Rev Electric Eng 6(2):863–873

    Google Scholar 

  18. Abedinia O, Amjady N, Kiani K (2012) Optimal complex economic load dispatch solution using particle swarm optimization with time varying acceleration coefficient. Int Rev Electric Eng 7(2):4249–4256

    Google Scholar 

  19. Karaboga D (2005) An idea based on honeybee swarm for numerical optimization, Technical Report-TR06, Erciyes University, Engineering Faculty, Computer Engineering Department

  20. Abedinia O, Wyns B, Ghasemi A (2011) Robust fuzzy PSS design using ABC. In: Proceeding of the IEEE international power & energy society power systems conference and exposition, submitted, Italy, Rome (EEEIC), pp 100–103

  21. Karaboga D, Basturk B (2008) On the performance of Artificial Bee Colony (ABC) algorithm. Appl Soft Comput 8(1):687–697

    Article  Google Scholar 

  22. Basturk B, Karaboga D (2006) An Artificial Bee Colony (ABC) algorithm for numeric function optimization. In: IEEE swarm intelligence symposium 2006, May 12–14, 2006, Indianapolis, Indiana, USA

  23. Passino KM (2002) Biomimicry of bacterial foraging for distributed optimization and control. IEEE Control Syst Mag 22(3):52–67

    Article  MathSciNet  Google Scholar 

  24. Gazi V, Passino KM (2004) Stability analysis of social foraging swarms. IEEE Trans Syst Man Cybern Part B-Cybern 34(1):539–557

    Article  Google Scholar 

  25. Geem ZW, Kim JH, Loganathan GV (2001) A new heuristic optimization algorithm: harmony search. Simulation 76(2):60–68

    Article  Google Scholar 

  26. Omran MGH, Mahdavi M (2008) Global-best harmony search. Appl Math Comput 198:643–656

    Article  MATH  MathSciNet  Google Scholar 

  27. Yang XS (2008) Nature-inspired meta-heuristic algorithms. Luniver Press. ISBN 1-905986-10-6

  28. Yang XS (2009) Firefly algorithms for multimodal optimization. Stochastic algorithms: foundations and applications, SAGA 2009. Lect Notes Comput Sci 5792:169–178

    Article  Google Scholar 

  29. Haddad OB, Afshar A, Mariño MA (2006) Honey-bees mating optimization (HBMO) algorithm: a new heuristic approach for water resources optimization. Water Resour Manag 20(5):661–680

    Article  Google Scholar 

  30. Afshar A, Shafii M, Haddad OB (2010) Optimizing multi-reservoir operation rules: an improved HBMO approach. J Hydro Inform 13(1):121–139

    Article  Google Scholar 

  31. Shayanfar HA, Abedinia O, Ghasemi A (2012) Optimization with meta-heuristic algorithms. Sorayesh Publication Book, Tehran

    Google Scholar 

  32. Van Veldhuizen DA, Zydallis JB, Lamont GB (2003) Considerations in engineering parallel multiobjective evolutionary algorithms. IEEE Trans Evol Comp 7(2):144–173

    Article  Google Scholar 

  33. Ghasemi A, Shayanfar HA, Naderi MS, Abedinia O (2011) Optimal placement and tuning of robust multi-machine PSS via HBMO. In: Proceedings of the international conference on artificial intelligence, Las Vegas, Nevada, pp 1–6

  34. Vlachogiannis JG, Lee KY (2009) Multi-objective based on parallel vector evaluated particle swarm optimization. Expert Syst Appl 36:10802–10808

    Article  Google Scholar 

  35. Parsopoulos K, Tasoulis D, Vrahatis M (2004) Multi-objective optimization using parallel vector evaluated particle swarm optimization. In: Proceedings of the IASTED international conference on artificial intelligence and applications, pp 823–828

  36. Spears WM, Green DT, Spears DF (2010) Biases in particle swarm optimization. Int J Swarm Intell Res 1(2):34–57

    Article  Google Scholar 

  37. Narasimhan H (2009) Parallel artificial bee colony (PABC) algorithm. Nature & Biologically Inspired Computing, Coimbatore, pp 306–311

    Google Scholar 

  38. Karaboga D, Akay B (2009) A comparative study of artificial bee colony algorithm. Appl Math Comput 214:108–132

    Article  MATH  MathSciNet  Google Scholar 

  39. Momoh JA (2001) Electric power system applications of optimization. Marcel Dekker, New York

    Google Scholar 

  40. Chen PH, Chang HC (1995) Large-scale economic dispatch by genetic algorithm. IEEE Trans Power Syst 10:1919–1926

    Article  MathSciNet  Google Scholar 

  41. Momoh JA, El-Hawary ME, Adapa R (1999) A review of selected optimal power flow literature to 1993 Part I: nonlinear and quadratic programming approaches. IEEE Trans Power Syst 14(1):98–104

    Google Scholar 

  42. Momoh JA, El-Hawary ME, Adapa R (1999) A review of selected optimal power flow literature to 1993 Part II: Newton, linear programming and interior point method. IEEE Trans Power Syst 14(1):105–111

    Article  Google Scholar 

  43. Roa-Sepulveda CA, Pavez-Lazo BJ (2002) A solution to the optimal power flow using simulated annealing. Int J Electr Power Energy Syst 25:47–57

    Article  Google Scholar 

  44. Abido MA (2002) Optimal power flow using tabu search algorithm. Electric Power Syst Compon Syst 30:469–483

    Article  Google Scholar 

  45. Leung HC, Chung TS (2000) Optimal power flow with a versatile FACTS controller by genetic algorithm approach. IEEE Power Eng Soc Meet 4:2806–2811

    Google Scholar 

  46. Bakirtzis AG, Biskas PN, Zoumas CE, Petridis V (2002) Optimal power flow by enhanced genetic algorithm. IEEE Trans Power Syst 17(2):229–236

    Article  Google Scholar 

  47. Ongsakul W, Bhasaputra P (2002) Optimal power flow with FACTS devices by hybrid TS/SA approach. Int J Electr Power Energy Syst 24:851–857

    Article  Google Scholar 

  48. Yuryevich J, Wong KP (1999) Evolutionary programming based optimal power flow algorithm. IEEE Trans Power Syst 14(4):1245–1250

    Article  Google Scholar 

  49. Ongsakul W, Tangpatiphan K (2004) Optimal power flow with TCSC using parallel improved evolutionary programming. M. Eng. Thesis, AIT, Thailand

  50. Bouzeboudja H, Chaker A, Alali A, Naama B (2005) Economic dispatch solution using a real-coded genetic algorithm. Acta Electrotechnica et Enformatica 5(4):1–5

  51. Ling SH, Lu HHC, Chan KY, Ki SK, Economic load dispatch: a new hybrid particle swarm optimization approach. In: Universities power engineering conference, 2007 (AUPEC 2007), pp 1–8

  52. Ling SH, Lam HK, Leung FHF, Lee YS (2003) Improved genetic algorithm for economic load dispatch with valve-point loadings. In: Industrial Electronics Society, 2003 (IECON’03). The 29th annual conference of the IEEE, vol 1, pp 442–447

  53. Abido MA (2009) Multi-objective particle swarm optimization for environmental/economic dispatch problem. Electr Power Syst Res 79(7):1105–1113

    Article  Google Scholar 

  54. Khamsawang S, Jiriwibhakorn S (2009) Solving the economic dispatch problem using novel particle swarm optimization. Int J Electric Comput Syst Eng 3:854–859

  55. Safari A, Shayeghi H (2011) Iteration particle swarm optimization procedure for economic load dispatch with generator constraints. Expert Systems Appl 38(5):6043–6048

    Article  Google Scholar 

  56. Bhattacharya A, Chattopadhyay PK (2010) Solving complex economic load dispatch problems using biogeography-based optimization. Expert Syst Appl 37:3605–3615

    Article  Google Scholar 

  57. Shayeghi H, Shayanfar HA, Jalili A, Ghasemi A (2010) Honeybee mating optimization scheme for load frequency control. In: 6th International conference on, 67, pp 329–334

  58. Abido MA (2003) Environmental/economic power dispatch using multi-objective evolutionary algorithms. IEEE Trans Power Syst 18(4):1529–1537

    Article  Google Scholar 

  59. Wua LH, Wanga YN, Yuan XF, Zhou SW (2010) Environmental/economic power dispatch problem using multi-objective differential evolution algorithm. Electr Power Syst Res 80:1171–1181

    Article  Google Scholar 

  60. Venkatesh P, Gnanadass R, Padhy NP (2003) Comparison and application of evolutionary programming techniques to combined economic emission dispatch with line flow constraints. IEEE Trans Power Syst 18(2):688–696

    Article  Google Scholar 

  61. Guerrero RP (2004) Differential evolution based power dispatch algorithms. M.S. Thesis, Electrical Engineering Department, University of Puerto Rico, Mayaguez Campus

  62. Jiejin C, Xiaoqian M, Lixiang L, Haipeng P (2007) Chaotic particle swarm optimization for economic dispatch considering the generator constraints. Energy Convers Manag 48:645–653

    Article  Google Scholar 

  63. Gaing ZL (2003) Particle swarm optimization to solving the economic dispatch considering the generator constraints. IEEE Trans Power Syst 18(3):1187–1195

    Article  Google Scholar 

  64. Sudhakaran M, Ajay D, Vimalraj P, Palanivelu TG (2007) GA and PSO culled hybrid technique for economic dispatch problem with prohibited operating zones. J Zhejiang Univ Sci A 8(6):896–903

    Article  MATH  Google Scholar 

  65. Chaturvedi KT, Pandit M, Srivastava L (2008) Self organizing hierarchical particle swarm optimization for nonconvex economic dispatch. IEEE Trans Power Syst 23(3):1079–1087

    Article  Google Scholar 

  66. Sinha N, Chakrabarti R, Chattopadhyay PK (2003) Evolutionary programming techniques for economic load dispatch. IEEE Trans Evol Comput 7(1):83–94

    Article  Google Scholar 

  67. Thanushkodi SI (2007) A new particle swarm optimization solution to non-convex economic dispatch problems. IEEE Trans Power Syst 22(1):42–51

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Oveis Abedinia.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Abedinia, O., Naslian, M.D. & Bekravi, M. A new stochastic search algorithm bundled honeybee mating for solving optimization problems. Neural Comput & Applic 25, 1921–1939 (2014). https://doi.org/10.1007/s00521-014-1682-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00521-014-1682-1

Keywords

Navigation