Skip to main content
Log in

Crystalloid fluid choice in the critically ill

Current knowledge and critical appraisal

  • review article
  • Published:
Wiener klinische Wochenschrift Aims and scope Submit manuscript

Summary

Intravenous infusion of crystalloid solutions is one of the most frequently administered medications worldwide. Available crystalloid infusion solutions have a variety of compositions and have a major impact on body systems; however, administration of crystalloid fluids currently follows a “one fluid for all” approach than a patient-centered fluid prescription. Normal saline is associated with hyperchloremic metabolic acidosis, increased rates of acute kidney injury, increased hemodynamic instability and potentially mortality. Regarding balanced infusates, evidence remains less clear since most studies compared normal saline to buffered infusion solutes.; however, buffered solutes are not homogeneous. The term “buffered solutes” only refers to the concept of acid-buffering in infusion fluids but this does not necessarily imply that the solutes have similar physiological impacts. The currently available data indicate that balanced infusates might have some advantages; however, evidence still is inconclusive. Taking the available evidence together, there is no single fluid that is superior for all patients and settings, because all currently available infusates have distinct differences, advantages and disadvantages; therefore, it seems inevitable to abandon the “one fluid for all” strategy towards a more differentiated and patient-centered approach to fluid therapy in the critically ill.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Pfortmueller CA, Fleischmann E. Acetate-buffered crystalloid fluids: current knowledge, a systematic review. J Crit Care. 2016;35:96–104.

    Article  CAS  PubMed  Google Scholar 

  2. Noritomi DT, Pereira AJ, Bugano DD, Rehder PS, Silva E. Impact of Plasma-Lyte pH 7.4 on acid-base status and hemodynamics in a model of controlled hemorrhagic shock. Clinics. 2011;66(11):1969–74.

    Article  PubMed  PubMed Central  Google Scholar 

  3. Hofmann-Kiefer KF, Chappell D, Kammerer T, et al. Influence of an acetate- and a lactate-based balanced infusion solution on acid base physiology and hemodynamics: an observational pilot study. Eur J Med Res. 2012;17:21.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Zadak Z, Hyspler R, Hronek M, Ticha A. The energetic and metabolic effect of Ringerfundin (B. Braun) infusion and comparison with Plasma-Lyte (Baxter) in healthy volunteers. Acta Medica (Hradec Kralove). 2010;53(3):131–7.

    Article  CAS  Google Scholar 

  5. Young P, Bailey M, Beasley R, et al. Effect of a buffered crystalloid solution vs saline on acute kidney injury among patients in the intensive care unit: the SPLIT randomized clinical trial. JAMA. 2015;314(16):1701–10.

    Article  CAS  PubMed  Google Scholar 

  6. Hafizah M, Liu CY, Ooi JS. Normal saline versus balanced-salt solution as intravenous fluid therapy during neurosurgery: Effects on acid-base balance and electrolytes. J Neurosurg Sci. 2015;61(3):263–270. https://doi.org/10.23736/S0390-5616.16.03221-5. Epub 2015 Apr 9.

    Article  PubMed  Google Scholar 

  7. Yung M, Letton G, Keeley S. Controlled trial of Hartmann’s solution versus 0.9% saline for diabetic ketoacidosis. J Paediatr Child Health. 2017;53(1):12–7.

    Article  PubMed  Google Scholar 

  8. Semler MW, Wanderer JP, Ehrenfeld JM, et al. Balanced Crystalloids versus saline in the intensive care unit: the SALT randomized trial. Am J Respir Crit Care Med. 2017;195(10):1362. https://doi.org/10.1164/rccm.201607-1345OC.

    Article  PubMed  PubMed Central  Google Scholar 

  9. Semler MW, Self WH, Wang L, et al. Balanced crystalloids versus saline in the intensive care unit: study protocol for a cluster-randomized, multiple-crossover trial. Trials. 2017;18(1):129.

    Article  PubMed  PubMed Central  Google Scholar 

  10. Raghunathan K, Shaw A, Nathanson B, et al. Association between the choice of IV crystalloid and in-hospital mortality among critically ill adults with sepsis*. Crit Care Med. 2014;42(7):1585–91.

    Article  CAS  PubMed  Google Scholar 

  11. Lobo DN. Intravenous 0.9% saline and general surgical patients: a problem, not a solution. Ann Surg. 2012;255(5):830–2.

    Article  PubMed  Google Scholar 

  12. Shaw AD, Bagshaw SM, Goldstein SL, et al. Major complications, mortality, and resource utilization after open abdominal surgery: 0.9% saline compared to Plasma-Lyte. Ann Surg. 2012;255(5):821–9.

    Article  PubMed  Google Scholar 

  13. Gattinoni L, Carlesso E. Supporting hemodynamics: what should we target? What treatments should we use? Crit Care. 2013;17(Suppl 1):4.

    Article  Google Scholar 

  14. Chappell D, Jacob M, Hofmann-Kiefer K, Conzen P, Rehm M. A rational approach to perioperative fluid management. Anesthesiology. 2008;109(4):723–40.

    Article  PubMed  Google Scholar 

  15. Story DA, Lees L, Weinberg L, et al. Cognitive changes after saline or plasmalyte infusion in healthy volunteers: a multiple blinded, randomized, cross-over trial. Anesthesiology. 2013;119(3):569–75.

    Article  CAS  PubMed  Google Scholar 

  16. Hahn RG, Nyberg Isacson M, Fagerstrom T, Rosvall J, Nyman CR. Isotonic saline in elderly men: an open-labelled controlled infusion study of electrolyte balance, urine flow and kidney function. Anaesthesia. 2016;71:155. https://doi.org/10.1111/anae.13301.

    Article  CAS  PubMed  Google Scholar 

  17. Cecconi M, Corredor C, Arulkumaran N, et al. Clinical review: goal-directed therapy-what is the evidence in surgical patients? The effect on different risk groups. Crit Care. 2013;17(2):209.

    Article  PubMed  PubMed Central  Google Scholar 

  18. O’Malley CM, Frumento RJ, Bennett-Guerrero E. Intravenous fluid therapy in renal transplant recipients: results of a US survey. Transplant Proc. 2002;34(8):3142–5.

    Article  PubMed  Google Scholar 

  19. Rohrig R, Wegewitz C, Lendemans S, Petrat F, de Groot H. Superiority of acetate compared with lactate in a rodent model of severe hemorrhagic shock. J Surg Res. 2014;186(1):338–45.

    Article  CAS  PubMed  Google Scholar 

  20. Voigtsberger S, Urner M, Hasler M, et al. Modulation of early inflammatory response by different balanced and non-balanced colloids and crystalloids in a rodent model of endotoxemia. PLoS ONE. 2014;9(4):e93863.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  21. Keibl C, Sipos W, Ponschab M, Schlimp CJ. Blood biochemical changes in pigs after infusion with acetate-buffered or lactate-buffered crystalloid solutions. Lab Anim (NY). 2015;44(7):268–73.

    Article  Google Scholar 

  22. Awad S, Allison SP, Lobo DN. The history of 0.9% saline. Clin Nutr. 2008;27(2):179–88.

    Article  CAS  PubMed  Google Scholar 

  23. Asano S, Kato E, Yamauchi M, Ozawa Y, Iwasa M. The mechanism of acidosis caused by infusion of saline solution. Lancet. 1966;1(7449):1245–6.

    Article  CAS  PubMed  Google Scholar 

  24. Shires GT, Holman J. Dilution acidosis. Ann Intern Med. 1948;28(3):557–9.

    Article  CAS  PubMed  Google Scholar 

  25. Potura ELG, Biesenbach P, Funk G‑C, Reiterer C, Schwarz C, Druml W, Fleischmann E. An acetate-buffered balanced crystalloid versus 0.9% saline in patients with end-stage renal disease undergoing cadaveric renal transplantation: a prospective randomized controlled trial. Anesth Analg. 2015;120(1):123. https://doi.org/10.1213/ANE.0000000000000419.

    Article  CAS  PubMed  Google Scholar 

  26. Marttinen M, Wilkman E, Petaja L, et al. Association of plasma chloride values with acute kidney injury in the critically ill—a prospective observational study. Acta Anaesthesiol Scand. 2016;60(6):790–9.

    Article  CAS  PubMed  Google Scholar 

  27. Lee JA. Sydney Ringer (1834–1910) and Alexis Hartmann (1898–1964). Anaesthesia. 1981;36(12):1115–21.

    Article  CAS  PubMed  Google Scholar 

  28. Zhou F, Peng ZY, Bishop JV, et al. Effects of fluid resuscitation with 0.9% saline versus a balanced electrolyte solution on acute kidney injury in a rat model of sepsis. Crit Care Med. 2014;42(4):e270–e8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Yunos NM, Bellomo R, Hegarty C, et al. Association between a chloride-liberal vs chloride-restrictive intravenous fluid administration strategy and kidney injury in critically ill adults. JAMA. 2012;308(15):1566–72.

    Article  CAS  PubMed  Google Scholar 

  30. Gattinoni L, Carlesso E, Maiocchi G, Polli F, Cadringher P. Dilutional acidosis: where do the protons come from? Intensive Care Med. 2009;35(12):2033–43.

    Article  PubMed  Google Scholar 

  31. Carlesso E, Maiocchi G, Tallarini F, et al. The rule regulating pH changes during crystalloid infusion. Intensive Care Med. 2011;37(3):461–8.

    Article  CAS  PubMed  Google Scholar 

  32. Langer T, Carlesso E, Protti A, et al. In vivo conditioning of acid-base equilibrium by crystalloid solutions: an experimental study on pigs. Intensive Care Med. 2012;38(4):686–93.

    Article  CAS  PubMed  Google Scholar 

  33. Morgan TJ, Venkatesh B, Hall J. Crystalloid strong ion difference determines metabolic acid-base change during acute normovolaemic haemodilution. Intensive Care Med. 2004;30(7):1432–7.

    Article  PubMed  Google Scholar 

  34. Potura E, Lindner G, Biesenbach P, et al. An acetate-buffered balanced crystalloid versus 0.9% saline in patients with end-stage renal disease undergoing cadaveric renal transplantation: a prospective randomized controlled trial. Anesth Analg. 2015;120(1):123–9.

    Article  CAS  PubMed  Google Scholar 

  35. Morgan TJ. The ideal crystalloid—what is ‘balanced’? Curr Opin Crit Care. 2013;19(4):299–307.

    Article  PubMed  Google Scholar 

  36. Akanji AO, Bruce MA, Frayn KN. Effect of acetate infusion on energy expenditure and substrate oxidation rates in non-diabetic and diabetic subjects. Eur J Clin Nutr. 1989;43(2):107–15.

    CAS  PubMed  Google Scholar 

  37. Akanji AO, Hockaday TD. Acetate tolerance and the kinetics of acetate utilization in diabetic and nondiabetic subjects. Am J Clin Nutr. 1990;51(1):112–8.

    Article  CAS  PubMed  Google Scholar 

  38. Hamada T, Yamamoto M, Nakamaru K, et al. The pharmacokinetics of D‑lactate, L‑lactate and acetate in humans. Masui. 1997;46(2):229–36.

    CAS  PubMed  Google Scholar 

  39. Davidson WD, Rorke SJ, Guo LS, Morin RJ. Comparison of acetate-1-14 C metabolism in uremic and nonuremic dogs. Am J Clin Nutr. 1978;31(10):1897–902.

    Article  CAS  PubMed  Google Scholar 

  40. Kirkendol PL, Starrs J, Gonzalez FM. The effects of acetate, lactate, succinate and gluconate on plasma pH and electrolytes in dogs. Trans Am Soc Artif Intern Organs. 1980;26:323–7.

    CAS  PubMed  Google Scholar 

  41. Kuze S, Ito Y, Miyahara T. Expiration of radioactive carbon dioxide by rats after administration of isotopic lactate and acetate. Acta Med Biol. 1986;34:93–102.

    CAS  Google Scholar 

  42. Knowles SE, Jarrett IG, Filsell OH, Ballard FJ. Production and utilization of acetate in mammals. Biochem J. 1974;142(2):401–11.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Iseki K, Onoyama K, Maeda T, et al. Comparison of hemodynamics induced by conventional acetate hemodialysis, bicarbonate hemodialysis and ultrafiltration. Clin Nephrol. 1980;14(6):294–8.

    CAS  PubMed  Google Scholar 

  44. Mansell MA, Nunan TO, Laker MF, Boon NA, Wing AJ. Incidence and significance of rising blood acetate levels during hemodialysis. Clin Nephrol. 1979;12(1):22–5.

    CAS  PubMed  Google Scholar 

  45. Holbert RD, Pearson JE, Gonzalez FM. Effect of sodium acetate infusion on renal function in the dog. Arch Int Pharmacodyn Ther. 1976;219(2):211–22.

    CAS  PubMed  Google Scholar 

  46. Liang CS, Lowenstein JM. Metabolic control of the circulation. Effects of acetate and pyruvate. J Clin Invest. 1978;62(5):1029–38.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Kveim M, Nesbakken R. Acetate metabolizing capacity in man. J Oslo City Hosp. 1980;30:101–4.

    CAS  PubMed  Google Scholar 

  48. Nitenberg A, Huyghebaert MF, Blanchet F, Amiel C. Analysis of increased myocardial contractility during sodium acetate infusion in humans. Kidney Int. 1984;26(5):744–51.

    Article  CAS  PubMed  Google Scholar 

  49. Tolchin N, Roberts JL, Hayashi J, Lewis EJ. Metabolic consequences of high mass-transfer hemodialysis. Kidney Int. 1977;11(5):366–78.

    Article  CAS  PubMed  Google Scholar 

  50. Neavyn MJ, Boyer EW, Bird SB, Babu KM. Sodium acetate as a replacement for sodium bicarbonate in medical toxicology: a review. J Med Toxicol. 2013;9(3):250–4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Conahan ST, Dupre A, Giaimo ME, et al. Resuscitation fluid composition and myocardial performance during burn shock. Circ Shock. 1987;23(1):37–49.

    CAS  PubMed  Google Scholar 

  52. Hasman H, Cinar O, Uzun A, et al. A randomized clinical trial comparing the effect of rapidly infused crystalloids on acid-base status in dehydrated patients in the emergency department. Int J Med Sci. 2012;9(1):59–64.

    Article  PubMed  Google Scholar 

  53. Hadimioglu N, Saadawy I, Saglam T, Ertug Z, Dinckan A. The effect of different crystalloid solutions on acid-base balance and early kidney function after kidney transplantation. Anesth Analg. 2008;107(1):264–9.

    Article  CAS  PubMed  Google Scholar 

  54. Shin WJ, Kim YK, Bang JY, et al. Lactate and liver function tests after living donor right hepatectomy: a comparison of solutions with and without lactate. Acta Anaesthesiol Scand. 2011;55(5):558–64.

    Article  CAS  PubMed  Google Scholar 

  55. Gille J, Klezcewski B, Malcharek M, et al. Safety of resuscitation with Ringer’s acetate solution in severe burn (VolTRAB)—an observational trial. Burns. 2014;40(5):871–80.

    Article  PubMed  Google Scholar 

  56. Coran AG, Ballantine TV, Horwitz DL, Herman CM. The effect of crystalloid resuscitation in hemorrhagic shock on acid-base balance: a comparison between normal saline and Ringer’s lactate solutions. Surgery. 1971;69(6):874–80.

    CAS  PubMed  Google Scholar 

  57. Harper PV Jr., Neal WB Jr., Hlavacek GR. Acetate utilization in the dog. Metabolism. 1953;2(1):62–8.

    CAS  PubMed  Google Scholar 

  58. Zander R. Association between plasma ionized calcium and lactate concentration. Intensive Care Med. 1993;19(6):362–3.

    Article  CAS  PubMed  Google Scholar 

  59. Cooper DJ, Walley KR, Dodek PM, Rosenberg F, Russell JA. Plasma ionized calcium and blood lactate concentrations are inversely associated in human lactic acidosis. Intensive Care Med. 1992;18(5):286–9.

    Article  CAS  PubMed  Google Scholar 

  60. Nadeem A, Salahuddin N, El Hazmi A, et al. Chloride-liberal fluids are associated with acute kidney injury after liver transplantation. Crit Care. 2014;18(6):625.

    Article  PubMed  PubMed Central  Google Scholar 

  61. Kellum JA, Song M, Venkataraman R. Effects of hyperchloremic acidosis on arterial pressure and circulating inflammatory molecules in experimental sepsis. Chest. 2004;125(1):243–8.

    Article  CAS  PubMed  Google Scholar 

  62. Krajewski ML, Raghunathan K, Paluszkiewicz SM, Schermer CR, Shaw AD. Meta-analysis of high- versus low-chloride content in perioperative and critical care fluid resuscitation. Br J Surg. 2015;102(1):24–36.

    Article  CAS  PubMed  Google Scholar 

  63. Shaw AD, Raghunathan K, Peyerl FW, et al. Association between intravenous chloride load during resuscitation and in-hospital mortality among patients with SIRS. Intensive Care Med. 2014;40(12):1897–905.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Shaw AD, Schermer CR, Lobo DN, et al. Impact of intravenous fluid composition on outcomes in patients with systemic inflammatory response syndrome. Crit Care. 2015;19:334.

    Article  PubMed  PubMed Central  Google Scholar 

  65. Reid F, Lobo DN, Williams RN, Rowlands BJ, Allison SP. (Ab)normal saline and physiological Hartmann’s solution: a randomized double-blind crossover study. Clin Sci. 2003;104(1):17–24.

    CAS  PubMed  Google Scholar 

  66. Lobo DN, Stanga Z, Aloysius MM, et al. Effect of volume loading with 1 liter intravenous infusions of 0.9% saline, 4% succinylated gelatine (Gelofusine) and 6% hydroxyethyl starch (Voluven) on blood volume and endocrine responses: a randomized, three-way crossover study in healthy volunteers. Crit Care Med. 2010;38(2):464–70.

    Article  CAS  PubMed  Google Scholar 

  67. Mann DV, Robinson MK, Rounds JD, et al. Superiority of blood over saline resuscitation from hemorrhagic shock: a 31 P magnetic resonance spectroscopy study. Ann Surg. 1997;226(5):653–61.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Chowdhury AH, Cox EF, Francis ST, Lobo DN. A randomized, controlled, double-blind crossover study on the effects of 2‑L infusions of 0.9% saline and plasma-lyte(R) 148 on renal blood flow velocity and renal cortical tissue perfusion in healthy volunteers. Ann Surg. 2012;256(1):18–24.

    Article  PubMed  Google Scholar 

  69. Gunnerson KJ, Saul M, He S, Kellum JA. Lactate versus non-lactate metabolic acidosis: a retrospective outcome evaluation of critically ill patients. Crit Care. 2006;10(1):R22.

    Article  PubMed  PubMed Central  Google Scholar 

  70. McCluskey SA, Karkouti K, Wijeysundera D, et al. Hyperchloremia after noncardiac surgery is independently associated with increased morbidity and mortality: a propensity-matched cohort study. Anesth Analg. 2013;117(2):412–21.

    Article  PubMed  Google Scholar 

  71. Haunstetter A, Schulze Icking B, Backs J, Kruger C, Haass M. Differential effects of acidosis, high potassium concentrations, and metabolic inhibition on noradrenaline release and its presynaptic muscarinic regulation. Pharmacol Res. 2002;45(3):221–8.

    Article  CAS  PubMed  Google Scholar 

  72. Seyfarth M, Feng Y, Hagl S, et al. Effect of myocardial ischemia on stimulation-evoked noradrenaline release. Modulated neurotransmission in rat, guinea pig, and human cardiac tissue. Circ Res. 1993;73(3):496–502.

    Article  CAS  PubMed  Google Scholar 

  73. Pedoto A, Caruso JE, Nandi J, et al. Acidosis stimulates nitric oxide production and lung damage in rats. Am J Respir Crit Care Med. 1999;159(2):397–402.

    Article  CAS  PubMed  Google Scholar 

  74. Young JB, Utter GH, Schermer CR, et al. Saline versus Plasma-Lyte A in initial resuscitation of trauma patients: a randomized trial. Ann Surg. 2014;259(2):255–62.

    Article  PubMed  Google Scholar 

  75. Almac E, Aksu U, Bezemer R, et al. The acute effects of acetate-balanced colloid and crystalloid resuscitation on renal oxygenation in a rat model of hemorrhagic shock. Resuscitation. 2012;83(9):1166–72.

    Article  CAS  PubMed  Google Scholar 

  76. McFarlane C, Lee A. A comparison of plasmalyte 148 and 0.9% saline for intra-operative fluid replacement. Anaesthesia. 1994;49(9):779–81.

    Article  CAS  PubMed  Google Scholar 

  77. Kim SY, Huh KH, Lee JR, et al. Comparison of the effects of normal saline versus plasmalyte on acid-base balance during living donor kidney transplantation using the Stewart and base excess methods. Transplant Proc. 2013;45(6):2191–6.

    Article  CAS  PubMed  Google Scholar 

  78. Schick MA, Isbary JT, Stueber T, et al. Effects of crystalloids and colloids on liver and intestine microcirculation and function in cecal ligation and puncture induced septic rodents. BMC Gastroenterol. 2012;12:179.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Song JW, Shim JK, Kim NY, Jang J, Kwak YL. The effect of 0.9% saline versus plasmalyte on coagulation in patients undergoing lumbar spinal surgery; a randomized controlled trial. Int J Surg. 2015;20:128–34.

    Article  PubMed  Google Scholar 

  80. Wilcox CS. Regulation of renal blood flow by plasma chloride. J Clin Invest. 1983;71(3):726–35.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Wilcox CS, Peart WS. Release of renin and angiotensin II into plasma and lymph during hyperchloremia. Am J Physiol. 1987;253(4 Pt 2):F734–F41.

    CAS  PubMed  Google Scholar 

  82. Yunos NM, Bellomo R, Glassford N, et al. Chloride-liberal vs. chloride-restrictive intravenous fluid administration and acute kidney injury: an extended analysis. Intensive Care Med. 2015;41(2):257–64.

    Article  CAS  PubMed  Google Scholar 

  83. Guirgis FW, Williams DJ, Hale M, et al. The relationship of intravenous fluid chloride content to kidney function in patients with severe sepsis or septic shock. Am J Emerg Med. 2015;33(3):439–43.

    Article  PubMed  Google Scholar 

  84. Shao M, Li G, Sarvottam K, et al. Dyschloremia is a risk factor for the development of acute kidney injury in critically ill patients. PLoS ONE. 2016;11(8):e160322.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  85. Suetrong B, Pisitsak C, Boyd JH, Russell JA, Walley KR. Hyperchloremia and moderate increase in serum chloride are associated with acute kidney injury in severe sepsis and septic shock patients. Crit Care. 2016;20(1):315.

    Article  PubMed  PubMed Central  Google Scholar 

  86. McIlroy D, Murphy D, Kasza J, et al. Effects of restricting perioperative use of intravenous chloride on kidney injury in patients undergoing cardiac surgery: the LICRA pragmatic controlled clinical trial. Intensive Care Med. 2017;43(6):795–806.

    Article  CAS  PubMed  Google Scholar 

  87. Sadan O, Singbartl K, Kandiah PA, Martin KS, Samuels OB. Hyperchloremia is associated with acute kidney injury in patients with subarachnoid hemorrhage. Crit Care Med. 2017;45(8):1382. https://doi.org/10.1097/CCM.0000000000002497.

    Article  CAS  PubMed  Google Scholar 

  88. Bellomo R, Kellum JA, Ronco C, et al. Acute kidney injury in sepsis. Intensive Care Med. 2017;43(6):816–28.

    Article  CAS  PubMed  Google Scholar 

  89. Lowell JA, Schifferdecker C, Driscoll DF, Benotti PN, Bistrian BR. Postoperative fluid overload: not a benign problem. Crit Care Med. 1990;18(7):728–33.

    Article  CAS  PubMed  Google Scholar 

  90. Cheng AT, Plank LD, Hill GL. Prolonged overexpansion of extracellular water in elderly patients with sepsis. Arch Surg. 1998;133(7):745–51.

    Article  CAS  PubMed  Google Scholar 

  91. Prowle JR, Chua HR, Bagshaw SM, Bellomo R. Clinical review: volume of fluid resuscitation and the incidence of acute kidney injury—a systematic review. Crit Care. 2012;16(4):230.

    Article  PubMed  PubMed Central  Google Scholar 

  92. Prowle JR, Kirwan CJ, Bellomo R. Fluid management for the prevention and attenuation of acute kidney injury. Nat Rev Nephrol. 2014;10(1):37–47.

    Article  CAS  PubMed  Google Scholar 

  93. Boyd JH, Forbes J, Nakada TA, Walley KR, Russell JA. Fluid resuscitation in septic shock: a positive fluid balance and elevated central venous pressure are associated with increased mortality. Crit Care Med. 2011;39(2):259–65.

    Article  PubMed  Google Scholar 

  94. De Pietri L, Montalti R, Begliomini B. Anaesthetic perioperative management of patients with pancreatic cancer. World J Gastroenterol. 2014;20(9):2304–20.

    Article  PubMed  PubMed Central  Google Scholar 

  95. Tambyraja AL, Sengupta F, MacGregor AB, Bartolo DC, Fearon KC. Patterns and clinical outcomes associated with routine intravenous sodium and fluid administration after colorectal resection. World J Surg. 2004;28(10):1046–51. Discussion 1051-2. Epub 2004 Sep 29.

    Article  Google Scholar 

  96. Gil MJ, Franch G, Guirao X, et al. Response of severely malnourished patients to preoperative parenteral nutrition: a randomized clinical trial of water and sodium restriction. Nutrition. 1997;13(1):26–31.

    Article  CAS  PubMed  Google Scholar 

  97. Arieff AI. Fatal postoperative pulmonary edema: pathogenesis and literature review. Chest. 1999;115(5):1371–7.

    Article  CAS  PubMed  Google Scholar 

  98. Alsous F, Khamiees M, DeGirolamo A, Amoateng-Adjepong Y, Manthous CA. Negative fluid balance predicts survival in patients with septic shock: a retrospective pilot study. Chest. 2000;117(6):1749–54.

    Article  CAS  PubMed  Google Scholar 

  99. Brandstrup B, Tonnesen H, Beier-Holgersen R, et al. Effects of intravenous fluid restriction on postoperative complications: comparison of two perioperative fluid regimens: a randomized assessor-blinded multicenter trial. Ann Surg. 2003;238(5):641–8.

    Article  PubMed  PubMed Central  Google Scholar 

  100. Nisanevich V, Felsenstein I, Almogy G, et al. Effect of intraoperative fluid management on outcome after intraabdominal surgery. Anesthesiology. 2005;103(1):25–32.

    Article  PubMed  Google Scholar 

  101. Lobo DN, Bostock KA, Neal KR, et al. Effect of salt and water balance on recovery of gastrointestinal function after elective colonic resection: a randomised controlled trial. Lancet. 2002;359(9320):1812–8.

    Article  PubMed  Google Scholar 

  102. Bihari S, Ou J, Holt AW, Bersten AD. Inadvertent sodium loading in critically ill patients. Crit Care Resusc. 2012;14(1):33–7.

    PubMed  Google Scholar 

  103. Lindner G, Funk GC, Schwarz C, et al. Hypernatremia in the critically ill is an independent risk factor for mortality. Am J Kidney Dis. 2007;50(6):952–7.

    Article  PubMed  Google Scholar 

  104. Jensen JM, Mose FH, Bech JN, Nielsen S, Pedersen EB. Effect of volume expansion with hypertonic- and isotonic saline and isotonic glucose on sodium and water transport in the principal cells in the kidney. BMC Nephrol. 2013;14:202.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  105. Jarvela K, Koobi T, Kauppinen P, Kaukinen S. Effects of hypertonic 75 mg/ml (7.5%) saline on extracellular water volume when used for preloading before spinal anaesthesia. Acta Anaesthesiol Scand. 2001;45(6):776–81.

    Article  CAS  PubMed  Google Scholar 

  106. Lavu H, Sell NM, Carter TI, et al. The HYSLAR trial: a prospective randomized controlled trial of the use of a restrictive fluid regimen with 3% hypertonic saline versus lactated Ringers in patients undergoing pancreaticoduodenectomy. Ann Surg. 2014;260(3):445–53. discussion 53–5.

    Article  PubMed  Google Scholar 

  107. Cross JS, Gruber DP, Burchard KW, et al. Hypertonic saline fluid therapy following surgery: a prospective study. J Trauma. 1989;29(6):817–25. discussion 25–6.

    Article  CAS  PubMed  Google Scholar 

  108. Orbegozo D, Su F, Santacruz C, et al. Effects of different crystalloid solutions on Hemodynamics, peripheral perfusion, and the microcirculation in experimental abdominal sepsis. Anesthesiology. 2016;125(4):744–54.

    Article  CAS  PubMed  Google Scholar 

  109. Pfortmueller C, Funk GC, Potura E, et al. Acetate-buffered crystalloid infusate versus infusion of 0.9% saline and hemodynamic stability in patients undergoing renal transplantation : prospective, randomized, controlled trial. Wien Klin Wochenschr. 2017;129(17):598. https://doi.org/10.1007/s00508-017-1180-4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Pfortmueller CA, Funk G‑C, Reiterer C, Schrott A, Zotti O, Kabon B, Fleischmann E, Lindner G. Normal saline versus a balanced crystalloid for goal-directed perioperative fluid therapy in major abdominal surgery: a double-blind randomised controlled study. Br J Anesth. 2018;120(2):274–83.

    Article  CAS  Google Scholar 

  111. Wray S. Smooth muscle intracellular pH: measurement, regulation, and function. Am J Physiol. 1988;254(2 Pt 1):C213–C25.

    Article  CAS  PubMed  Google Scholar 

  112. Daugherty RM Jr., Scott JB, Dabney JM, Haddy FJ. Local effects of O2 and CO2 on limb, renal, and coronary vascular resistances. Am J Physiol. 1967;213(5):1102–10.

    PubMed  Google Scholar 

  113. Haddy FJ, Scott JB. Metabolically linked vasoactive chemicals in local regulation of blood flow. Physiol Rev. 1968;48(4):688–707.

    Article  CAS  PubMed  Google Scholar 

  114. Le Tulzo Y, Shenkar R, Kaneko D, et al. Hemorrhage increases cytokine expression in lung mononuclear cells in mice: involvement of catecholamines in nuclear factor-kappaB regulation and cytokine expression. J Clin Invest. 1997;99(7):1516–24.

    Article  PubMed  PubMed Central  Google Scholar 

  115. Chang-Seng LLJ. Metabolic control of the circulation: effects of acetat and pyruvate. J Clin Investig. 1978;62:1029–38.

    Article  Google Scholar 

  116. Ward RA, Wathen RL, Harding GB, Thompson LC. Comparative metabolic effects of acetate and dichloroacetate infusion in the anesthetized dog. Metabolism. 1985;34(7):680–7.

    Article  CAS  PubMed  Google Scholar 

  117. Burnier P, Tappy L, Jequier E, Schneeberger D, Chiolero R. Metabolic and respiratory effects of infused sodium acetate in healthy human subjects. Am J Physiol. 1992;263(6 Pt 2):R1271–R6.

    CAS  PubMed  Google Scholar 

  118. Suokas A, Kupari M, Heikkila J, Lindros K, Ylikahri R. Acute cardiovascular and metabolic effects of acetate in men. Alcohol Clin Exp Res. 1988;12(1):52–8.

    Article  CAS  PubMed  Google Scholar 

  119. Kellum JA, Song M, Almasri E. Hyperchloremic acidosis increases circulating inflammatory molecules in experimental sepsis. Chest. 2006;130(4):962–7.

    Article  CAS  PubMed  Google Scholar 

  120. Soussi S, Ferry A, Chaussard M, Legrand M. Chloride toxicity in critically ill patients: what’s the evidence? Anaesth Crit Care Pain Med. 2017;36(2):125–30.

    Article  PubMed  Google Scholar 

  121. Phillips CR, Vinecore K, Hagg DS, et al. Resuscitation of haemorrhagic shock with normal saline vs. lactated Ringer’s: effects on oxygenation, extravascular lung water and haemodynamics. Crit Care. 2009;13(2):R30.

    Article  PubMed  PubMed Central  Google Scholar 

  122. Khan R, Kirschenbaum LA, Larow C, Astiz ME. The effect of resuscitation fluids on neutrophil-endothelial cell interactions in septic shock. Shock. 2011;36(5):440–4.

    Article  CAS  PubMed  Google Scholar 

  123. Rhee P, Wang D, Ruff P, et al. Human neutrophil activation and increased adhesion by various resuscitation fluids. Crit Care Med. 2000;28(1):74–8.

    Article  CAS  PubMed  Google Scholar 

  124. Kiraly LN, Differding JA, Enomoto TM, et al. Resuscitation with normal saline (NS) vs. lactated ringers (LR) modulates hypercoagulability and leads to increased blood loss in an uncontrolled hemorrhagic shock swine model. J Trauma. 2006;61(1):57–64. discussion–5.

    Article  PubMed  Google Scholar 

  125. Todd SR, Malinoski D, Muller PJ, Schreiber MA. Lactated Ringer’s is superior to normal saline in the resuscitation of uncontrolled hemorrhagic shock. J Trauma. 2007;62(3):636–9.

    Article  PubMed  Google Scholar 

  126. Raghunathan K, Bonavia A, Nathanson BH, et al. Association between initial fluid choice and subsequent in-hospital mortality during the resuscitation of adults with septic shock. Anesthesiology. 2015;123(6):1385–93.

    Article  CAS  PubMed  Google Scholar 

  127. Sponholz C, Schelenz C, Reinhart K, Schirmer U, Stehr SN. Catecholamine and volume therapy for cardiac surgery in Germany—results from a postal survey. PLoS ONE. 2014;9(8):e103996.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  128. Bayer O, Schwarzkopf D, Doenst T, et al. Perioperative fluid therapy with tetrastarch and gelatin in cardiac surgery—a prospective sequential analysis*. Crit Care Med. 2013;41(11):2532–42.

    Article  CAS  PubMed  Google Scholar 

  129. Hans GA, Ledoux D, Roediger L, et al. The effect of intraoperative 6% balanced hydroxyethyl starch (130/0.4) during cardiac surgery on transfusion requirements. J Cardiothorac Vasc Anesth. 2015;29(2):328–32.

    Article  CAS  PubMed  Google Scholar 

  130. Verheij J, van Lingen A, Raijmakers PG, et al. Effect of fluid loading with saline or colloids on pulmonary permeability, oedema and lung injury score after cardiac and major vascular surgery. Br J Anaesth. 2006;96(1):21–30.

    Article  CAS  PubMed  Google Scholar 

  131. Jacob M, Fellahi JL, Chappell D, Kurz A. The impact of hydroxyethyl starches in cardiac surgery: a meta-analysis. Crit Care. 2014;18(6):656.

    Article  PubMed  PubMed Central  Google Scholar 

  132. Magder S, Potter BJ, Varennes BD, Doucette S, Fergusson D. Fluids after cardiac surgery: a pilot study of the use of colloids versus crystalloids. Crit Care Med. 2010;38(11):2117–24.

    Article  PubMed  Google Scholar 

  133. Mehta Y, Arora D. Newer methods of cardiac output monitoring. World J Cardiol. 2014;6(9):1022–9.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Funding

No external funding war received for this study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Carmen A. Pfortmueller MD.

Ethics declarations

Conflict of interest

C.A. Pfortmueller, B. Kabon, J.C. Schefold, and E. Fleischmann declare that they have no competing interests.

Additional information

Authors’ contributions

Carmen A. Pfortmueller: designed the strategy, performed the literature review, drafted the manuscript. Barbara Kabon: revision for important intellectual content. Joerg C. Schefold: revision for important intellectual content. Edith Fleischmann: revision for important intellectual content

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pfortmueller, C.A., Kabon, B., Schefold, J.C. et al. Crystalloid fluid choice in the critically ill. Wien Klin Wochenschr 130, 273–282 (2018). https://doi.org/10.1007/s00508-018-1327-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00508-018-1327-y

Keywords

Navigation