Skip to main content
Log in

An application of neutrosophic logic on an inventory model with two-level partial trade credit policy for time-dependent perishable products

  • Optimization
  • Published:
Soft Computing Aims and scope Submit manuscript

Abstract

Fuzzy and neutrosophic sets are two effective tools to deal with the ambiguities and uncertainties present in real-world problems. To deal with the uncertainties of a real-world scenario, a neutrosophic set is better equipped than a fuzzy set. In this article, we develop a neutrosophic economic order quantity (EOQ) inventory model with the assumption that the market demand is sensitive to the retail price and promotional effort. The supplier and retailer both adopt a partial trade credit policy. We include preservation technology to restrict normal deterioration. We analyse the crisp model first, and then, neutrosophic logic is implemented in the proposed model. De-neutrosophication of total neutrosophic profit is performed based on the removal area approach. The present investigation yields that the de-neutrosophic value of the profit function is convex, that is, a unique solution exists. Mathematical outcomes are generated to efficiently determine the optimal inventory policy for the retailer. To demonstrate numerically and validate the model, a case study is carried out. The findings in this work generalize several existing results, and sensitivity analysis is also reported to support the model.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

Data availability

Not applicable

References

Download references

Funding

There is no funding in this study.

Author information

Authors and Affiliations

Authors

Contributions

k.m., a.k.j., a.d., and a.p. conceived the presented idea. k.m., and a.d. developed the theory and performed the computations. k.m. and a.k.j. verified the analytical methods. k.m. contributed reagents/materials/analysis tools. k.m., a.k.j., a.d., and a.p wrote the paper.

Corresponding author

Correspondence to Kartick Mohanta.

Ethics declarations

Conflict of interest

All authors declare that they have no conflict of interest.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Informed consent

Informed consent was obtained from all individual. participants included in the study.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

A Proof of Theorem 3

$$\begin{aligned}{} & {} D(({\widetilde{\Pi }}_{Neu})_{_{_{11}}}(\digamma ,c_{_S}))\\{} & {} \quad =D((E_{11})_{11}\cdot ({\widetilde{X}}_{Neu}^{11})_{11} \ominus (E_{12})_{11}\cdot ({\widetilde{X}}_{Neu}^{12})_{11}\ominus (E_{13})_{11}\\{} & {} \quad \cdot ({\widetilde{X}}_{Neu}^{13})_{11}\ominus (E_{14})_{11}\cdot ({\widetilde{X}}_{Neu}^{14})_{11}\ominus (E_{15})_{11}\cdot ({\widetilde{X}}_{Neu}^{15})_{11}\ominus \\{} & {} \quad (E_{16})_{11}\cdot ({\widetilde{X}}_{Neu}^{16})_{11}\oplus (E_{17})_{11}\cdot ({\widetilde{X}}_{Neu}^{17})_{11}\ominus (E_{18})_{11}\cdot \\{} & {} \quad ({\widetilde{X}}_{Neu}^{18})_{11})\\{} & {} \quad =(E_{11})_{11}~~D(({\widetilde{X}}_{Neu}^{11})_{11})~~- ~~(E_{12})_{11}~~D~~(({\widetilde{X}}_{Neu}^{12})_{11})\\{} & {} \qquad -~~(E_{13})_{11}~D(({\widetilde{X}}_{Neu}^{13})_{11})~-~(E_{14})_{11}~~D(({\widetilde{X}}_{Neu}^{14})_{11})\\{} & {} \qquad -~(E_{15})_{11}~~D( ({\widetilde{X}}_{Neu}^{15})_{11})~-~(E_{16})_{11}~~D(({\widetilde{X}}_{Neu}^{16})_{11})\\{} & {} \qquad +~(E_{17})_{11}~~D(({\widetilde{X}}_{Neu}^{17})_{11})~-~(A_{18})_{11}~~D(({\widetilde{X}}_{Neu}^{18})_{11})\\{} & {} \quad =~~c_{_S}~~~e^VD(({\widetilde{X}}_{Neu}^{11})_{11})~~~-~~\frac{1}{\digamma }~~~D(({\widetilde{X}}_{Neu}^{12})_{11}) -\frac{1}{\digamma }\\{} & {} \quad D(({\widetilde{X}}_{Neu}^{13})_{11})-\frac{e^{V}}{\digamma }\left( \int \limits _0^{\digamma }e^{-\xi (t)}du\right) D(({\widetilde{X}}_{Neu}^{14})_{11})-\frac{e^V}{\digamma }\\{} & {} \quad \left( \int \limits _0^{\digamma }e^{-\xi (t)}(\int \limits _t^{\digamma }e^{\xi (u)}du)dt\right) D(({\widetilde{X}}_{Neu}^{15})-\frac{i_{_{IC}}e^V}{\digamma }\bigg \{(1-\lambda _1)\\{} & {} \quad (\digamma +V)\int \limits _0^{\digamma }e^{\xi (u)}du+\frac{1}{2}(1-\lambda _1)^2\digamma \int \limits _{0}^{\digamma }e^{\xi (u)}du+\frac{1}{2}\lambda _2\\{} & {} \quad (\digamma -U)^2+\frac{1}{2}(1-\lambda _2)(\digamma +V-U)^2\bigg \}D(({\widetilde{X}}_{Neu}^{16})\\{} & {} \quad +\frac{c_{_{S}}i_{_{IE}}e^V}{2\digamma }\bigg \{\lambda _2U^2+(1-\lambda _2)(U-V)^2\bigg \}\\{} & {} \quad D(({\widetilde{X}}_{Neu}^{17})-\frac{\eta }{\digamma }D(({\widetilde{X}}_{Neu}^{18})` \end{aligned}$$

Let \(D(({\widetilde{\Pi }}_{Neu})_{_{_{11}}}(\digamma ))=\frac{f(\digamma )}{g(\digamma )}\), where

$$\begin{aligned} f(\digamma )&=c_{_S}e^V\digamma D(({\widetilde{X}}_{Neu}^{11})_{11})-D(({\widetilde{X}}_{Neu}^{12})_{11})\\&-D(({\widetilde{X}}_{Neu}^{13})_{11})-e^{V}\left( \int \limits _0^{\digamma }e^{-\xi (t)}du\right) \\&D(({\widetilde{X}}_{Neu}^{14})_{11})-e^V\left( \int \limits _0^{\digamma }e^{-\xi (t)}\left( \int \limits _t^{\digamma }e^{\xi (u)}du\right) dt\right) \\&D(({\widetilde{X}}_{Neu}^{15})-i_{_{IC}}e^V\bigg \{(1-\lambda _1)(\digamma +V)\int \limits _0^{\digamma }e^{\xi (u)}du\\&+\frac{1}{2}(1-\lambda _1)^2\digamma \int \limits _{0}^{\digamma }e^{\xi (u)}du+\frac{1}{2}\lambda _2(\digamma -U)^2+\\&\frac{1}{2}(1-\lambda _2)(\digamma +V-U)^2\bigg \}D(({\widetilde{X}}_{Neu}^{16})\\&+\frac{c_{_{S}}i_{_{IE}}e^V}{2}\bigg \{\lambda _2U^2+(1-\lambda _2)(U-V)^2\bigg \}\\&D(({\widetilde{X}}_{Neu}^{17})-\eta D(({\widetilde{X}}_{Neu}^{18})\\&\text{ and }~~~g(\digamma )=\digamma .\\ \qquad \qquad \dfrac{d f(\digamma )}{d\digamma }&=c_{_S}e^V D(({\widetilde{X}}_{Neu}^{11})_{11})-e^Ve^{\xi (\digamma )}D(({\widetilde{X}}_{Neu}^{14})_{11})\\&\quad -e^V\int \limits _0^{\digamma }e^{-\xi (t)+\xi (\digamma )}dt~ D(({\widetilde{X}}_{Neu}^{15})_{11})\\&\quad +i_{_{IC}}e^V D(({\widetilde{X}}_{Neu}^{16})_{11})\bigg \{e^{\xi (\digamma )}(V+x)(1-\lambda _1)\\&\quad +\frac{1}{2}x(1-\lambda _1)^2e^{\xi (\digamma )}+\frac{1}{2}(1-\lambda _1)(3-\lambda _1)\int \limits _0^{\digamma }e^{\xi (t)}dt\\&\quad +(\digamma -U+V)(1-\lambda _2)+(\digamma -U)\lambda _2\bigg \}\\ \dfrac{d^2f(\digamma )}{d \digamma ^2}&=\frac{1}{2}e^V\bigg [-2\bigg \{D(({\widetilde{X}}_{Neu}^{15})_{11})+i_{_{IC}}D(({\widetilde{X}}_{Neu}^{16})_{11})\\&+e^{\xi (\digamma )}D(({\widetilde{X}}_{Neu}^{16})_{11})(3-4\lambda _1+\lambda _1^2)\bigg \}\\&-2D(({\widetilde{X}}_{Neu}^{15})_{11})\int \limits _{0}^{\digamma }e^{-b\eta -\xi (t)+\xi (\digamma )}\zeta (\digamma )dt\\&-e^{-b\eta +\xi (\digamma )}\bigg \{2D(({\widetilde{X}}_{Neu}^{14})_{11})+D(({\widetilde{X}}_{Neu}^{15})_{11})\\&\left( -2V+\digamma (-3+\lambda _1)\right) (\lambda _1-1)\bigg \}\zeta (\digamma )\bigg ] \end{aligned}$$

Here, \(\dfrac{d^2f(\digamma )}{d \digamma ^2}<0\). Hence, \(f(\digamma )\) is a strictly concave function. Again \(g(\digamma )=\digamma \) is positive, differentiable and convex function of \(\digamma \) on \((0,~\infty )\). So, by the theorem 2, \(D(({\widetilde{\Pi }}_{Neu})_{_{_{11}}}(\digamma ))\) is a strictly pseudo-concave function of \(\digamma \) on \((0,~\infty )\).

B Proof of the Theorem 4

For any \(\digamma \), differentiating

\(D(({\widetilde{\Pi }}_{Neu})_{_{_{11}}}(c_{_S}))=\) \(D(({\widetilde{\Pi }}_{Neu})_{_{_{11}}}(\digamma ,c_{_S}))\)

with respect to \(c_{_S}\), we get

$$\begin{aligned}&\dfrac{d D(({\widetilde{\Pi }}_{Neu})_{_{_{11}}}(\digamma ,c_{_S}))}{d c_{_S}}\\&=e^VD(({\widetilde{X}}_{Neu}^{11})_{11})+c_{_S}e^VD(({\widetilde{X}}_{Neu}^{11})_{11}\otimes (-{\widetilde{a}}_{Neu}))\\&\quad -\frac{e^{V}}{\digamma }\left( \int \limits _0^{\digamma }e^{-\xi (t)}du\right) D(({\widetilde{X}}_{Neu}^{14})_{11}\otimes (-{\widetilde{a}}_{Neu}))\\&\quad -\frac{e^V}{\digamma }\left( \int \limits _0^{\digamma }e^{-\xi (t)}\left( \int \limits _t^{\digamma }e^{\xi (u)}du\right) dt\right) D(({\widetilde{X}}_{Neu}^{15})_{11}\\&\otimes (-{\widetilde{a}}_{Neu})) -\frac{i_{_{IC}}e^V}{\digamma }\bigg \{(1-\lambda _1)(\digamma +V)\\&\int \limits _0^{\digamma }e^{\xi (u)}du+\frac{1}{2}(1-\lambda _1)^2\digamma \int \limits _{0}^{\digamma }e^{\xi (u)}du+\frac{1}{2}\\&\lambda _2(\digamma -U)^2+\frac{1}{2}(1-\lambda _2)(\digamma +V-U)^2\bigg \}\\&D(({\widetilde{X}}_{Neu}^{16})_{11}\otimes (-{\widetilde{a}}_{Neu}))+\frac{i_{_{IE}}e^V}{2\digamma }\bigg \{\lambda _2U^2\\&+(1-\lambda _2)(U-V)^2\bigg \}D(({\widetilde{X}}_{Neu}^{17}). \\&\dfrac{d^2 D(({\widetilde{\Pi }}_{Neu})_{_{_{11}}}(\digamma ,c_{_S}))}{d c_{_S}^2}\\&=2e^VD(({\widetilde{X}}_{Neu}^{11})_{11}\otimes (-{\widetilde{a}}_{Neu}))+c_{_S}e^V\\&D(({\widetilde{X}}_{Neu}^{11})_{11}\otimes (-{\widetilde{a}}_{Neu})\otimes (-{\widetilde{a}}_{Neu}))-\\&\frac{e^{V}}{\digamma }\left( \int \limits _0^{\digamma }e^{-\xi (t)}du\right) D(({\widetilde{X}}_{Neu}^{14})_{11}\otimes (-{\widetilde{a}}_{Neu})\\&\otimes (-{\widetilde{a}}_{Neu})) -\frac{e^V}{\digamma }\left( \int \limits _0^{\digamma }e^{-\xi (t)}\left( \int \limits _t^{\digamma }e^{\xi (u)}du\right) dt\right) \\&D(({\widetilde{X}}_{Neu}^{15})_{11}\otimes (-{\widetilde{a}}_{Neu})\otimes (-{\widetilde{a}}_{Neu})) -\frac{i_{_{IC}}e^V}{\digamma }\\&\bigg \{(1-\lambda _1)(\digamma +V)\int \limits _0^{\digamma }e^{\xi (u)}du+\frac{1}{2}(1-\lambda _1)^2\digamma \\&\int \limits _{0}^{\digamma }e^{\xi (u)}du+\frac{1}{2}\lambda _2(\digamma -U)^2+\frac{1}{2}(1-\lambda _2)(\digamma \\ {}&+V-U)^2\bigg \}D(({\widetilde{X}}_{Neu}^{16})_{11}\otimes (-{\widetilde{a}}_{Neu})\otimes (-{\widetilde{a}}_{Neu})). \end{aligned}$$

Let

$$\begin{aligned} \Theta _{11}&=-2e^VD(({\widetilde{X}}_{Neu}^{11})_{11}\otimes (-{\widetilde{a}}_{Neu}))\\&+\frac{e^{V}}{\digamma }\left( \int \limits _0^{\digamma }e^{-\xi (t)}du\right) D(({\widetilde{X}}_{Neu}^{14})_{11}\otimes (-{\widetilde{a}}_{Neu})\otimes \\&(-{\widetilde{a}}_{Neu})) +\frac{e^V}{\digamma }\left( \int \limits _0^{\digamma }e^{-\xi (t)}\left( \int \limits _t^{\digamma }e^{\xi (u)}du\right) dt\right) D(({\widetilde{X}}_{Neu}^{15})_{11}\\ {}&\otimes (-{\widetilde{a}}_{Neu})\otimes (-{\widetilde{a}}_{Neu}))+\frac{i_{_{IC}}e^V}{\digamma }\bigg \{(1-\lambda _1)(\digamma +V)\\&\int \limits _0^{\digamma }e^{\xi (u)}du+\frac{1}{2}(1-\lambda _1)^2\digamma \int \limits _{0}^{\digamma }e^{\xi (u)}du+\frac{1}{2}\lambda _2(\digamma -U)^2\\&+\frac{1}{2}(1-\lambda _2)(\digamma +V-U)^2\bigg \} D(({\widetilde{X}}_{Neu}^{16})_{11}\otimes (-{\widetilde{a}}_{Neu})\\&~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~\otimes (-{\widetilde{a}}_{Neu})). \end{aligned}$$

So, \(\dfrac{d^2 D(({\widetilde{\Pi }}_{Neu})_{_{_{11}}}(\digamma ,c_{_S}))}{d c_{_S}^2}<0\),

if \(\Theta _{11}>c_{_S}e^V\dfrac{d^2 D(({\widetilde{X}}_{Neu}^{11})_{11})}{d c_{_S}^2}\).

C Proof of Theorem 6

$$\begin{aligned}&D(({\widetilde{\Pi }}_{Neu})_{_{_{12}}}(\digamma ,c_{_S}))\\&=c_{_S}e^VD(({\widetilde{X}}_{Neu}^{11})_{12})-\frac{1}{\digamma }D(({\widetilde{X}}_{Neu}^{12})_{12})\\&\quad -\frac{1}{\digamma }D(({\widetilde{X}}_{Neu}^{13})_{12})-\frac{e^{V}}{\digamma }\left( \int \limits _0^{\digamma }e^{-\xi (t)}du\right) D(({\widetilde{X}}_{Neu}^{14})_{12})\\&\quad -\frac{e^V}{\digamma }\left( \int \limits _0^{\digamma }e^{-\xi (t)}\left( \int \limits _t^{\digamma }e^{\xi (u)}du\right) dt\right) D(({\widetilde{X}}_{Neu}^{15})_{12})-\frac{i_{_{IC}}e^V}{\digamma }\\&\bigg \{(1-\lambda _1) (\digamma +V)\int \limits _0^{\digamma }e^{\xi (u)}du+\frac{1}{2}(1-\lambda _1)^2\digamma \\&\int \limits _{0}^{\digamma }e^{\xi (u)}du +\frac{1}{2}(1-\lambda _2)(\digamma +V-U)^2\bigg \}D(({\widetilde{X}}_{Neu}^{16})_{12})\\&\quad +\frac{c_{_{S}}i_{_{IE}}e^V}{2\digamma }\bigg \{\lambda _2\digamma ^2+ 2\lambda _2 \digamma (U-\digamma )+(1-\lambda _2)(U-\\&V)^2\bigg \}D(({\widetilde{X}}_{Neu}^{17})_{12})-\frac{\eta }{\digamma }D(({\widetilde{X}}_{Neu}^{18})_{12}). \\&\dfrac{d D(({\widetilde{\Pi }}_{Neu})_{_{_{12}}}(\digamma ,c_{_S}))}{d c_{_S}}\\&=e^VD(({\widetilde{X}}_{Neu}^{11})_{12})+c_{_S}e^VD(({\widetilde{X}}_{Neu}^{11})_{12}\otimes (-{\widetilde{a}}_{Neu}))\\&\quad -\frac{e^{V}}{\digamma }\left( \int \limits _0^{\digamma }e^{-\xi (t)}du\right) D(({\widetilde{X}}_{Neu}^{14})_{12}\otimes (-{\widetilde{a}}_{Neu}))\\&\quad -\frac{e^V}{\digamma }\left( \int \limits _0^{\digamma }e^{-\xi (t)}\left( \int \limits _t^{\digamma }e^{\xi (u)}du\right) dt\right) D(({\widetilde{X}}_{Neu}^{15})_{12}\otimes (-{\widetilde{a}}_{Neu}))\\&\quad -\frac{i_{_{IC}}e^V}{\digamma }\bigg \{(1-\lambda _1)(\digamma +V)\int \limits _0^{\digamma }e^{\xi (u)}du+\frac{1}{2}(1-\lambda _1)^2\digamma \\&\int \limits _{0}^{\digamma }e^{\xi (u)}du+\frac{1}{2}(1-\lambda _2)(\digamma +V-U)^2\bigg \}\\&D(({\widetilde{X}}_{Neu}^{16})_{12}\otimes (-{\widetilde{a}}_{Neu}))+\frac{i_{_{IE}}e^V}{2\digamma }\bigg \{\lambda _2\digamma ^2+2\lambda _2\\&\digamma (U-\digamma )+(1-\lambda _2)(U-V)^2\bigg \}D(({\widetilde{X}}_{Neu}^{17})_{12}). \\&\dfrac{d^2 D(({\widetilde{\Pi }}_{Neu})_{_{_{12}}}(\digamma ,c_{_S}))}{d c_{_S}^2}\\&=2e^VD(({\widetilde{X}}_{Neu}^{11})_{12}\otimes (-{\widetilde{a}}_{Neu}))+c_{_S}e^VD(({\widetilde{X}}_{Neu}^{11})_{12}\\&\quad (-{\widetilde{a}}_{Neu})\otimes (-{\widetilde{a}}_{Neu}))\\&\quad -\frac{e^{V}}{\digamma }\left( \int \limits _0^{\digamma }e^{-\xi (t)}du\right) D(({\widetilde{X}}_{Neu}^{14})_{12}\\&\otimes (-{\widetilde{a}}_{Neu})\otimes (-{\widetilde{a}}_{Neu}))\\&\quad -\frac{e^V}{\digamma }\left( \int \limits _0^{\digamma }e^{-\xi (t)}\left( \int \limits _t^{\digamma }e^{\xi (u)}du\right) dt\right) \\&D(({\widetilde{X}}_{Neu}^{15})_{12}\otimes (-{\widetilde{a}}_{Neu})\otimes (-{\widetilde{a}}_{Neu}))\\&\quad -\frac{i_{_{IC}}e^V}{\digamma }\bigg \{(1-\lambda _1)\\&(\digamma +V)\int \limits _0^{\digamma }e^{\xi (u)}du+\frac{1}{2}(1-\lambda _1)^2\digamma \int \limits _{0}^{\digamma }e^{\xi (u)}du+\frac{1}{2}(1-\\&\lambda _2)(\digamma +V-U)^2\bigg \} D(({\widetilde{X}}_{Neu}^{16})_{12}\otimes (-{\widetilde{a}}_{Neu})\otimes (-{\widetilde{a}}_{Neu})). \end{aligned}$$

Let

$$\begin{aligned} \Theta _{12}&=-2e^VD(({\widetilde{X}}_{Neu}^{11})_{12}\otimes (-{\widetilde{a}}_{Neu}))\\&\quad +\frac{e^{V}}{\digamma }\left( \int \limits _0^{\digamma }e^{-\xi (t)}du\right) D(({\widetilde{X}}_{Neu}^{14})_{12}\otimes (-{\widetilde{a}}_{Neu})\\&\otimes (-{\widetilde{a}}_{Neu})) +\frac{e^V}{\digamma }\left( \int \limits _0^{\digamma }e^{-\xi (t)}\left( \int \limits _t^{\digamma }e^{\xi (u)}du\right) dt\right) \\&D(({\widetilde{X}}_{Neu}^{15})_{12}\otimes (-{\widetilde{a}}_{Neu})\otimes (-{\widetilde{a}}_{Neu})) +\frac{i_{_{IC}}e^V}{\digamma }\\&\bigg \{(1-\lambda _1)(\digamma +V)\int \limits _0^{\digamma }e^{\xi (u)}du+\frac{1}{2}(1-\lambda _1)^2\digamma \\&\int \limits _{0}^{\digamma }e^{\xi (u)}du+\frac{1}{2}(1-\lambda _2)(\digamma +V-U)^2\bigg \}\\&D(({\widetilde{X}}_{Neu}^{16})_{12}\otimes (-{\widetilde{a}}_{Neu})\otimes (-{\widetilde{a}}_{Neu})). \end{aligned}$$

So, \(\dfrac{d^2 D(({\widetilde{\Pi }}_{Neu})_{_{_{12}}}(\digamma ,c_{_S}))}{d c_{_S}^2}<0\),

if \(\Theta _{12}>c_{_S}e^V\dfrac{d^2 D(({\widetilde{X}}_{Neu}^{11})_{12})}{d c_{_S}^2}\).

D Proof of Theorem 8

For any given \(c_{_S}\), to find the \(\digamma ^*_{13}\), taking the first-order derivative of \(D(({\widetilde{\Pi }}_{Neu})_{_{_{13}}}(\digamma ))=D(({\widetilde{\Pi }}_{Neu})_{_{_{13}}}(\digamma ,c_{_S}))\) with respect to \(\digamma \) and equate it to zero, we get

$$\begin{aligned}&\Delta _{13}(\digamma )=\dfrac{d}{d\digamma }D(({\widetilde{\Pi }}_{Neu})_{_{_{13}}}(\digamma ,c_{_S}))\\&=\frac{1}{\digamma ^2}D(({\widetilde{X}}_{Neu}^{12})_{13})+\frac{1}{\digamma ^2}D(({\widetilde{X}}_{Neu}^{13})_{13}) +\frac{e^{V}}{\digamma ^2}\\&\bigg \{ \left( \int \limits _0^{\digamma }e^{-\xi (t)}du\right) -\digamma e^{\xi (\digamma )}\bigg \} D(({\widetilde{X}}_{Neu}^{14})_{13}) +\frac{e^V}{\digamma ^2}\\&\bigg \{\left( \int \limits _0^{\digamma }e^{-\xi (t)}\left( \int \limits _t^{\digamma }e^{\xi (u)}du\right) dt\right) - \digamma \left( \int \limits _0^{\digamma }e^{-\xi (t)+\xi (\digamma )}dt\right) \bigg \}\\&D(({\widetilde{X}}_{Neu}^{15})_{13}) +\frac{i_{_{IC}}e^V}{\digamma ^2}\bigg \{(1-\lambda _1)(\digamma +V)\int \limits _0^{\digamma }e^{\xi (u)}du\\&+\frac{1}{2}(1-\lambda _1)^2\digamma \int \limits _{0}^{\digamma }e^{\xi (u)}du\bigg \}D(({\widetilde{X}}_{Neu}^{16})_{13}) -\frac{e^Vi_{_{IC}}}{\digamma }\\&\bigg \{\big \{V+\digamma +\frac{1}{2}\digamma (1-\lambda _1)\big \}(1-\lambda _1)e^{\xi (\digamma )}+\frac{1}{2}(3-\lambda _1)\\&(1-\lambda _1)\int \limits _{0}^{\digamma }e^{\xi (t)}dt\bigg \}D(({\widetilde{X}}_{Neu}^{16})_{13})-\frac{c_{_{S}}i_{_{IE}}e^V}{2\digamma ^2}\bigg \{\digamma ^2+\\&2\lambda _2\digamma (U-\digamma )+2(1-\lambda _2)\digamma (U-\digamma -V)\bigg \}\\&D(({\widetilde{X}}_{Neu}^{17})_{13}) +\frac{e^V}{\digamma }7(U-\digamma -V(1-\lambda _2))\\&D(({\widetilde{X}}_{Neu}^{17})_{12})+\frac{\eta }{\digamma ^2}D(({\widetilde{X}}_{Neu}^{18})_{13}. \end{aligned}$$

So, \(\dfrac{d^2 D(({\widetilde{\Pi }}_{Neu})_{_{_{13}}}(\digamma ,c_{_S}))}{d c_{_S}^2}<0\),

if \(\Theta _{13}>c_{_S}e^V\dfrac{d^2 D(({\widetilde{X}}_{Neu}^{11})_{13})}{d c_{_S}^2}\).

E Proof of Theorem 9.

  1. 1.
    $$\begin{aligned} \lim \limits _{\digamma \rightarrow 0}\Delta (\digamma )=\infty \end{aligned}$$
    (29)

    If \(\Delta _{13}(U-V)<0\), then by intermediate value property (IVP) and theorem 7, there exists a unique \(\digamma ^*_{13}\in (0,~U-V)\) such that \(\Delta (\digamma ^*_{13})=0\). Hence, \(D(({\widetilde{\Pi }}_{Neu})_{_{_{13}}}\) \((\digamma ),c_{_S})\) is maximize at a unique \(\digamma ^*_{13}\). Now

    $$\begin{aligned} \Delta _{13}(U-V)=\Delta _{12}(U-V). \end{aligned}$$

    So, if \(\Delta _{13}(U-V)<0\), then \(\Delta _{12}(U-V)<0\) and by the theorem 4, we get

    $$\begin{aligned} \dfrac{d}{d\digamma }D(({\widetilde{\Pi }}_{Neu})_{_{_{12}}}(\digamma ,c_{_S}))<0,~~\forall ~\digamma \in [U-V,~U]. \end{aligned}$$

    So, for all \(\digamma \in [U-V,~U]\), \(D(({\widetilde{\Pi }}_{Neu})_{_{_{12}}}(\digamma ,c_{_S}))\) is decreasing and maximize at \(U-V\). Again,

    $$\begin{aligned} \Delta _{12}(U)=\Delta _{11}(U). \end{aligned}$$

    Since \(\Delta _{12}(U)<0\), so \(\Delta _{11}(U)<0\) and by the theorem 3, we have

    $$\begin{aligned} \dfrac{d}{d\digamma }D(({\widetilde{\Pi }}_{Neu})_{_{_{11}}}(\digamma ,c_{_S}))<0,~~\forall ~\digamma \in [U,~\infty ] . \end{aligned}$$

    So, for all \(\digamma \in [U,~\infty ]\), \(D(({\widetilde{\Pi }}_{Neu})_{_{_{11}}}(\digamma ,c_{_S}))\) is decreasing and maximize at U. So if \(\Delta _{13}(U-V)<0\), then

    $$\begin{aligned} \begin{aligned} D(({\widetilde{\Pi }}_{Neu})_{_{_{13}}}(\digamma ^*_{13},c_{_S})&\ge D(({\widetilde{\Pi }}_{Neu})_{_{_{13}}}(U-V,c_{_S})\\&=D(({\widetilde{\Pi }}_{Neu})_{_{_{12}}}(U-V,c_{_S})\\&>D(({\widetilde{\Pi }}_{Neu})_{_{_{12}}}(\digamma ,c_{_S})\\&\ge D(({\widetilde{\Pi }}_{Neu})_{_{_{12}}}(U,c_{_S}),\\&~~~~~~~~~~~~~~~~~~\forall ~\digamma \in [U-V,U]. \end{aligned} \end{aligned}$$

    Again,

    $$\begin{aligned} \begin{aligned} D(({\widetilde{\Pi }}_{Neu})_{_{_{12}}}(U,c_{_S})&= D(({\widetilde{\Pi }}_{Neu})_{_{_{11}}}(U,c_{_S})\\&\ge D(({\widetilde{\Pi }}_{Neu})_{_{_{11}}}(\digamma ,c_{_S})~~\forall ~\digamma \in [U,\infty ]. \end{aligned} \end{aligned}$$

    Hence, the for \(U\le V\) and for any \(c_{_S}\), if \(\Delta _{13}(U-V)<0\), then \(D(({\widetilde{\Pi }}_{Neu})_{_{_{13}}}(\digamma ,c_{_S})\) is maximize at \(\digamma ^*_{13}\).

  2. 2.

    If \(\Delta _{13}(U-V)=0\), then from Eq. (29) and Theorem 7, we conclude that \(U-V\in (0,U-V]\) is the unique point such that \(\Delta _{13}(U-V)=0\). Hence, \( D(({\widetilde{\Pi }}_{Neu})_{_{_{13}}}(\digamma ,c_{_S})\) is maximized at \(U-V\). Again,

    $$\begin{aligned} \Delta _{13}(U-V)=\Delta _{12}(U-V)=0. \end{aligned}$$

    From Theorem5, we have \(U-V\in [U-V,U]\) is the unique point such that

    $$\begin{aligned} \dfrac{d}{d\digamma }D(({\widetilde{\Pi }}_{Neu})_{_{_{12}}}(U-V,c_{_S}))=0. \end{aligned}$$

    Hence, \(D(({\widetilde{\Pi }}_{Neu})_{_{_{12}}}(\digamma ,c_{_S})\) is maximized at \(U-V\). Further, we can write

    $$\begin{aligned} \dfrac{d}{d\digamma }D(({\widetilde{\Pi }}_{Neu})_{_{_{12}}}(U-V,c_{_S}))<0,~~\forall ~\digamma \in (U-V,U]. \end{aligned}$$

    So,

    $$\begin{aligned} \dfrac{d}{d\digamma }D(({\widetilde{\Pi }}_{Neu})_{_{_{12}}}(U,c_{_S}))=\dfrac{d}{d\digamma }D(({\widetilde{\Pi }}_{Neu})_{_{_{11}}}(U,c_{_S}))<0. \end{aligned}$$

    Hence, by Theorem 3, we have

    $$\begin{aligned} \dfrac{d}{d\digamma }D(({\widetilde{\Pi }}_{Neu})_{_{_{11}}}(\digamma ,c_{_S}))<0~\forall ~\digamma \in [U,\infty ). \end{aligned}$$

    Thus, \(D(({\widetilde{\Pi }}_{Neu})_{_{_{11}}}(\digamma ,c_{_S})\) is strictly decreasing and maximize at U. Therefore,

    $$\begin{aligned} \begin{aligned} D(({\widetilde{\Pi }}_{Neu})_{_{_{13}}}(U-V,c_{_S})&= D(({\widetilde{\Pi }}_{Neu})_{_{_{12}}}(U-V,c_{_S})\\&\ge D(({\widetilde{\Pi }}_{Neu})_{_{_{12}}}(U,c_{_S})\\&=D(({\widetilde{\Pi }}_{Neu})_{_{_{11}}}(U,c_{_S}). \end{aligned} \end{aligned}$$

    Hence, if \(\Delta _{13}(U-V)=0\), then for \(U\le V\) De-neutrosophic value of retailer optimal profit is maximized at \(U-V\).

  3. 3.

    If \(\Delta _{13}(U-V)>0\), then by Theorem 7 and Eq. (29), we can write

    $$\begin{aligned} \dfrac{d}{d\digamma }D(({\widetilde{\Pi }}_{Neu})_{_{_{13}}}(\digamma ,c_{_S}))>0,~\forall ~\digamma \in (0,U-V]. \end{aligned}$$

    Hence, \(D(({\widetilde{\Pi }}_{Neu})_{_{_{13}}}(\digamma ,c_{_S}))\) is monotonically strictly increasing function and is maximized at \(U-V.\) Again,

    $$\begin{aligned} \dfrac{d}{d\digamma }D(({\widetilde{\Pi }}_{Neu})_{_{_{13}}}(U-V,c_{_S})) \end{aligned}$$
    $$\begin{aligned} =\dfrac{d}{d\digamma }D(({\widetilde{\Pi }}_{Neu})_{_{_{12}}}(U-V,c_{_S}))>0. \end{aligned}$$

    Now

    1. (a)

      if \(\Delta _{12}(U)<0\), then by Theorem 4, there exits a unique point \(\digamma ^*_{12}\in (U-V,U)\) such that \(\Delta _{12}(\digamma ^*_{12})=0\). Hence, \(D(({\widetilde{\Pi }}_{Neu})_{_{_{12}}}(\digamma ,c_{_S}))\) is maximize at \(\digamma ^*_{12}\). Also,

      $$\begin{aligned}{} & {} \dfrac{d}{d\digamma }D(({\widetilde{\Pi }}_{Neu})_{_{_{12}}}(U,c_{_S}))\\{} & {} \quad =\dfrac{d}{d\digamma }D(({\widetilde{\Pi }}_{Neu})_{_{_{11}}}(U,c_{_S}))<0. \end{aligned}$$

      By Theorem 3, we have

      $$\begin{aligned} \dfrac{d}{d\digamma }D(({\widetilde{\Pi }}_{Neu})_{_{_{11}}}(\digamma ,c_{_S}))<0,~\forall ~\digamma \in [U,\infty ]. \end{aligned}$$

      Hence, \(D(({\widetilde{\Pi }}_{Neu})_{_{_{11}}}(\digamma ,c_{_S}))\) is strictly decreasing and is maximize at U. Now

      $$\begin{aligned} \begin{aligned} D(({\widetilde{\Pi }}_{Neu})_{_{_{12}}}(\digamma ^*_{12},c_{_S}))&\ge D(({\widetilde{\Pi }}_{Neu})_{_{_{12}}}(U-V,c_{_S}))\\&=D(({\widetilde{\Pi }}_{Neu})_{_{_{13}}}(U-V,c_{_S})) \end{aligned} \end{aligned}$$
      (30)

      and

      $$\begin{aligned} \begin{aligned} D(({\widetilde{\Pi }}_{Neu})_{_{_{12}}}(\digamma ^*_{12},c_{_S}))&\ge D(({\widetilde{\Pi }}_{Neu})_{_{_{12}}}(U,c_{_S}))\\&=D(({\widetilde{\Pi }}_{Neu})_{_{_{11}}}(U,c_{_S})). \end{aligned} \end{aligned}$$
      (31)

      Thus, from Eq.(30) and Eq.(31), we conclude that De-neutrosophic value of retailer optimal profit is maximized at \(\digamma ^*_{12}\).

    2. (b)

      The proof is similar to 3a.

    3. (c)

      The proof is similar to 3a.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mohanta, K., Jha, A.K., Dey, A. et al. An application of neutrosophic logic on an inventory model with two-level partial trade credit policy for time-dependent perishable products. Soft Comput 27, 4795–4822 (2023). https://doi.org/10.1007/s00500-022-07619-2

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00500-022-07619-2

Keywords

Navigation