Skip to main content
Log in

A rescaling technique to improve numerical stability of portfolio optimization problems

  • Focus
  • Published:
Soft Computing Aims and scope Submit manuscript

Abstract

This paper analyzes the numerical stability of Markowitz portfolio optimization model, by identifying and studying a source of instability, that strictly depends on the mathematical structure of the optimization problem and its constraints. As a consequence, it is shown how standard portfolio optimization models can result in an unstable model also when the covariance matrix is well conditioned and the objective function is numerically stable. This depends on the fact that the linear equality constraints of the model very often suffer of almost collinearity and/or bad scaling. A theoretical approach is proposed that exploiting an equivalent formulation of the original optimization problem considerably reduces such structural component of instability. The effectiveness of the proposal is empirically certified through applications on real financial data when numerical optimization approaches are needed to compute the optimal portfolio. Gurobi and MATLAB’s solvers quadprog and fmincon are compared in terms of convergence performances.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Notes

  1. The economic interpretation of the parameters is behind the scope of the paper. The examples are built in order to emphasize the possible numerical issues that can occur in standard settings applications on real financial data.

References

  • Adam A, Houkari M, Laurent JP (2008) Spectral risk measures and portfolio selection. J Bank Finance 32(9):1870–1882

    Article  Google Scholar 

  • Best MJ, Grauer RR (1991) On the sensitivity of mean-variance-efficient portfolios to changes in asset means: some analytical and computational results. Rev Financial Studies 4(2):315–342

    Article  Google Scholar 

  • Bini D, Pan VY (1994) Polynomial and matrix computations. Fundamental algorithms, Progress in theoretical computer Science. Springer, Birkhauser

    Google Scholar 

  • Brodie J, Daubechies I, De Mol C, Giannone D, Loris I (2009) Sparse and stable Markowitz portfolios. PNAS 106(30):12267–12272

    Article  MATH  Google Scholar 

  • Chang T, Yang S, Chang K (2009) Portfolio optimization problems in different risk measures using genetic algorithm. Expert Syst Appl 36(7):10529–10537

    Article  Google Scholar 

  • Chen Y, Wiesel A, Hero AO (2011) Robust shrinkage estimation of high-dimensional covariance matrices. IEEE Trans Signal Process 59(9):4097–4107

    Article  MathSciNet  MATH  Google Scholar 

  • Choueifaty Y, Coignard Y (2008) Toward Maximum Diversification. J Portf Manag 35(1):40–51

    Article  Google Scholar 

  • Couillet R, Pascal F, Silverstein JW (2014) Robust estimates of covariance matrices in the large dimensional regime. IEEE Trans Inf Theory 60(11):7269–7278

    Article  MathSciNet  MATH  Google Scholar 

  • Constantinides GM, Malliaris AG (1995) Portfolio theory. Handbooks in operations research and management science. Elsevier, Amsterdam, pp 1–30

    Google Scholar 

  • DeMiguel V, Garlappi L, Nogales FJ, Uppal R (2009) A generalized approach to portfolio optimization: Improving performance by constraining portfolio norms. Manag Sci 55(5):798–812

    Article  MATH  Google Scholar 

  • Fan J, Zhang J, Yu K (2008) Asset allocation and risk assessment with gross exposure constraints for vast portfolios. Available at SSRN: https://ssrn.com/abstract=1307423

  • Fastrich B, Paterlini S, Winker P (2015) Constructing optimal sparse portfolios using regularization methods. Comput Manag Sci 12(3):417–434

    Article  MathSciNet  MATH  Google Scholar 

  • Fastrich B, Winker P (2012) Robust portfolio optimization with a hybrid heuristic algorithm. Comput Manag Sci 9(1):63–88

    Article  MathSciNet  MATH  Google Scholar 

  • Frost PA, Savarino JE (1986) An empirical Bayes approach to efficient portfolio selection. J Financial Quant Anal 21(3):293–305

    Article  Google Scholar 

  • Gotoh J, Takeda A (2011) On the role of norm constraints in portfolio selection. Comput Manag Sci 8(4):323–353

    Article  MathSciNet  MATH  Google Scholar 

  • Guigues V (2011) Sensitivity analysis and calibration of the covariance matrix for stable portfolio selection. Comput Optim Appl 48(3):553–579

    Article  MathSciNet  MATH  Google Scholar 

  • Golub GH, Van Loan CF (1989) Matrix computations, 2nd edn. The Johns Hopkins University Press, Baltimore-London

    MATH  Google Scholar 

  • Jagannathan R, Ma T (2003) Risk reduction in large portfolios: why imposing the wrong constraints helps. J Finance 54(4):165–1684

    Google Scholar 

  • Jay E, Soler T, Terreaux E, Ovarlez J-P, Pascal F, De Peretti P, Chorro C (2020) Improving portfolios global performance using a cleaned and robust covariance matrix estimate. Soft Comput 24:8643–8654

    Article  MATH  Google Scholar 

  • Kan R, Smith DR (2008) The distribution of the sample minimum-variance frontier. Manag Sci 54(7):1364–1380

    Article  MATH  Google Scholar 

  • Kan R, Zhou G (2007) Optimal Portfolio Choice with Parameter Uncertainty. J Financial Quant Anal 42(3):621-656

    Article  Google Scholar 

  • Kim JH, Kim WC, Fabozzi FJ (2018) Recent advancements in robust optimization for investment management. Annals Oper Res 266(1–2):183–198

    Article  MathSciNet  MATH  Google Scholar 

  • Kondor I, Pafka S, Nagy G (2007) Noise sensitivity of portfolio selection under various risk measures. J Bank Finance 31(5):1545–1573

    Article  Google Scholar 

  • Ledoit O, Wolf M (2017) Nonlinear shrinkage of the covariance matrix for portfolio selection: Markowitz meets Goldilocks. Rev Financial Studies 30(12):4349–4388

    Article  Google Scholar 

  • Li B, Shu Y, Sun Y, Teo KL (2021) An optimistic value-variance-entropy model of uncertain portfolio optimization problem under different risk preferences. Soft Comput 25:3993–4001

    Article  MATH  Google Scholar 

  • Lim AEB, Shanthikumar JG, Vahn G (2011) Conditional value-at-risk in portfolio optimization: coherent but fragile. Oper Res Lett 39(3):163–171

    Article  MathSciNet  MATH  Google Scholar 

  • Markowitz H (1952) Portfolio selection. J Finance 7(1):77–91

    Google Scholar 

  • Rockafellar RT, Uryasev S (2000) Optimization of conditional value-at-risk. J Risk 2:21–41

    Article  Google Scholar 

  • Scutellà MG, Recchia R (2010) Robust portfolio asset allocation and risk measures. 4OR-Q J Oper Res 8: 113–139

  • Sortino FA, van der Meer R (1991) Downside risk. J Portf Manag 17(4):27–31

    Article  Google Scholar 

  • Tu J, Zhou G (2010) Incorporating economic objectives into Bayesian priors: portfolio choice under parameter uncertainty. J Financial Quant Anal 45(4):959–986

    Article  Google Scholar 

  • Wang B-Y, Xi B-Y (1997) Some inequalities for singular values of matrix products. Linear Algebra Appl 264:109–115

    Article  MathSciNet  MATH  Google Scholar 

  • Woerheide W, Persson D (1993) An index of portfolio diversification. Financial Serv Rev 2(2):73–85

    Article  Google Scholar 

  • Xidonas P, Mavrotas G, Hassapis C, Zopounidis C (2017) Robust multiobjective portfolio optimization: a minimax regret approach. Eur J Oper Res 262(1):299–305

    Article  MathSciNet  MATH  Google Scholar 

  • Yang L, Couillet R, McKay MR (2015) A robust statistics approach to minimum variance portfolio optimization. IEEE Trans Signal Process 63(24):6684–6697

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

The authors equally contributed to the design and implementation of the research, the analysis of the results and the writing of the manuscript.

Corresponding author

Correspondence to Maria-Laura Torrente.

Ethics declarations

Conflict of interest

The authors have no conflicts of interest to declare that are relevant to the content of this article.

Ethical approval

The paper does not contain any studies with human participants or animals performed by any of the authors.

Additional information

Communicated by Dario Pacciarelli.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

In this section, the proofs of the main theoretical results stated in the paper are presented.

Let’s start recalling some useful results of linear algebra, whereas classical definitions and well-known concepts will be widely used without giving explicit references; for proofs and more details on the topic, the reader is referred to the textbooks Bini and Pan (1994) and Golub and Van Loan (1989). The first result, Theorem 1, is a technicality on the singular values of a matrix product (see Wang and Xi (1997), Theorem 2). To state it, the following notation is added. Let \(A\in {\mathrm{Mat}}_{n\times m}({\mathbb {R}})\) and \(\sigma _i(A)\) be its ith singular value. In particular, \(\sigma _p(A)=0\) for each positive integer p, with \(p > \mathrm{rank}(A)\).

Theorem 1

(Wang and Xi (1997), Theorem 2) Let \(A\in {\mathrm{Mat}}_n({\mathbb {R}})\) and \(B\in {\mathrm{Mat}}_{n\times m}({\mathbb {R}})\). Let r be a positive real number, k be a positive integer and \(i_1, \ldots , i_k\) be k positive integers such that \(1 \le i_1< \ldots < i_k \le n\). Then,

$$\begin{aligned} \sum _{t=1}^k \sigma _{i_t}^r(AB) \ge \sum _{t=1}^k \sigma _{i_t}^r(A)\sigma _{n-t+1}^r(B) \end{aligned}$$
(10)

The notion of square root of an Hermitian positive definite matrix and some of its properties are also recalled as follows.

Definition 2

Let \(A\in {\mathrm{Mat}}_n({\mathbb {R}})\) be an Hermitian positive definite matrix and \(\lambda _1(A), \ldots , \lambda _n(A)\) be the positive eigenvalues of A. The square root of A is the matrix \(\sqrt{A} \in {\mathrm{Mat}}_n({\mathbb {R}})\) defined by:

$$\begin{aligned} \sqrt{A} := P^t \text {diag}(\sqrt{\lambda _1(A)}, \ldots , \sqrt{\lambda _n(A)}) P \end{aligned}$$

where \(P \in {\mathrm{Mat}}_n({\mathbb {R}})\) is orthogonal and satisfies

$$\begin{aligned} A = P^t \text {diag}(\lambda _1(A), \ldots , \lambda _n(A)) P. \end{aligned}$$

Proposition 5

Let \(A\in {\mathrm{Mat}}_n({\mathbb {R}})\) be an Hermitian positive definite matrix with singular values \(\sigma _1(A), \ldots , \sigma _n(A)\). Let \(\sqrt{A} \in {\mathrm{Mat}}_n({\mathbb {R}})\) be the square root of A. Then, the following properties hold true:

  1. 1.

    \(\sqrt{A} \sqrt{A} = A\);

  2. 2.

    \(\sqrt{A}\) is Hermitian positive definite matrix;

  3. 3.

    \(\sqrt{A^{-1}} = \left( \sqrt{A}\right) ^{-1}\);

  4. 4.

    \(\sqrt{\sigma _1(A)}, \ldots , \sqrt{\sigma _n(A)}\) are the singular values of \(\sqrt{A}\).

In the following proposition, a minimization problem for the condition number of a \(2 \times n\) real matrix, with \(n \ge 2\), is solved.

Proposition 6

Let \(n \ge 2\) and \(v_1, v_2 \in \text {Mat}_{2 \times n}(\mathbb R)\) be two linearly independent row vectors. Let c be a positive real number and \(A_c = \left( \begin{matrix} c v_1 \\ v_2 \end{matrix}\right) \in \text {Mat}_{2 \times n}({\mathbb {R}})\). The minimum value of the condition number of \(A_c\) is attained at \({\overline{c}} = \frac{\Vert v_2\Vert _2}{\Vert v_1\Vert _2}\), that is

$$\begin{aligned} \min _{c >0} k (A_c)&= k\left( \left( \begin{matrix} {\overline{c}} v_1 \\ v_2 \end{matrix}\right) \right) \\&= \sqrt{1 + 2\frac{|\langle v_1,v_2\rangle |}{\Vert v_1\Vert _2 \Vert v_2\Vert _2 - |\langle v_1,v_2\rangle |}} \end{aligned}$$

Proof

By the hypotheses on \(v_1\), \(v_2\) and the real number \(c>0\), it follows that \(A_c\) has full row rank 2 and that \(A_c A_c^t \in {\mathrm{Mat}}_2({\mathbb {R}})\) is an Hermitian positive definite matrix. Let \(\sigma _1(A_c) \ge \sigma _2(A_c) >0 \) be the singular values of \(A_c\) and \(\lambda _1(c) \ge \lambda _2(c) > 0\) be the eigenvalues of \(A_c A_c^t\). By Definition 1 and well-known properties of the singular values, the condition number of \(A_c\) can be expressed as \(k(A_c) = \frac{\sigma _1(A_c)}{\sigma _2(A_c)} = \frac{\sqrt{\lambda _1(c)}}{\sqrt{\lambda _2(c)}}\), and so the minimization problem can be stated as follows:

$$\begin{aligned} \min _{c>0} k (A_c) = \min _{c>0} \frac{\sigma _1(A_c)}{\sigma _2(A_c)} = \min _{c>0} \sqrt{\frac{\lambda _1(c)}{\lambda _2(c)}} = \sqrt{\min _{c >0} \frac{\lambda _1(c)}{\lambda _2(c)}} \end{aligned}$$

The expressions of \(\lambda _1(c)\) and \(\lambda _2(c)\) are explicitly computed through the characteristic polynomial \(p_{A_c}(\lambda )\) of the matrix \(A_c A_c^t \):

$$\begin{aligned} p_{A_c}(\lambda )= & {} \det (A_c A_c^t - \lambda I_2) \\= & {} (c^2 \Vert v_1\Vert _2^2-\lambda )(\Vert v_2\Vert _2^2-\lambda ) - c^2 \langle v_1,v_2\rangle ^2\\= & {} \lambda ^2 -(c^2 \Vert v_1\Vert _2^2 + \Vert v_2\Vert _2^2)\lambda + c^2(\Vert v_1\Vert _2^2 \Vert v_2\Vert _2^2 \\&\quad - \langle v_1,v_2\rangle ^2) \end{aligned}$$

The equation \(p_{A_c}(\lambda )=0\) has the real solutions \(\lambda _1(c) \ge \lambda _2(c)>0\):

$$\begin{aligned}&\lambda _1(c)\nonumber \\&= \frac{c^2 \Vert v_1\Vert _2^2 + \Vert v_2\Vert _2^2 + \sqrt{(c^2 \Vert v_1\Vert _2^2 - \Vert v_2\Vert _2^2)^2 +4c^2\langle v_1,v_2\rangle ^2}}{2} \end{aligned}$$
(11)
$$\begin{aligned}&\lambda _2(c)\nonumber \\&= \frac{c^2 \Vert v_1\Vert _2^2 + \Vert v_2\Vert _2^2 - \sqrt{(c^2 \Vert v_1\Vert _2^2 - \Vert v_2\Vert _2^2)^2 +4c^2\langle v_1,v_2\rangle ^2}}{2}. \end{aligned}$$
(12)

Note that, in the particular case \(\langle v_1,v_2 \rangle = 0\), the two eigenvalues are \(\lambda _1(c) = c^2 \Vert v_1\Vert _2^2\) and \(\lambda _2(c) = \Vert v_2\Vert _2^2\).

Let \(g: {\mathbb {R}}_{>0} \rightarrow {\mathbb {R}}\) be the real-valued function defined by \(g(c) = \frac{\lambda _1(c)}{\lambda _2(c)}\). Let’s start with the case \(\langle v_1,v_2 \rangle = 0\): It is easy to verify that \(\min _{c>0} g(c)\) is equal to 1 and it is attained at \({{\bar{c}}} = \frac{\Vert v_2\Vert _2}{\Vert v_1\Vert _2}\). In the general case, that is when \(\langle v_1,v_2 \rangle \ne 0\), using (11) and (12), g(c) can be rewritten as follows:

$$\begin{aligned}&g(c) \nonumber \\&= \frac{c^2 \Vert v_1\Vert _2^2 + \Vert v_2\Vert _2^2 + \sqrt{(c^2 \Vert v_1\Vert _2^2 - \Vert v_2\Vert _2^2)^2 +4c^2\langle v_1,v_2\rangle ^2}}{c^2 \Vert v_1\Vert _2^2 + \Vert v_2\Vert _2^2 - \sqrt{(c^2 \Vert v_1\Vert _2^2 - \Vert v_2\Vert _2^2)^2 +4c^2\langle v_1,v_2\rangle ^2}}\nonumber \\&= 1+ 2 \frac{1}{\sqrt{\frac{(c^2 \Vert v_1\Vert _2^2 + \Vert v_2\Vert _2^2)^2}{(c^2 \Vert v_1\Vert _2^2 - \Vert v_2\Vert _2^2)^2 +4 \frac{\langle v_1,v_2\rangle ^2}{\Vert v_1\Vert _2^2} c^2 \Vert v_1\Vert _2^2}} - 1}\nonumber \\&= 1+ 2 \frac{1}{\sqrt{h(c)}-1} \end{aligned}$$
(13)

where, obviously, \(h: {\mathbb {R}}_{>0} \rightarrow {\mathbb {R}}\) is the real-valued function defined by

$$\begin{aligned} h(c)=\frac{(c^2 \Vert v_1\Vert _2^2 + \Vert v_2\Vert _2^2)^2}{(c^2 \Vert v_1\Vert _2^2 - \Vert v_2\Vert _2^2)^2 +4 \frac{\langle v_1,v_2\rangle ^2}{\Vert v_1\Vert _2^2} c^2 \Vert v_1\Vert _2^2} \end{aligned}$$

Let’s observe that h(c) can be rewritten as \(h(c)=h_1(h_2(c))\) where \(h_i: {\mathbb {R}}_{>0} \rightarrow {\mathbb {R}}\), \(i=1,2\), are real-valued functions defined as follows:

$$\begin{aligned} h_1(c)= & {} \frac{(c + \Vert v_2\Vert _2^2)^2}{(c - \Vert v_2\Vert _2^2)^2 +4 \frac{\langle v_1,v_2\rangle ^2}{\Vert v_1\Vert _2^2} c}\\ h_2(c)= & {} \Vert v_1\Vert _2^2 c^2 \end{aligned}$$

Obviously, \(h_2\) is a strictly increasing function; further, by some easy computations, the expression of \(h_1'(c)\) is given by:

$$\begin{aligned} h_1'(c)= & {} \frac{4(c + \Vert v_2\Vert _2^2) \left( \Vert v_2\Vert _2^2 -\frac{\langle v_1,v_2\rangle ^2}{\Vert v_1\Vert _2^2} \right) \left( \Vert v_2\Vert _2^2-c\right) }{\left( (c - \Vert v_2\Vert _2^2)^2 +4 \frac{\langle v_1,v_2\rangle ^2}{\Vert v_1\Vert _2^2} c \right) ^2} \end{aligned}$$

Since \(|\langle v_1, v_2\rangle | - \Vert v_1\Vert _2\Vert v_2\Vert _2 <0\) (recall that \(v_1, v_2\) are linearly independent by hypothesis), it follows that \(h_1'(c) \ge 0\) for \(c \le \Vert v_2\Vert _2^2\). In particular, \(h_1\) is a strictly increasing function in \((0, \Vert v_2\Vert _2^2)\) with a relative maximum at \({\bar{c}}=\Vert v_2\Vert _2^2\). Now, by composition, it follows that the function h is strictly increasing in \((0, \frac{\Vert v_2\Vert _2}{\Vert v_1\Vert _2})\) with a relative maximum at \({\bar{c}}=\frac{\Vert v_2\Vert _2}{\Vert v_1\Vert _2}\). Finally, using expression (13), it follows that the function g is strictly decreasing in \(\big (0, \frac{\Vert v_2\Vert _2}{\Vert v_1\Vert _2}\big )\) with a relative minimum at \({\bar{c}}=\frac{\Vert v_2\Vert _2}{\Vert v_1\Vert _2}\). Therefore,

$$\begin{aligned} \min _{c \in {\mathbb {R}}} g(c) = g({\bar{c}}) =1 +2 \frac{|\langle v_1, v_2 \rangle |}{\Vert v_1\Vert _2\Vert v_2\Vert _2-|\langle v_1, v_2 \rangle |}, \end{aligned}$$

so the result follows. \(\square \)

In the following, the proofs of Propositions 1, 2 and 3 are provided.

Proof of Proposition 1

Let \(\sqrt{{\mathbf{V}}^{-1}}\) be the square root of the Hermitian positive definite matrix \({\mathbf{V}}^{-1}\) (see Definition 2). From the expression of \(\mathbf{A}\) and using properties 1., 2. and 3. of Proposition 5, \(\mathbf{A}\) can be rewritten as follows:

$$\begin{aligned} \mathbf{A}= & {} \left[ \begin{matrix} {\mathbf{R}}&{\mathbf{1}}\end{matrix}\right] ^t \sqrt{{\mathbf{V}}^{-1}} \sqrt{{\mathbf{V}}^{-1}} \left[ \begin{matrix} {\mathbf{R}}&{\mathbf{1}}\end{matrix}\right] \\= & {} \left[ \begin{matrix} {\mathbf{R}}&{\mathbf{1}}\end{matrix}\right] ^t (\sqrt{{\mathbf{V}}^{-1}})^t \sqrt{{\mathbf{V}}^{-1}} \left[ \begin{matrix} {\mathbf{R}}&{\mathbf{1}}\end{matrix}\right] \\= & {} \left( \sqrt{{\mathbf{V}}^{-1}} \left[ \begin{matrix} {\mathbf{R}}&{\mathbf{1}}\end{matrix}\right] \right) ^t \sqrt{{\mathbf{V}}^{-1}} \left[ \begin{matrix} {\mathbf{R}}&{\mathbf{1}}\end{matrix}\right] = \mathbf{B}^t \mathbf{B} \end{aligned}$$

where, obviously, \(\mathbf{B} \in \text {Mat}_{n \times 2}({\mathbb {R}})\) is defined by the formula \(\mathbf{B}:=\sqrt{{\mathbf{V}}^{-1}} \left[ \begin{matrix} {\mathbf{R}}&{\mathbf{1}}\end{matrix}\right] \). Note that the matrix \(\mathbf{B}\) has full rank equal to 2 (it follows from the equality \(\text {rank}(\mathbf{B}^t \mathbf{B})=\text {rank}(\mathbf{B})\) and the fact that \(\mathbf{A}\) has full rank). Let \(\sigma _1(\mathbf{A}) \ge \sigma _2(\mathbf{A})>0\) be the singular values of \(\mathbf{A}\) and \(\sigma _1(\mathbf{B}) \ge \sigma _2(\mathbf{B})>0\) be the singular values of \(\mathbf{B}\). Then, it is easy to prove that \(\sigma _i(\mathbf{A}) = \sigma _i^2(\mathbf{B})\), for each \(i=1,2\). An estimate of the singular values of \(\mathbf{B}\) is provided. Firstly, let’s consider \(\sigma _1(\mathbf{B})\); the properties of the singular values yield:

$$\begin{aligned} \sigma _1(\mathbf{B})= & {} \sigma _1(\sqrt{{\mathbf{V}}^{-1}} \left[ \begin{matrix} {\mathbf{R}}&{\mathbf{1}}\end{matrix}\right] ) = \Vert \sqrt{{\mathbf{V}}^{-1}} \left[ \begin{matrix} {\mathbf{R}}&{\mathbf{1}}\end{matrix}\right] \Vert _2 \\\le & {} \Vert \sqrt{{\mathbf{V}}^{-1}}\Vert _2 \Vert \left[ \begin{matrix} {\mathbf{R}}&{\mathbf{1}}\end{matrix}\right] \Vert _2 = \sigma _1(\sqrt{{\mathbf{V}}^{-1}}) \sigma _1(\left[ \begin{matrix} {\mathbf{R}}&{\mathbf{1}}\end{matrix}\right] ). \end{aligned}$$

In addition, combining with property 4. of Proposition 5, it follows

$$\begin{aligned} \sigma _1(\mathbf{B}) \le \sqrt{\sigma _1({\mathbf{V}}^{-1})} \sigma _1(\left[ \begin{matrix} {\mathbf{R}}&{\mathbf{1}}\end{matrix}\right] ) = \frac{ \sigma _1(\left[ \begin{matrix} {\mathbf{R}}&{\mathbf{1}}\end{matrix}\right] )}{\sqrt{\sigma _n({\mathbf{V}})}}. \end{aligned}$$
(14)

In order to give an estimate for \(\sigma _2(\mathbf{B})\), Theorem 1 is applied to the matrix \(\mathbf{B} = \sqrt{{\mathbf{V}}^{-1}} \left[ \begin{matrix} {\mathbf{R}}&{\mathbf{1}}\end{matrix}\right] \), with indices \(i_t=t+1\), for \(t=1,\ldots , n-1\), and \(r=1\):

$$\begin{aligned} \sigma _2(\mathbf{B}) \ge \sigma _n(\sqrt{{\mathbf{V}}^{-1}}) \sigma _2(\left[ \begin{matrix} {\mathbf{R}}&{\mathbf{1}}\end{matrix}\right] ) \end{aligned}$$

Combining again with property 4. of Proposition 5, the previous inequality becomes:

$$\begin{aligned} \sigma _2(\mathbf{B}) \ge \sqrt{\sigma _n({\mathbf{V}}^{-1})} \sigma _2(\left[ \begin{matrix} {\mathbf{R}}&{\mathbf{1}}\end{matrix}\right] ) = \frac{\sigma _2(\left[ \begin{matrix} {\mathbf{R}}&{\mathbf{1}}\end{matrix}\right] )}{\sqrt{\sigma _1({\mathbf{V}})}} \end{aligned}$$
(15)

Recalling Definition 1, and inequalities (14) and (15), it holds

$$\begin{aligned} k(\mathbf{A})&= \frac{\sigma _1^2(\mathbf{B})}{\sigma _2^2(\mathbf{B})} \le \frac{ \sigma _1^2(\left[ \begin{matrix} {\mathbf{R}}&{\mathbf{1}}\end{matrix}\right] )}{\sigma _n({\mathbf{V}})} \frac{\sigma _1({\mathbf{V}})}{\sigma _2^2(\left[ \begin{matrix} {\mathbf{R}}&{\mathbf{1}}\end{matrix}\right] )} \\&=k({\mathbf{V}}) \left( k(\left[ \begin{matrix} {\mathbf{R}}&{\mathbf{1}}\end{matrix}\right] )\right) ^2, \end{aligned}$$

so the result follows. \(\square \)

Proof of Proposition 2

It is sufficient to show a case in which equality holds in formula (4). To this end, let’s consider the case \({\mathbf{V}}= \delta \mathbf{I}_n \in \text {Mat}_n({\mathbb {R}})\), with \(\delta >0\). Then, the matrix \(\mathbf{A} = \frac{1}{\delta }\left[ \begin{matrix} {\mathbf{R}}&{\mathbf{1}}\end{matrix}\right] ^t \left[ \begin{matrix} {\mathbf{R}}&{\mathbf{1}}\end{matrix}\right] \); using properties of the maximum and minimum singular values, it follows that the condition number of \(\mathbf{A}\) is \(k(\mathbf{A}) = \left( k(\left[ \begin{matrix} {\mathbf{R}}&{\mathbf{1}}\end{matrix}\right] )\right) ^2\). Then, the equality in bound (4) of Proposition 1 follows from the fact that \(k({\mathbf{V}})= k(\delta \mathbf{I}_n) = 1\). \(\square \)

Proof of Proposition 3

Since \({\mathbf{V}}=\delta \mathbf{I}_n\), then the matrix \({{\mathbf{A}}_{\mathbf{c}}} = \frac{1}{\delta c^2}\left[ \begin{matrix} c{\mathbf{R}}&{\mathbf{1}}\end{matrix}\right] ^t \left[ \begin{matrix} c{\mathbf{R}}&{\mathbf{1}}\end{matrix}\right] \) and its condition number is:

$$\begin{aligned} k({{\mathbf{A}}_{\mathbf{c}}}) = k\left( \left[ \begin{matrix} c{\mathbf{R}}&{\mathbf{1}}\end{matrix}\right] ^t \left[ \begin{matrix} c{\mathbf{R}}&{\mathbf{1}}\end{matrix}\right] \right) = \left( k\left( \left[ \begin{matrix} c{\mathbf{R}}&{\mathbf{1}}\end{matrix}\right] ^t\right) \right) ^2 \end{aligned}$$

Note that, by hypothesis, not all elements of \({\mathbf{R}}\) are equal, so \(c{\mathbf{R}}\) and \({\mathbf{1}}\) are linearly independent vectors for any value of \(c>0\). Applying Proposition 6 to the matrix \(\left[ \begin{matrix} c{\mathbf{R}}&{\mathbf{1}}\end{matrix}\right] ^t\), it follows that \(\min _{c >0} k \left( \left[ \begin{matrix} c{\mathbf{R}}&{\mathbf{1}}\end{matrix}\right] ^t \right) \) is attained at \({{\bar{c}}} = \frac{\Vert {\mathbf{1}}\Vert _2}{\Vert {\mathbf{R}}\Vert _2}\), and so

$$\begin{aligned} \min _{c>0} k({{\mathbf{A}}_{\mathbf{c}}})= & {} k({{\mathbf{A}}_{\bar{\mathbf{c}}}}) = \left( k \left( \left[ \begin{matrix} {{\bar{c}}} {\mathbf{R}}&{\mathbf{1}}\end{matrix}\right] ^t \right) \right) ^2\\= & {} 1 + 2\frac{|\langle {\mathbf{R}}, {\mathbf{1}} \rangle |}{\Vert {\mathbf{R}}\Vert _2 \Vert {\mathbf{1}}\Vert _2 - |\langle {\mathbf{R}}, {\mathbf{1}} \rangle |}\\= & {} 1 + 2\frac{| \sum _{i=1}^n R_i |}{ \sqrt{n \sum _{i=1}^n R_i^2} - |\sum _{i=1}^n R_i|} \end{aligned}$$

; therefore, the result follows. \(\square \)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Torrente, ML., Uberti, P. A rescaling technique to improve numerical stability of portfolio optimization problems. Soft Comput 27, 12831–12842 (2023). https://doi.org/10.1007/s00500-021-06543-1

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00500-021-06543-1

Keywords

Navigation