Skip to main content

Advertisement

Log in

Morphological and physiological features in small ruminants: an adaptation strategy for survival under changing climatic conditions

  • Review Paper
  • Published:
International Journal of Biometeorology Aims and scope Submit manuscript

Abstract

Climate change due to natural human activity is a significant global phenomenon affecting the sustainability of most countries’ livestock industries. Climate change factors such as ambient temperature, relative humidity, direct and indirect sun radiation, and wind have significant consequences on feed, water, pasture availability, and the re-emergence of diseases in livestock. All these variables have a considerable impact on livestock production and welfare. However, animals’ ability to respond and adapt to changes in climate differs within species and breeds. Comparatively, small ruminants are more adaptive to the adverse effects of climate change than large ruminants in terms of reproduction performance, survival, production yield, and resistance to re-emerging diseases. This is mainly due to their morphological features against harsh climate effects. Tropical breeds are more adaptive to the adverse effects of climate change than small temperate ruminants. However, the difference in morphological characteristics towards adaptation to the impact of climate change will guide the development of suitable policies on the selection of breeding stock suitable for different regions in the world. The choice of breeds based on morphological features and traits is an essential strategy in mitigating and minimizing the effects of climate change on small ruminants’ production and welfare. This review highlights the adaptive morphological features within and among breeds of small ruminants toward adaptation to climate change.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Data availability

No data is associated with this manuscript. All information is from published articles online.

References

  • Abdela N, Jilo K (2016) Impact of climate change on livestock health: a review. Global Vet 16(5):419–424

    Google Scholar 

  • Abdulai IA (2022) Rearing livestock on the edge of secondary cities: examining small ruminant production on the fringes of Wa, Ghana. Heliyon 8(4):e09347. https://doi.org/10.1016/j.heliyon.2022.e09347

    Article  Google Scholar 

  • AL-Ramamneh DS (2023) Using a sprinkler fan system for cooling heat-stressed goats under Desert conditions. J Adv Veterinary Res 13(2):271–276

    Google Scholar 

  • Areche FO, Gondal AH, Rodriguez AR, Flores DDC, Sulca JYM, Bustamante MAC, Pérez PL, Yapias RJM, Victorio JPE, Huayhua LLA (2022) Fragile effects of Climatic Variation on Goat protein and its products: a review. Curr Res Nutr Food Sci 10(3):884–894. https://doi.org/10.12944/CRNFSJ.10.3.6

    Article  Google Scholar 

  • Azat C (2021) Not just a pathogen: the importance of recognizing genetic variability to mitigate a wildlife pandemic. Mol Ecol Resour 21(5):1410–1412. https://doi.org/10.1111/1755-0998.13348

    Article  CAS  Google Scholar 

  • Baila C, Joy M, Blanco M, Casasús I, Bertolín JR, Lobón S (2022) Effects of feeding sainfoin proanthocyanidins to lactating ewes on intake, milk production and plasma metabolites. Animal 16(1):100438. https://doi.org/10.1016/j.animal.2021.100438

    Article  CAS  Google Scholar 

  • Basile F, Capaccia C, Zampini D, Biagetti T, Diverio S, Guelfi G (2021) Omics insights into animal resilience and stress factors. In Animals 11(1):47. https://doi.org/10.3390/ani11010047

  • Berihulay H, Abied A, He X, Jiang L, Ma Y (2019) Adaptation mechanisms of small ruminants to environmental heat stress. In Animals 9(3):75. https://doi.org/10.3390/ani9030075

  • Bernabucci U, Lacetera N, Baumgard LH, Rhoads RP, Ronchi B, Nardone A (2010) Metabolic and hormonal acclimation to heat stress in domesticated ruminants. Animal 4(7):1167–1183. https://doi.org/10.1017/S175173111000090X

    Article  CAS  Google Scholar 

  • Bester J, Matjuda LE, Rust JM, Fourie HJ (2003) The Nguni: a case study. Vilakati, D., Morupisi, C., Setshwaelo, L., Wollny, C., von Lossau, A. and Drews, A. (eds), 45–68

  • Camaiti M, Evans AR, Hipsley CA, Chapple DG (2021) A farewell to arms and legs: a review of limb reduction in squamates. Biol Rev 96(3):1035–1050. https://doi.org/10.1111/brv.12690

    Article  Google Scholar 

  • Cheng M, McCarl B, Fei C (2022) Climate Change and Livestock Production: A Literature Review. In Atmosphere 13(1):140. https://doi.org/10.3390/atmos13010140

  • Cheng Y, Miller MJ, Zhang D, Xiong Y, Hao Y, Jia C, Cai T, Li SH, Johansson US, Liu Y, Chang Y, Song G, Qu Y, Lei F (2021) Parallel genomic responses to historical climate change and high elevation in east Asian songbirds. Proc Natl Acad Sci USA 118(50):e2023918118. https://doi.org/10.1073/pnas.2023918118

    Article  CAS  Google Scholar 

  • Cummins EP, Strowitzki MJ, Taylor CT (2020) Mechanisms and consequences of oxygen and carbon dioxide sensing in mammals. Physiol Rev 100(1):463–488. https://doi.org/10.1152/physrev.00003.2019

    Article  CAS  Google Scholar 

  • Dangi SS, Gupta M, Dangi SK, Chouhan VS, Maurya VP, Kumar P, Singh G, Sarkar M (2015) Expression of HSPs: an adaptive mechanism during long-term heat stress in goats (Capra hircus). Int J Biometeorol 59(8):1095–1106. https://doi.org/10.1007/s00484-014-0922-5

    Article  Google Scholar 

  • de Castro Silva TS, dos Santos LD, da Silva LCR, Michelato M, Furuya VRB, Furuya WM (2015) Length-weight relationship and prediction equations of body composition for growing-finishing cage-farmed Nile tilapia. Revista Brasileira De Zootecnia 44:133–137. https://doi.org/10.1590/S1806-92902015000400001

    Article  Google Scholar 

  • DeLorenzo L, DeBrock V, Carmona Baez A, Ciccotto PJ, Peterson EN, Stull C, Roberts NB, Roberts RB, Powder KE (2022) Morphometric and genetic description of Trophic adaptations in Cichlid fishes. Biology 11(8):1165. https://doi.org/10.3390/biology11081165

    Article  CAS  Google Scholar 

  • Dueñas A, Jiménez-Uzcátegui G, Bosker T (2021) The effects of climate change on wildlife biodiversity of the galapagos islands. Clim Change Ecol 2:e100026. https://doi.org/10.1016/j.ecochg.2021.100026

    Article  Google Scholar 

  • Dumas G, Malesys S, Bourgeron T (2021) Systematic detection of brain protein-coding genes under positive selection during primate evolution and their roles in cognition. Genome Res 31(3):483–496. https://doi.org/10.1101/GR.262113.120

    Article  Google Scholar 

  • Filipczak-Fiutak M, Pluta-Kubica A, Domagała J, Duda I, Migdał W (2021) Nutritional value and organoleptic assessment of traditionally smoked cheeses made from goat, sheep and cow’s milk. PLoS ONE 16(7):e0254431. https://doi.org/10.1371/journal.pone.0254431

    Article  CAS  Google Scholar 

  • Fonseca WJL, Azevêdo DMMR, Campelo JEG, Fonseca WL, Luz CSM, Oliveira MRA, Evangelista AF, Borges LS, Sousa Júnior SC (2016) Effect of heat stress on milk production of goats from Alpine and Saanen breeds in Brazil. Arch De Zootecnia 65(252):615–621

    Google Scholar 

  • Gaughan JB, Lees AM, Lees JC (2022) Adaptation of beef cattle to heat stress challenges. Climate Change and Livestock Production: recent advances and future perspectives. Springer Singapore, Singapore, pp 29–38

    Google Scholar 

  • Geiger M (2021) Pattern and pace of morphological change due to variable human impact: the case of Japanese macaques. Primates 62(6). https://doi.org/10.1007/s10329-021-00933-7. 955 0 970

  • Goldenberg J, Bisschop K, D’Alba L, Shawkey MD (2022) The link between body size, colouration and thermoregulation and their integration into ecogeographical rules: a critical appraisal in light of climate change. Oikos 2022(6):e09152. https://doi.org/10.1111/oik.09152

    Article  Google Scholar 

  • Głombik K, Detka J, Budziszewska B (2021) Hormonal regulation of oxidative phosphorylation in the brain in health and disease. In Cells 10(11):2937. https://doi.org/10.3390/cells10112937

  • Grangeira SPL, Araújo BE, Edison M, Villamil MVM, Keiko HZL, Mcmanus PCM, Floriani RA (2021) Influence of season and external morphology on Thermal Comfort and physiological responses in bulls from two breeds adapted to a subtropical climate. Revista Brasileira De Saude e Prod Anim 22:e2122022021. https://doi.org/10.1590/S1519-99402122022021

    Article  Google Scholar 

  • Greenwood PL (2021) Review: An overview of beef production from pasture and feedlot globally, as demand for beef and the need for sustainable practices increase. In Animal 15:100295. https://doi.org/10.1016/j.animal.2021.100295

  • Gupta M, Mondal T (2021) Heat stress and thermoregulatory responses of goats: a review. Biol Rhythm Res 52(3):407–433. https://doi.org/10.1080/09291016.2019.1603692

    Article  CAS  Google Scholar 

  • Hajam YA, Rani R, Ganie SY, Sheikh TA, Javaid D, Qadri SS, Pramodh S, Alsulimani A, Alkhanani MF, Harakeh S, Hussain A, Haque S, Reshi MS (2022) Oxidative stress in Human Pathology and Aging: Molecular mechanisms and perspectives. Cells 11(3):552. https://doi.org/10.3390/cells11030552

    Article  CAS  Google Scholar 

  • Hantak MM, McLean BS, Li D, Guralnick RP (2021) Mammalian body size is determined by interactions between climate, urbanization, and ecological traits. Commun Biology 4(1):972. https://doi.org/10.1038/s42003-021-02505-3

    Article  Google Scholar 

  • Hassen A, Dawid I (2021) Ruminant livestock production system adaptation strategies to Climate Change: a review. OAJRC Environ Sci 2(1):7–16. https://doi.org/10.26855/oajrces.2021.11.001

    Article  Google Scholar 

  • Henry BK, Eckard RJ, Beauchemin KA (2018) Review: Adaptation of ruminant livestock production systems to climate changes. In Animal 12(2):S445–456. https://doi.org/10.1017/S1751731118001301

  • Hoffmann I (2010) Climate change and the characterization, breeding, and conservation of animal genetic resources. Anim Genet 41(1):32–46. https://doi.org/10.1111/j.1365-2052.2010.02043.x

    Article  Google Scholar 

  • Issakhanov M, Alibek N, Dyusenbayev T, Taldybayeva A (2021) Energy-saving ventilation system for sheep premises to ensure food security and safety. Food Sci Technol 42:e73921

  • Jackson N, Maddocks IG, Watts JE, Scobie D, Mason RS, Gordon-Thomson C, Stockwell S, Moore GPM (2020) Evolution of the sheep coat: the impact of domestication on its structure and development. Genet Res 102:e4. https://doi.org/10.1017/S0016672320000063

    Article  Google Scholar 

  • Joy A, Dunshea FR, Leury BJ, Clarke IJ, Digiacomo K, Chauhan SS (2020) The resilience of small ruminants to climate change and increased environmental temperature: A review. In Animals 10(5):867. https://doi.org/10.3390/ani10050867

  • Juan CA, de la Lastra JMP, Plou FJ, Pérez-Lebeña E (2021) The chemistry of reactive oxygen species (Ros) revisited: outlining their role in biological macromolecules (DNA, lipids, and proteins) and induced pathologies. Int J Mol Sci 22(9):4642. https://doi.org/10.3390/ijms22094642

    Article  CAS  Google Scholar 

  • Knutti R, Arblaster J, Dufresne J, Fichefet T, Friedlingstein P, Gao X, Gutowski W, Johns T, Krinner G, Shongwe M, Tebaldi C, Weaver A, Wehner M, Qin D, Plattner G, Tignor M, Allen S, Boschung J, Nauels A, Allen MR (2013) Long-term Climate Change: Projections, Commitments and Irreversibility Mxolisi Shongwe (South Africa), Claudia Tebaldi (USA)

  • Koch RE, Hill GE (2017) An assessment of techniques to manipulate oxidative stress in animals. In Functional Ecology 31(1):9–21https://doi.org/10.1111/1365-2435.12664

  • Kuchimanchi BR, van Paassen A, Oosting SJ (2021) Understanding the vulnerability, farming strategies, and development pathways of smallholder farming systems in Telangana, India. Clim Risk Manage 31:e100275. https://doi.org/10.1016/j.crm.2021.100275

    Article  Google Scholar 

  • Kumar N, Singh AK (2022) Impact of environmental factors on human semen quality and male fertility: a narrative review. Environ Sci Europe 34(1):1–13. https://doi.org/10.1186/s12302-021-00585-w

    Article  Google Scholar 

  • Lees AM, Lees JC, Sejian V, Gaughan J (2017) Management strategies to reduce heat stress in Sheep. Sheep Prod Adapting Clim Change, 349–370

  • Leko MB, Gunjača I, Pleić N, Zemunik T (2021) Environmental factors affecting thyroid-stimulating hormone and thyroid hormone levels. Int J Mol Sci 22(12):6521. https://doi.org/10.3390/ijms22126521

    Article  CAS  Google Scholar 

  • Lopes I, Altab G, Raina P, de Magalhães J. P. (2021) Gene size matters: an analysis of gene length in the Human Genome. Front Genet 12:559998. https://doi.org/10.3389/fgene.2021.559998

  • Madhusoodan AP, Sejian V, Rashamol VP, Savitha ST, Bagath M, Krishnan G, Bhatta R (2019) Resilient capacity of cattle to environmental challenges– An updated review. In Journal of Animal Behaviour and Biometeorology 7(3):104–118. https://doi.org/10.31893/2318-1265jabb.v7n3p104-118

  • McManus CM, Faria DA, Lucci CM, Louvandini H, Pereira SA, Paiva SR (2020) Heat stress effects on sheep: Are hair sheep more heat resistant? In Theriogenology 155:157–167. https://doi.org/10.1016/j.theriogenology.2020.05.047

  • Oke OE, Uyanga VA, Iyasere OS, Oke FO, Majekodunmi BC, Logunleko MO, Abiona JA, Nwosu EU, Abioja MO, Daramola JO, Onagbesan OM (2021) Environmental stress and livestock productivity in hot-humid tropics: alleviation and future perspectives. J Therm Biol 100. https://doi.org/10.1016/j.jtherbio.2021.103077

  • Pardo G, Del Prado A (2020) Guidelines for small ruminant production systems under climate emergency in Europe. Small Ruminant Res 193:106261

    Article  Google Scholar 

  • Passamonti MM, Somenzi E, Barbato M, Chillemi G, Colli L, Joost S, Milanesi M, Negrini R, Santini M, Vajana E, Williams JL, Ajmone-marsan P (2021) The quest for genes involved in adaptation to climate change in ruminant livestock. In Animals 11(10):2833https://doi.org/10.3390/ani11102833

  • Patience JF, Rossoni-Serão MC, Gutiérrez NA (2015) A review of feed efficiency in swine: Biology and application. In Journal of Animal Science and Biotechnology 6(1):1–9. https://doi.org/10.1186/s40104-015-0031-2

  • Renaudeau D, Collin A, Yahav S, De Basilio V, Gourdine JL, Collier RJ (2012) Adaptation to hot climate and strategies to alleviate heat stress in livestock production. Animal 6(5):707–728

    Article  CAS  Google Scholar 

  • Ribeiro MN, Ribeiro NL, Bozzi R, Costa RG (2018) Physiological and biochemical blood variables of goats subjected to heat stress–a review. J Appl Anim Res 46(1):1036–1041

    Article  CAS  Google Scholar 

  • Roberts Kingman GA, Lee D, Jones FC, Desmet D, Bell MA, Kingsley DM (2021) Longer or shorter spines: reciprocal trait evolution in stickleback via triallelic regulatory changes in Stanniocalcin2a. Proc Natl Acad Sci USA 118(31):e2100694118. https://doi.org/10.1073/pnas.2100694118

    Article  CAS  Google Scholar 

  • Rodrigues RCM, Furtado DA, Ribeiro NL, de Sousa Silva R, da Costa Silva JAP, da Silva MR, Mascarenhas NMH, Cavalcanti CR, Ayres GDJ, Dornelas KC, Lima RPR, de Figueiredo CFV (2023) Blood biochemical, hormonal, and haematological responses of native sheep submitted to different environmental conditions. Res Vet Sci 165:105067

    Article  CAS  Google Scholar 

  • Rossa-Roccor V, Giang A, Kershaw P (2021) Framing climate change as a human health issue: enough to tip the scale in climate policy? In The Lancet Planetary Health 5(8):e553–559. https://doi.org/10.1016/S2542-5196(21)00113-3

  • Sejian V, Hyder I, Maurya VP, Bagath M, Krishnan G, Aleena J, Naqvi SMK (2017) Adaptive mechanisms of sheep to climate change. Sheep Prod Adapting Clim Change, 117–147

  • Sevi A, Caroprese M (2012) Impact of heat stress on milk production, immunity, and udder health in sheep: a critical review. Small Rumin Res 107:1–7. https://doi.org/10.1016/j.smallrumres.2012.07.012

    Article  Google Scholar 

  • Shivanna KR (2022) Climate change and its impact on biodiversity and human welfare. In Proceedings of the Indian National Science Academy 88(2):160–171. Springer Nature. https://doi.org/10.1007/s43538-022-00073-6

  • Sivakumar M (2021) Climate services’ role in safeguarding pastoral disaster communities. OIE Revue Scientifique et Technique 40(2):431–438. https://doi.org/10.20506/rst.40.2.3235

    Article  CAS  Google Scholar 

  • Sivertsson E, Friederich-Persson M, Persson P, Nangaku M, Hansell P, Palm F (2022) Thyroid hormone increases oxygen metabolism causing intrarenal tissue hypoxia, a pathway to kidney disease. PLoS ONE 17(3):e0264524. https://doi.org/10.1371/journal.pone.0264524

    Article  CAS  Google Scholar 

  • Soen Y (2014) Environmental disruption of host-microbe co-adaptation as a potential driving force in evolution. Front Genet 5(6):168. https://doi.org/10.3389/fgene.2014.00168

    Article  CAS  Google Scholar 

  • Spigarelli C, Zuliani A, Battini M, Mattiello S, Bovolenta S (2020) Welfare assessment on pasture: A review on animal-based measures for ruminants. In Animals 10(4):222–234 (Vol. 10, Issue 4). https://doi.org/10.3390/ani10040609

  • Stahler DR, Macnulty DR, Wayne RK, vonHoldt B, Smith DW (2013) The adaptive value of morphological, behavioral, and life-history traits in reproductive female wolves. J Anim Ecol 82(1):222–234. https://doi.org/10.1111/j.1365-2656.2012.02039.x

    Article  Google Scholar 

  • Stella A, Nicolazzi EL, Van Tassell CP, Rothschild MF, Colli L, Rosen BD, Sonstegard TS, Crepaldi P, Tosser-Klopp G, Joost S, Amills M, Ajmone-Marsan P, Bertolini F, Boettcher P, Boyle Onzima R, Bradley D, Buja D, Cano Pereira ME, Carta A, Zhang W (2018) AdaptMap: exploring goat diversity and adaptation. Genet Selection Evol 50(1):1–7. https://doi.org/10.1186/s12711-018-0427-5

    Article  Google Scholar 

  • Vaudin P, Augé C, Just N, Mhaouty-Kodja S, Mortaud S, Pillon D (2022) When pharmaceutical drugs become environmental pollutants: Potential neural effects and underlying mechanisms. Environmental Research 205:112495. https://doi.org/10.1016/j.envres.2021.112495

  • Vieira R, Louvandini H, Barcellos J, Martins CF, McManus C (2022) Path and logistic analysis for heat tolerance in adapted breeds of cattle in Brazil. Livestock Science 258:104888. https://doi.org/10.1016/j.livsci.2022.104888

  • Whannou HRV, Afatondji CU, Linsoussi CA, Favi GA, Nguyen TT, Houinato MRB, Dossa LH (2022) Morphological characterization and habitat suitability modeling of the goat population of Benin under climate change scenarios. Ecol Processes 11(1):47. https://doi.org/10.1186/s13717-022-00392-y

    Article  Google Scholar 

  • Xing C, Li J, Yuan H, Yang J (2022) Physiological and transcription level responses of microalgae Auxenochlorella protothecoides to cold and heat-induced oxidative stress. Environ Res 211:e113023. https://doi.org/10.1016/j.envres.2022.113023

    Article  CAS  Google Scholar 

  • Özcan AU, Velázquez J, Rincón V, Gülçin D, Çiçek K (2022) Assessment of the morphological pattern of the Lebanon Cedar under changing climate: the Mediterranean Case. Land 11(6):802. https://doi.org/10.3390/land11060802

    Article  Google Scholar 

  • Zhang J, Gao Y, Guo H, Ding Y, Ren W (2019) Comparative metabolome analysis of serum changes in sheep under overgrazing or light grazing conditions. BMC Vet Res 15(1):1–10. https://doi.org/10.1186/s12917-019-2218-9

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors are grateful to Professor Dr Md Zuki Abubakar, Dr Hezmee Moh’d Noor Moh’d, and Dr Zubair Alhaji Jaji all the Universiti Putra Malaysia colleagues for editing and improving the manuscript with no funding link to this manuscript review.

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization by Danmaigoro A and Paul Ade Iji, writing - original draft preparation by Danmaigoro A; writing - review and editing by Royford Magiri, Kabeer Abubakar, Mahmud Abdullahi Mohammad, Archibold Garikayi Bakare; All authors have read and agreed to the published version of the manuscript.

Corresponding author

Correspondence to Abubakar Danmaigoro.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Danmaigoro, A., Muhammad, M.A., Abubakar, K. et al. Morphological and physiological features in small ruminants: an adaptation strategy for survival under changing climatic conditions. Int J Biometeorol (2024). https://doi.org/10.1007/s00484-024-02694-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00484-024-02694-6

Keywords

Navigation