Skip to main content

Climate Change Impact on Sheep Production: Growth, Milk, Wool, and Meat

  • Chapter
  • First Online:
Sheep Production Adapting to Climate Change

Abstract

Sheep production is looked upon as the primary meat industry in the future due to production efficiency of mutton and adaptability of the sheep to changing climate. More than 50% small ruminants of the world are located in arid region, indicating their adaptability and future suitability to increasing temperatures. Sheep graze in the ranches, wastelands particularly in Asian and African countries, and also in pasturelands of Australia; this not only reduces emission of the greenhouse gases (GHG) but also increases fertility of land. Increased temperatures will be the first impact of climate change. Cyclones, droughts, heavy rainfall, unpredictable climate, and diseases are other factors which will affect the sheep husbandry; however threats posed by these factors can also be ameliorated with scientific planning and execution. Disease resilience in genomics of sheep can be exploited apart from nutritional interventions for mitigating these challenges. 2050 will see a high demand of food from exisiting resources to feed ~10 billion people, and sheep will play a major role with advanced genomic selection. In sheep, growth traits and meat quality are important criteria. Selection of sheep breeds and candidates that are high producing and also tolerant to the adverse effects can be a mitigating option. Reaction norms in genotype by environment interaction are important, and selection of genotypes for suitability in the future needs considerable research inputs. Revised selection criteria may be a need of the future, where production in the compromised environment seems to be the need of time. The decline in profitability of wool and environmental impacts have forced wool to take backstage; however, wool fiber production consumes significantly less energy than popular man-made fibers. Importance of the sheep husbandry as sustainable livelihood option for landless, marginal, and small farmers needs to be realized along with its global emergence as the desired food animal in the climate change era.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abbott M (2013) Market support schemes and their interaction: the case of the wool industry. Agrekon 52:63–82

    Article  Google Scholar 

  • Adams R et al (1999) The economic effects of climate change on US agriculture. In: Mendelsohn R, Neumann J (eds) The impact of climate change on the United States economy. Cambridge University Press, Cambridge

    Google Scholar 

  • Agyemang K, Dwinger RH, Little DA, Rowlands GJ (1997) Village N’Dama cattle production in West Africa: six years of research in the Gambia, International Livestock Research Institute, Nairobi, Kenya, and International Trypanotolerance Centre. Banjul, The Gambia, p 131

    Google Scholar 

  • Albenzio M, Caroprese M, Santillo A, Marino R, Taibi L, Sevi A (2004) Effects of somatic cell count and stage of lactation on the plasmin activity and cheese-making properties of ewe milk. J Dairy Sci 87:533–542

    Article  CAS  PubMed  Google Scholar 

  • Alcock DJ, Harrison MT, Rawnsley RP, Eckard RJ (2015) Can animal genetics and flock management be used to reduce greenhouse gas emissions but also maintain productivity of wool-producing enterprises. Agric Syst 132:25–34

    Article  Google Scholar 

  • Amaral-Phillips DM, McGilliarg AD, Lindberg GL, Veenhuizen JJ, Yang JW (1993) Effects of decreased availability of glucose for dairy cows. J Dairy Sci 76:752–761

    Article  CAS  PubMed  Google Scholar 

  • Argyropoulos N (2014) An economic evaluation of agricultural management systems in the Patagonian Grasslands: an observation of wool and the link between profitability and conservation. Duke University

    Google Scholar 

  • Baker RL (1998) Genetic resistance to endoparasites in sheep and goats. A review of genetic resistance to gastrointestinal nematode parasites in sheep and goats in the tropics and evidence for resistance in some sheep and goat breeds in sub-humid coastal Kenya. FAO/UNEP Anim Genet Res Info 24:13–30

    Article  Google Scholar 

  • Barber A, Pellow G (2006) LCA: New Zealand merino wool total energy use. In: 5th Australian Life Cycle Assessment Society (ALCAS) conference, Melbourne. 22–24 Nov 2006

    Google Scholar 

  • Barwick SA, Swan AA, Hermesch S, Graser HU (2011) Experience in breeding objectives for beef cattle, sheep and pigs, new developments and future needs. Proc Assoc Advmt Anim Breed Genet 19:23–30

    Google Scholar 

  • Berry P (2015) Sheep meat and wool: outlook to 2019–20. Agric Commodities 5:112

    Google Scholar 

  • Bray AR, Graafhuis AE, Chrystall BB (1989) The cumulative effect of nutritional, shearing and preslaughter washing stresses on the quality of lamb meat. Meat Sci 25:59–67

    Article  CAS  PubMed  Google Scholar 

  • Brock PM, Graham P, Madden P, Alcock DJ (2013) Greenhouse gas emissions profile for 1 kg of wool produced in the Yass Region, New South Wales: a life cycle assessment approach. Anim Prod Sci 53:495–508

    Article  CAS  Google Scholar 

  • Bromley CM, Snowder GD, Van Vleck LD (2000) Genetic parameters among weight, prolificacy and wool traits of Columbia, Polypay Rambouillet and Targhee sheep. J Anim Sci 78:846–858

    Article  CAS  PubMed  Google Scholar 

  • Bruford MW, Townsend SJ (2006) Mitochondrial DNA diversity in modern sheep. In: Zeder MA et al (eds) Documenting domestication: new genetic and archaeological paradigms. University of California Press, Berkeley, pp 306–316

    Google Scholar 

  • Buffington DE, Collier RJ, Canton GH (1983) Shade management systems to reduce heat stress for dairy cows in hot, humid climates. Trans ASAE 26:1798–1802

    Article  Google Scholar 

  • Butterfield J, Bingham S, Savory A (2006) Holistic management handbook: healthy land, healthy profits. Island Press, Washington, DC

    Google Scholar 

  • Buxadera MA, Serradilla JM, Arrebola F, Clemente I, Castro JA, Osorio J, Torres R, Molina A (2013) Genetic variation for tolerance to heat stress in dairy small ruminants: results obtained in Spain. Conference: FAO-CIHEAM Network on Sheep and Goats 8th International Seminar. Tangier, Morocco, 11 to 13 June 2013, Volume: Option Mediterranean, No 108: No 108: 67–73

    Google Scholar 

  • Caroprese M, Albenzio M, Bruno A, Annicchiarico G, Marino R, Sevi A (2012) Effects of shade and flaxseed supplementation on the welfare of lactating ewes under high ambient temperatures. Small Rumin Res 102:177–185

    Article  Google Scholar 

  • Casamassima D, Sevi A, Palazzo M, Ramacciato R, Colella GE, Bel-litti A (2001) Effects of two different housing systems on behavior, physiology and milk yield of Comisana ewes. Small Rumin Res 41:151–161

    Article  CAS  PubMed  Google Scholar 

  • Chauhan DS, Ghosh N (2014) Impact of climate change on livestock production: a review. J Anim Res 4(2):223

    Article  Google Scholar 

  • Conrad JH (1985) Feeding of farm animals in hot and cold environments. In: Yousef MK (ed) Stress physiology in livestock, vol II. CRC Press, Boca Raton

    Google Scholar 

  • Cottle DJ, Cowie AL (2016) Allocation of greenhouse gas production between wool and meat in the life cycle assessment of Australian sheep production. Int J Life Cycle Assess 21(6):820–830. doi:10.1007/s11367-016-1054-4

    Article  CAS  Google Scholar 

  • Crimp S, Howden M, Gaydon G (2008) On-farm management in a variable and changing climate: a participatory approach to adaptation: http://www.bcg.org.au/cb_pages/images/climate%20risk%20management%20-%20Steve%20Crimp.pdf

  • Dubey SC, Shinde AK (2010) Impact of climate and environment change on animal diseases and production. National seminar on stress management in small ruminant production and product processing. In: Karim SA, Joshi A, Sankhyan SK, Shinde AK, Shakyawar DB, Naqvi SMK, Tripathi BN (eds) Climate change and stress management: sheep and goat production. Satish Serial Publishing House, Delhi, pp 513–524

    Google Scholar 

  • El-Hag FM, Fadlalla B, Mukhtar HK (2001) Some production characteristics of Sudan Desert sheep under range conditions in North Kordofan. Sudan. Trop Anim Health Prod 33:229–239

    Article  CAS  PubMed  Google Scholar 

  • FAOSTAT (2012) Food and Agriculture Organization of the United Nations Viale delle Terme di Caracalla 00153 Rome, Italy

    Google Scholar 

  • FAOSTAT report (2010) Statistical Database of the Food and Agriculture Organization of the United Nations. FAO, Rome.

    Google Scholar 

  • FAOSTAT report (2014) Food and Agriculture Organization of the United Nations. http://faostat.fao.org/site/567/default.aspx#ancor

  • Finocchiaro R, van Kaam JBCHM, Portolano B, Vitale F, Misztal I (2004) Effect of heat stress on production in mediterranean dairy sheep 55th annual EAAP meeting-bled (Slovenia), September 5–8, 2004

    Google Scholar 

  • Finocchiaro R, van Kaam JBCHM, Portolano B, Misztal I (2005) Effect of heat stress on production of Mediterranean dairy sheep. J Dairy Sci 88:1855–1864

    Article  CAS  PubMed  Google Scholar 

  • Finocchiaro R, van Kaam JBCHM, Portolano B (2007) Effect of weather conditions on somatic cell score in Sicilian Valle del Belice ewe. Ital J Anim Sci 6(1):130–132

    Google Scholar 

  • Food and Agriculture Organizations for the United States (FAO) (2012) www.fao.org

  • Franzluebbers AJ, Stuedemann JA (2010) Surface soil changes during twelve years of pasture management in the Southern Piedmont USA. Soil Sci Soc Am J 74(6):2131–2141

    Article  CAS  Google Scholar 

  • Gadekar YP, Shinde AK (2014) Effect of restriction feeding and re-alimentation on carcass traits of chokla rams. National Seminar on Prospects and Challenges in Small Ruminant Production in India held at Sheep Breeding Research Station (TANUVAS), Sandynallah, The Nilgiris – 643 237 Tamil Nadu on December, 11 & 12

    Google Scholar 

  • Gerosa S, Skoet J (2012) Milk availability trends in production and demand and medium-term outlook. FAO, Rome, United Nations. http://www.fao.org/docrep/015/an450e/an450e00.pdf

  • Ghafouri-Kesbi F, Notter DR (2016) Sex influence on genetic expressions of early growth in Afshari lambs. Arch Anim Breed 59:9–17

    Article  Google Scholar 

  • Ghalsasi PM, Nimbkar BV (1993) The “Garole” – microsheep of Bengal, India. Anim Genet Resour Inf 12:73–79

    Article  Google Scholar 

  • Gowane GR, Chopra A, Prince LLL, Paswan C, Arora AL (2010a) Estimates of (co)variance components and genetic parameters for body weights and first greasy fleece weight in Bharat merino sheep. Animal 4:425–431

    Article  CAS  PubMed  Google Scholar 

  • Gowane GR, Chopra A, Prakash V, Arora AL (2010b) Estimates of (co)variance components and genetic parameters for body weights and first greasy fleece weight in Malpura sheep. Livest Sci 131:94–101

    Article  Google Scholar 

  • Gowane GR, Chopra A, Prakash V, Prince LLL (2014) The role of maternal effects in sheep breeding: a review. Indian J Small Ruminants (The) 20(1):1–11

    Google Scholar 

  • Gowane GR, Prince LLL, Lopes FB, Paswan C, Sharma RC (2015) Genetic and phenotypic parameter estimates of live weight and daily gain traits in Malpura sheep using Bayesian approach. Small Rumin Res 128:10–18

    Article  Google Scholar 

  • Grogan A (2013) The wonder of wool [manufacturing wool]. Eng Technol 7:70–72

    Article  Google Scholar 

  • Grummer RR (1991) Effect of feed on the composition of milk fat. J Dairy Sci 74:3244–3257

    Article  CAS  PubMed  Google Scholar 

  • Habeeb AA, Marai IFM, Kamal TH, Owen JB (1997) Genetic improvement of livestock for heat adaptation in hot climates. In: Proceedings of international conference on animal, poultry and rabbit production & health, Dokki, Cairo, Egypt. pp 11–16

    Google Scholar 

  • Hahn GL (1981) Housing and management to reduce climatic impacts on livestock. J Anim Sci 52(1):175–186

    Article  CAS  PubMed  Google Scholar 

  • Harle KJ, Howden SM, Hunt LP, Dunlop M (2007) The potential impact of climate change on the Australian wool industry by 2030. Agric Syst 93:61–89

    Article  Google Scholar 

  • Hayes MJ, Sackville Hamilton NR, (2001) The effect of swardmanagement on the restoration of species-rich grassland: a reassessment of IGER Õs grassland restoration experiment, Traws-goed. Countryside Council for Wales Contract Science Report No. 438, Bangor

    Google Scholar 

  • Hickey JM, Bruce C, Whitelaw A, Gorjanc G (2016) Promotion of alleles by genome editing in livestock breeding programmes. J Anim Breed Genet 133:83–84

    Article  CAS  PubMed  Google Scholar 

  • Hiendleder S, Kaupe B, Wassmuth R, Janke A (2002) Molecular analysis of wild and domestic sheep questions current nomenclature and provides evidence for domestication from two different subspecies. Proc R Soc B Biol Sci 269:893–904

    Article  CAS  Google Scholar 

  • Horowitz M (2002) From molecular and cellular to integrative heat defence during exposure to chronic heat. Comp Biochem Physiol 131:475–483

    Article  Google Scholar 

  • Huang X, Wang YJ, Di YH (2007) Experimental study of wool fiber on purification of indoor air. Text Res J 77:946–950

    Article  CAS  Google Scholar 

  • Idris A, Kijora C, El-Hag FM, Salih AM, Elmola SAF (2014) Climate change -adaptation strategies for sheep production in range land of Kordofan region. World Essays J 1(1):20–25

    Google Scholar 

  • International Wool Textile Organisation, Market information report (2014) Woolmark Company, Brussels, Belgium

    Google Scholar 

  • IPCC (Intergovernmental Panel on Climate Change) (2007) Climate change 2007: impacts, adaptation and vulnerability. Summary for policy makers

    Google Scholar 

  • Jakhmola RC, Shinde AK, Bhatta R (2005) Grazing stresses –production and reproduction performance of sheep and goats in desert ranges. Strategies for sustainable livestock production. In: Kaushish SK, Patel AK, Bohra HC, Mathur AC and Mathur BK (eds), Kalyani Publishers, New Delhi

    Google Scholar 

  • Jallow DB, Hsia LC (2014) Effect of sodium bicarbonate supplementation on carcass characteristics of lambs fed concentrate diets at different ambient temperature levels. Asian Australas J Anim Sci 27:1098–1103

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kadim IT, Mahgoub O, AlKindi AY, Al-Marzooqi W, Al-Saqri NM, Almaney M, Mahmoud IY (2007) Effect of transportation at high ambient temperatures on physiological responses, carcass and meat quality characteristics in two age groups of Omani sheep. Asian Australas J Anim Sci 20:424–431

    Article  CAS  Google Scholar 

  • Kadim IT, Mahgoub O, Al-Marzooqi W, Al-Ajmi DS, Al-Maqbali RS, Al-Lawati SM (2008) The influence of seasonal temperatures on meat quality characteristics of hotboned, m. psoas major and minor, from goats and sheep. Meat Sci 80:210–215

    Article  CAS  PubMed  Google Scholar 

  • Kahn CM (2010) The Merck veterinary manual, 10th edn. ISBN: 978-0-911910-93-3. The Merck Publishing Group, New Jersey

    Google Scholar 

  • Karim SA, Shinde AK (2007) Pasture based feeding system for small ruminant production and its relevance in tropics. In: International conference on tropical animal nutrition, NDRI, Karnal, 3–5 Oct

    Google Scholar 

  • Kijas J, Townley D, Dalrymple B (2009) A genome wide survey of SNP variation reveals the genetic structure of sheep breeds. PLoS One 4:e4668

    Article  PubMed  PubMed Central  Google Scholar 

  • Klastrup O, Nakken G, Bramley J, Bushnell R (1987) Environmental Influences on Bovine Mastitis. IDF (International Dairy Federation Bulletin), No. 217, Brussels, Belgium

    Google Scholar 

  • Klinedinst PL, Wilhite DA, Hahn GL, Hubbard KG (1993) The potential effects of climate change on summer season dairy cattle milk production and reproduction. Clim Chang 23:21–36

    Article  Google Scholar 

  • Komlosi I (2008) Genetic parameters for growth traits of the Hungarian merino and meat sheep breeds in Hungary. Appl Ecol Environ Res 6:77–84

    Article  Google Scholar 

  • Kopke E, Young J, Kingwell R (2008) The relative profitability and environmental impacts of different sheep systems in a mediterranean environment. Agric Syst 96:85–94

    Article  Google Scholar 

  • Kushwaha BP, Mandal A, Arora AL, Kumar R, Kumar S, Notter DR (2009) Direct and maternal (co)variance components and heritability estimates for body weights in Chokla sheep. J Anim Breed Genet 126:278–287

    Article  CAS  PubMed  Google Scholar 

  • Lemaire G, Franzluebbers A, Carvalho PCDF, Dedieu B (2014) Integrated crop-livestock systems: strategies to achieve synergy between agricultural production and environmental quality. Agric Ecosyst Environ 190:4–8

    Article  Google Scholar 

  • Loerch SC, Fluharty FL (1999) Physiological changes and digestive capabilities of newly received feedlot cattle. J Anim Sci 77:1113–1119

    Article  CAS  PubMed  Google Scholar 

  • Lowe TE, Gregory NG, Fisher AD, Payne SR (2002) The effects of temperature elevation and water deprivation on lamb physiology, welfare, and meat quality. Aust J Agric Res 53:707–714

    Article  Google Scholar 

  • Maestripieri D, Mateo JM (2009) The role of maternal effects in mammalian. In: Evolution and adaptation maternal effects in mammals, The University of Chicago Press, Ltd, London

    Google Scholar 

  • Marai IFM, El-Darawany AA, Fadiel A, Abdel-Hafez MAM (2007) Physiological traits as affected by heat stress in sheep a review. Small Rumin Res 71:1–12

    Article  Google Scholar 

  • Marino R, Atzori AS, D’Andreac M, Iovane G, Trabalza-Marinucci M, Rinaldi L (2016) Climate change: production performance, health issues, greenhouse gas emissions and mitigation strategies in sheep and goat farming. Small Rumin Res 135:50–59

    Article  Google Scholar 

  • McDowell RE (1972) Improvement of livestock production in warm climates. Freeman, San Francisco, pp 410–449

    Google Scholar 

  • Mekuriaw S, Haile A (2014) Genetic parameter estimates for growth and reproductive trait of sheep for genetic improvement and designing breeding program in Ethiopia: a review. Open Access Libr J 1:e589. http://dx.doi.org/10.4236/oalib.1100589

  • Mousseau TA, Fox CW (1998a) The adaptive significance of maternal effects. Trends Ecol Evol 13:403–407

    Article  CAS  PubMed  Google Scholar 

  • Mousseau TA, Fox CW (1998b) Maternal effects as adaptations. Oxford University Press, Oxford

    Google Scholar 

  • Mukhtar HK (1985) Constrains of desert sheep production in the sedentary and nomadic systems of north Kodofan. In: Lazim ME (ed) Annual research report ( 1984–85 ) ElObied Research Station, Agricultural Research Corporation (ARC). Wad Medani, Sudan, pp 40–55

    Google Scholar 

  • Myers SS, Zanobetti A, Kloog I, Huybers P, Leakey AD, Bloom AJ (2014) Increasing CO2 threatens human nutrition. Nature 510:139–142

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nardone A, Ronchi A, Lacetera B, Ranieri N, Bernabucci U (2010) Effects ofclimate changes on animal production and sustainability of livestock systems. Livest Sci 130:57–69

    Article  Google Scholar 

  • NASA (2016) https://www.nasa.gov/feature/goddard/2016/climate-trends-continue-to-break-records

  • Nasholm A, Danell O (1994) Maternal genetic effects on lamb weights. In: Proceeding of the 5th world congress on genetics and applied livestock production, Guelph, Canada, vol 18, pp 163–166

    Google Scholar 

  • Naskar S, Gowane GR, Chopra A, Paswan C, Prince LLL (2012) Genetic adaptability of livestock to environmental stresses. In: Lal R, Sejian V, Naqvi SMK, Ezeji T, Lakritz J (eds) Environmental stress and amelioration in livestock production. Springer, Berlin/Heidelberg, pp 317–378

    Chapter  Google Scholar 

  • Naskar S, Gowane GR, Chopra A (2015) Strategies to improve livestock genetic resources to counter climate change impact. In: Sejian V, Gaughan J, Baumgard L, Prasad CS (eds) Climate change impact on livestock: adaptation and mitigation. Springer-Verlag/GMbH Publisher, New Delhi, pp 441–475

    Chapter  Google Scholar 

  • Nelson DL, Cox MM (2008) Lehninger principles of biochemistry, 5th edn. W. H. Freeman, New York (February 1, 2008). ISBN-10: 071677108X

    Google Scholar 

  • Neser FWC, Erasmus GJ, Van Wyk JB (2001) Genetic parameter estimates for pre-weaning weight traits in Dorper sheep. Small Rumin Res 40:197–202

    Article  PubMed  Google Scholar 

  • NOAA (2007) https://www.ncdc.noaa.gov/oa/climate/research/2007/ann/ann07.html

  • NRC (2001) Nutrient requirements of dairy cattle, 7th edn. National Academy of Sciences, Washington, DC, pp 318–319

    Google Scholar 

  • NRDC (2010) http://www.nrdc.org/global-Warming/watersustainability/

  • Opio C, Gerber P, Mottet A, Falcucci A, Tempio G, MacLeod M, Vellinga T, Henderson B, Steinfeld H (2013) Greenhouse gas emissions from ruminant supply chains—a global life cycle assessment. FAO, Rome

    Google Scholar 

  • Padua JT Dasilva RG, Bottcher RW, Hoff SJ (1997) Effect of high environmental temperature on weight gain and food intake of Suffolk lambs reared in a tropical environment. In: Proceedings of 5th International Symposium, Bloomington, Minnesota, USA (1997), pp 809–815

    Google Scholar 

  • Peana I, Fois G, Cannas A (2007) Effects of heat stress and diet on milk production and feed and energy intake of Sarda ewes. Ital J Anim Sci 6:577–579

    Google Scholar 

  • Pogorzelska J, Micinski J, Ostoja H, Kowalski IM, Szarek J, Strzyzewska E (2013) Quality traits of meat from young Limousin, Charolais and Hereford bulls. Pak Vet J 33:65–68

    Google Scholar 

  • Prakash V, Prince LLL, Gowane GR, Arora AL (2012) The estimation of (co)variance components and genetic parameters for growth traits and Kleiber ratios in Malpura sheep of India. Small Rumin Res 108:54–58

    Article  Google Scholar 

  • Prince LLL, Gowane GR, Chopra A, Arora AL (2010) Estimates of (co)variance components and genetic parameters for growth traits of Avikalin sheep. Trop Anim Health Prod 42:1093–1101

    Article  PubMed  Google Scholar 

  • Rana MS, Hashem MA, Akhter S, Habibullah M, Islam MH, Biswas RC (2014) Effect of heat stress on carcass and meat quality of indigenous sheep of Bangladesh. Bang J Anim Sci 43(2):147–153

    Article  Google Scholar 

  • Rathore JS (2004) Drought and household coping strategies: a case of Rajasthan. Indian J Agric Econ 59(4):689–708

    Google Scholar 

  • Rezaei HR, Naderi S, Chintauan-Marquier IC, Taberlet P, Virk AT, Naghash HR, Rioux D, Kaboli M, Pompanon F (2010) Evolution and taxonomy of the wild species of the genus Ovis (Mammalia, Artiodactyla, Bovidae). Mol Phylogenet Evol 54:315–326

    Article  CAS  PubMed  Google Scholar 

  • Robison OW (1981) The influence of maternal effects on the efficiency of selection; a review. Livest Prod Sci 8:121–137

    Article  Google Scholar 

  • Roche J (1995) The international wool trade. Woodhead, Cambridge

    Google Scholar 

  • Rouse JG, Van Dyke ME (2010) A review of keratin-based biomaterials for biomedical applications. Materials 3:999–1014

    Article  Google Scholar 

  • Rowe JB (2010) The Australian sheep industry–undergoing transformation. Anim Prod Sci 50:991–997

    Article  Google Scholar 

  • Rust JM, Rust T (2013) Climate change and livestock production: a review with emphasis on Africa. South Afr J Anim Sci 43:256–267

    Google Scholar 

  • Safari E, Fogarty NM, Gilmour AR (2005) A review of genetic parameter estimates for wool, growth, meat and reproduction traits in sheep. Livest Prod Sci 92:271–289

    Article  Google Scholar 

  • Sautier M, Martin-Clouaire R, Faivre R, Duru M (2013) Assessing climatic exposure of grassland-based livestock systems with seasonal-scale indicators. Clim Chang 120:341–355

    Article  Google Scholar 

  • Scherf BD (2000) World watch list for domestic animal diversity, 3rd edn. Food and Agriculture Organization of the United Nations, Rome

    Google Scholar 

  • Sejian V, Maurya VP, Naqvi SMK (2011) Effcet of thermal, nutritional and combined (thermal and nutritional) stresses on growth and reproductive performance of Malpura ewes under semi-arid tropical environment. J Anim Physiol Anim Nutr 95:252–258

    Article  CAS  Google Scholar 

  • Sejian V, Maurya VP, Kumar K, Naqvi SMK (2013) Effect of multiple stresses (thermal, nutritional and walking stress) on growth, physiological response, blood biochemical and endocrine responses in Malpura ewes under semi-arid tropical environment. Trop Anim Health Prod 45:107–116

    Article  PubMed  Google Scholar 

  • Sejian V, Bahadur S, Naqvi SMK (2014) Effect of nutritional restriction on growth, adaptation physiology and estrous responses in Malpura ewes. Anim Biol 64:189–205

    Article  Google Scholar 

  • Sevi A, Caroprese M (2012) Impact of heat stress on milk production, immunityand udder health in sheep: a critical review. Small Rumin Res 107:1–7

    Article  Google Scholar 

  • Sevi A, Annicchiarico G, Albenzio M, Taibi L, Muscio A, Dell’Aquila S (2001) Effects of solar radiation and feeding time on behavior, immune response and production of lactating ewes under high ambient tem-perature. J Dairy Sci 84:629–640

    Article  CAS  PubMed  Google Scholar 

  • Sevi A, Albenzio M, Annicchiarico G, Caroprese M, Marino R, Taibi L (2002a) Effects of ventilation regimen on the welfare and performance of lactating ewes in summer. J Anim Sci 80:2349–2361

    Article  CAS  PubMed  Google Scholar 

  • Sevi A, Rotunno T, Di Caterina R, Muscio A (2002b) Fatty acid com-position of ewe milk as affected by solar radiation and high ambient temperature. J Dairy Res 69:181–194

    Article  CAS  PubMed  Google Scholar 

  • Sevi A, Taibi L, Albenzio M, Annicchiarico G, Marino R, Caroprese M (2003) Influence of ventilation regimen on micro-environment and on ewe welfare and milk yield in summer. Ital J Anim Sci 2:197–212

    Article  Google Scholar 

  • Shinde AK, Naqvi SMK (2015) Prospects of dairy sheep farming in india: an overvieW. Indian J Small Ruminants 21(2):180–195

    Article  Google Scholar 

  • Shinde AK, Sejian V (2013) Sheep husbandry under changing climate scenario in India: an overview. Indian J Anim Sci 83(10):998–1008

    Google Scholar 

  • Silanikove-Nissim (2000) Effects of heat stress on the welfare of extensively managed domestic ruminants. Livest Prod Sci 67(1–2):1–18

    Article  Google Scholar 

  • Singh G, Karim SA (1995) Change in birth weight of temperate sheep breeds under tropical conditions. World Rev Anim Prod 30(3/4):55–60

    Google Scholar 

  • Singh D, Swarnkar CP (2010) Exploration of Genetic to Diseases for Improving Small Rumiant Production. In: Climate change and stress management: sheep & goat production. Edt: Karim et al. 2010. Satish Serial Publishing House, New Delhi. pp 441–495

    Google Scholar 

  • Skuce PJ, Morgan ER, van Dijk J, Mitchell M (2013) Animal health aspects of adaptation to climate change: beating the heat and parasites in a warming Europe. Animal 7:333–345

    Article  PubMed  Google Scholar 

  • Soussana JF, Tallec T, Blanfort V (2010) Mitigating the greenhouse gas balance of ruminant production systems through carbon sequestration in grasslands. Animal 4:334–350

    Article  CAS  PubMed  Google Scholar 

  • Swarnkar CP, Singh D, Krishna L, Khan FA (2008) Epidemiology and management of gastrointestinal parasites of sheep in Rajasthan. CSWRI, Avikanagar, pp 1–145

    Google Scholar 

  • Thornton PK (2010) Livestock production: recent trends, future prospects. Philos Trans R Soc Lond B Biol Sci 365:2853–2867

    Article  PubMed  PubMed Central  Google Scholar 

  • Thornton PK, Van de Steeg J, Notenbaert A, Herrero M (2009) The impacts of climate change on livestock and livestock systems in developing countries: a review of what we know and what we need to know. Agric Syst 101:113–127

    Article  Google Scholar 

  • Todaro M, Dattena M, Acciaioli A, Bonanno A, Bruni G, Caroprese M, Mele M, Sevi A, Trabalza-Marinucci M (2015) Aseasonal sheep and goat milkproduction in the Mediterranean area: physiological and technical insights. Small Rumin Res 126:59–66

    Article  Google Scholar 

  • Van den Bossche P, Coetzer JAW (2008) CC and animal health in Africa. Rev Sci Tech off Int Epiz 27(2):551–562

    Article  Google Scholar 

  • Yatoo MI, Kumar P, Dimri U, Sharma MC (2012) Effects of climate change on animal health and diseases. Int J Livest Res 2:15–24

    Article  Google Scholar 

  • Zwald NR, Weigel KA, Fikse WF, Rekaya R (2003) Identification of factors that cause genotype by environment interaction between herds of Holstein cattle in seventeen countries. J Dairy Sci 86(3):1009–1018

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. R. Gowane .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Nature Singapore Pte Ltd.

About this chapter

Cite this chapter

Gowane, G.R., Gadekar, Y.P., Prakash, V., Kadam, V., Chopra, A., Prince, L.L.L. (2017). Climate Change Impact on Sheep Production: Growth, Milk, Wool, and Meat. In: Sejian, V., Bhatta, R., Gaughan, J., Malik, P., Naqvi, S., Lal, R. (eds) Sheep Production Adapting to Climate Change. Springer, Singapore. https://doi.org/10.1007/978-981-10-4714-5_2

Download citation

Publish with us

Policies and ethics