Skip to main content

Advertisement

Log in

A web-based support system for biometeorological research

  • Special Issue: 1st European Biometeorologists’ Meeting
  • Published:
International Journal of Biometeorology Aims and scope Submit manuscript

Abstract

Data are the fundamental building blocks to conduct scientific studies that seek to understand natural phenomena in space and time. The notion of data processing is ubiquitous and nearly operates in any project that requires gaining insight from the data. The increasing availability of information sources, data formats and download services offered to the users, makes it difficult to reuse or exploit the potential of those new resources in multiple scientific fields. In this paper, we present a spatial extract-transform-load (spatial-ETL) approach for downloading atmospheric datasets in order to produce new biometeorological indices and expose them publicly for reuse in research studies. The technologies and processes involved in our work are clearly defined in a context where the GDAL library and the Python programming language are key elements for the development and implementation of the geoprocessing tools. Since the National Oceanic and Atmospheric Administration (NOAA) is the source of information, the ETL process is executed each time this service publishes an updated atmospheric prediction model, thus obtaining different forecasts for spatial and temporal analyses. As a result, we present a web application intended for downloading these newly created datasets after processing, and visualising interactive web maps with the outcomes resulting from a number of geoprocessing tasks. We also elaborate on all functions and technologies used for the design of those processes, with emphasis on the optimisation of the resources as implemented in cloud services.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Aime MD, Lioy A, Pomi PC, Vallini M (2011) Security plans for SaaS. In: Agrawal D et al (eds) New frontiers in information and software as services. Service and application design challenges in the cloud. LNBIP 74. Springer, Berlin, pp 81–111

    Chapter  Google Scholar 

  • Bermudez L (2017) New frontiers on open standards for geo-spatial science. Geo Spatial Inform Sci 20:126–133. https://doi.org/10.1080/10095020.2017.1325613

  • Bhat S (2018) Practical Docker with Python. Apress, Bangalore

    Book  Google Scholar 

  • Borkar VR, Deshmukh K, Sarawagi S (2000) Automatically extracting structure from free text addresses. IEEE Data Eng Bull 23:27–32

    Google Scholar 

  • Canfield DE, Ngombi-Pemba L, Hammarlund EU, Bengtson S, Chaussidon M, Gauthier-Lafaye F, Meunier A, Riboulleau A, Rollion-Bard C, Rouxel O, Asael D, Pierson-Wickmann AC, El Albani A (2013) Oxygen dynamics in the aftermath of the great oxidation of Earth’s atmosphere. Proc Natl Acad Sci U S A 110:16736–16741. https://doi.org/10.1073/pnas.1315570110

    Article  CAS  Google Scholar 

  • Chubukov LA (1956) Climate fundaments of climatotherapy [in Russian]. In: Basis of Climatotherapy, Vol. 1. Medical Ed., Moscow

  • Cook J (2017) Docker for data science. Apress, Santa Monica

    Book  Google Scholar 

  • Crikard P III (2014) Leaflet.js essentials. Packt Publishing, Birmingham

    Google Scholar 

  • Crowe SA, Døssing LN, Beukes NJ, Beukes NJ, Bau M, Kruger SJ, Frei R, Canfield DE (2013) Atmospheric oxygenation three billion years ago. Nature 501:535–538. https://doi.org/10.1038/nature12426

    Article  CAS  Google Scholar 

  • Dai J, Fdez-arroyabe P, Sheridan SC (2019) Foreword for IJB Special Issue on Asian Biometeorology Spring news from the eastern hemisphere: recent advances of biometeorology in Asia. Int J Biometeorol 63:563–568. https://doi.org/10.1007/s00484-019-01725-x

    Article  Google Scholar 

  • Dar U, Krosing H, Mlodgenski J, Roybal K (2015) PostgreSQL server programming, second edn. Packt Publishing, Birmingham

    Google Scholar 

  • Das H, Barik RK, Dubey H, Roy DS (eds) (2019) Cloud computing for geospatial big data analytics. Springer, Cham

    Google Scholar 

  • de Freitas CR, Grigorieva EA (2015) A comprehensive catalogue and classification of human thermal climate indices. Int J Biometeorol 59:109–120. https://doi.org/10.1007/s00484-014-0819-3

    Article  Google Scholar 

  • De Smith MJ, Goodchild MF, Longley P (2007) Geospatial analysis: a comprehensive guide to principles, techniques and software tools. Troubador Publishing Ltd, Leicester

    Google Scholar 

  • ESA (2019) Copernicus. Europe’s eyes on Earth. https://www.esa.int/Applications/Observing_the_Earth/Copernicus. Accessed 25 October 2019

  • Fayyad U, Piatetsky-Shapiro G, Smyth P (1996) From data mining to knowledge discovery in databases. AI Mag 17:37–37. https://doi.org/10.1609/aimag.v17i3.1230

    Article  Google Scholar 

  • Fdez-Arroyabe P (2015) Climate change, local weather and customized early warning systems based on biometeorological indexes. IJEE 5(3). https://doi.org/10.17265/2159-581X/2015.03.002

  • Fdez-Arroyabe P, Roye D (2017) Co-creation and participatory design of big data infrastructures on the field of human health related climate services. In: Bhatt C, Dey N, Ashour A (eds) Internet of things and big data technologies for next generation healthcare. Studies in Big Data, vol 23. Springer, Cham, pp 199–226

    Chapter  Google Scholar 

  • Fdez-Arroyabe P, Lecha Estela L, Schimt F (2018) Digital divide, biometeorological data infrastructures and human vulnerability definition. Int J Biometeorol 62:733–740. https://doi.org/10.1007/s00484-017-1398-x

    Article  Google Scholar 

  • Fdez-Arroyabe P, Soliño Fernández D, Bilbatua Andrés J (2019) Work environment and healthcare: a biometeorological approach based on wearables. In: Dey N, Ashour A, Fong S, Bhatt CM (eds) Wearable and implantable medical devices applications and challenges. Vol. 7 in Advances in ubiquitous sensing applications for healthcare. Elsevier, London, pp 141–161

    Google Scholar 

  • Fernández de Arroyabe P, Lecha Estela L (2008). Validación en el norte de España de dos sistemas de alerta sanitarios basados en la idea del contraste meteorológico extremo. In: Publicaciones de la Asoc. Española Climatología: El cambio climático regional y sus impactos, Serie A (6) Ponencia V. Tarragona. ISBN: 978–84–612-6051-5

  • GDAL/OGR contributors (2019) GDAL/OGR geospatial data abstraction software library. Open Source Geospatial Foundation. https://gdal.org. Accessed 20 October 2019

  • Hempelmann N, Ehbrecht C, Alvarez-Castro C, Brockmann P, Falk W, Hoffmann J, Kindermann S, Koziol B, Nangini C, Radanovics S, Vautard R, Yiou P (2018) Web processing service for climate impact and extreme weather event analyses. Flyingpigeon (Version 1.0). Comput Geosci 110:65–72. https://doi.org/10.1016/j.cageo.2017.10.004

    Article  Google Scholar 

  • Hillar G (2018) Django RESTful web services. Packt Publishing, Birmingham

    Google Scholar 

  • Kitchin R (2014) The data revolution: big data, open data, data infrastructures and their consequences. SAGE, Los Angeles

    Google Scholar 

  • Klein T, Samourkasidis A, Athanasiadis IN, Bellocchi G, Calanca P (2017) webXTREME: R-based web tool for calculating agroclimatic indices of extreme events. Comput Electron Agric 136:111–116. https://doi.org/10.1016/j.compag.2017.03.002

    Article  Google Scholar 

  • Lecha Estela LB (2018) Biometeorological forecasts for health surveillance and prevention of meteor-tropic effects. Int J Biometeorol 62:741–771. https://doi.org/10.1007/s00484-017-1405-2

    Article  Google Scholar 

  • Lecha Estela LB (2019) Pronósticos biometeorológicos. Citmatel, La Habana, p 2019

    Google Scholar 

  • Lodovici M, Bigagli E (2011) Oxidative stress and air pollution exposure. J Toxicol 2011:487074–487079. https://doi.org/10.1155/2011/487074

    Article  CAS  Google Scholar 

  • McInerney D, Kempeneers P (2014) Open source geospatial tools. Springer, New York

    Google Scholar 

  • Mehdipoor H, Vanos JK, Zurita-Milla R, Cao G (2017) Emerging technologies for biometeorology. Int J Biometeorol 61(1):81–88. https://doi.org/10.1007/s00484-017-1399-9

    Article  Google Scholar 

  • Miell I, Hobson A (2019) Docker in practice, Second edn. Manning Publications Co, Shelter Island

    Google Scholar 

  • Mitchell T, GDAL contributors (2014) Geospatial power tools. Open source GDAL/OGR command line utilities. Locate Press, Chugiak

    Google Scholar 

  • Mwange C, Mulaku GC, Siriba DN (2016) Technology trends for spatial data infrastructure in Africa. In Proceedings of the GSDI 15 World Conference, Taipei, Taiwan

  • NOAA (2019) NCEP Data Products GFS and GDAS. https://www.nco.ncep.noaa.gov/pmb/products/gfs/. Accessed 20 October 2019

  • Ovcharova VF (1963) Changes in the superior nervous activity and the gas exchange during the adaptation process of laboratory animals exposed to seasonal climate variations [in Russian]. In: Problems of Complex Climatology, USSR Academy of Sciences Ed., Moscow, pp 141-149

  • Qin CZ, Zhan LJ, Zhu AX (2014) How to apply the geospatial data abstraction library (GDAL) properly to parallel geospatial raster I/O? Trans GIS 18:950–957. https://doi.org/10.1111/tgis.12068

    Article  Google Scholar 

  • Reitz K, Schlusser T (2016) The Hitchhiker's guide to Python: best practices for development. O'Reilly Media, Inc., Sebastopol

    Google Scholar 

  • Richards M (2015) Software architecture patterns. O'Reilly Media, Inc., Sebastopol

    Google Scholar 

  • Risal A, Lima KJ, Bhattarai R, Yang JE, Noh H, Pathak R, Kim J (2018) Development of web-based WERM-S module for estimating spatially distributed rainfall erosivity index (EI30) using RADAR rainfall data. Catena 161:37–49. https://doi.org/10.1016/j.catena.2017.10.015

    Article  Google Scholar 

  • Robichaud PR, Elliot WJ, Pierson FB, Hall DE, Moffet CA (2007) Predicting postfire erosion and mitigation effectiveness with a web-based probabilistic erosion model. Catena 71:229–241. https://doi.org/10.1016/j.catena.2007.03.003

    Article  Google Scholar 

  • Rountree D, Castrillo I (2013) The basics of cloud computing: understanding the fundamentals of cloud computing in theory and practice. Elsevier, Waltham

    Google Scholar 

  • Rutledge GK, Alpert J, Ebisuzaki W (2006) NOMADS: a climate and weather model archive at the National Oceanic and Atmospheric Administration. Bull Am Meteorol Soc 87:327–342. https://doi.org/10.1175/BAMS-87-3-327

    Article  Google Scholar 

  • Salazar Loor J, Fdez-Arroyabe P (2019) Aerial and satellite imagery and big data: blending old technologies with new trends. In: Dey N, Bhatt C, Ashour A (eds) Big data for remote sensing: visualization, Analysis and Interpretation. Springer, Cham, pp 39–59

    Chapter  Google Scholar 

  • Sample JT, Ioup E (2010) Tile-based geospatial information systems: principles and practices. Springer Science & Business Media, New York

    Book  Google Scholar 

  • Servon LJ (2002) Bridging the digital divide, technology, community and public policy. Wiley-Blackwell Publishing, Oxford

  • Soulignac V, Pinet F, Lambert E, Guichard L, Trouche L, Aubin S (2019) GECO, the French web-based application for knowledge management in agroecology. Comput Electron Agric 162:1050–1056. https://doi.org/10.1016/j.compag.2017.10.028

    Article  Google Scholar 

  • Stasch C, Foerster T, Autermann C, Pebesma E (2012) Spatio-temporal aggregation of European air quality observations in the sensor web. Comput Geosci 47:111–118. https://doi.org/10.1016/j.cageo.2011.11.008

    Article  CAS  Google Scholar 

  • Suryanto W, Irnaka TM (2016) Web-based application for inverting one-dimensional magnetotelluric data using Python. Comput Geosci 96:77–86. https://doi.org/10.1016/j.cageo.2016.08.006

    Article  Google Scholar 

  • Vance TC, Merati N, Yang C, Yuan M (eds) (2016) Cloud computing in ocean and atmospheric sciences. Elsevier, London

    Google Scholar 

  • Villar A, Zarrabeitia MT, Fdez-Arroyabe P, Santurtún A (2018) Integrating and analyzing medical and environmental data using ETL and business intelligence tools. Int J Biometeorol 62:1085–1095. https://doi.org/10.1007/s00484-018-1511-9

    Article  Google Scholar 

  • Voronin IM (1954) Experimental study of the effects of climatotherapy in human organism [in Russian]. In: Proceedings of the 2nd Interdisciplinary Conference on Applications of Climatotherapy. Moscow, November; 25:27

  • Wang XZ, Zhang HM, Zhao JH, Lin QH, Zhou YC, Li JH (2015) An interactive web-based service analysis framework for remote sensing cloud computing. ISPRS Annals II-4(W2):43–50. https://doi.org/10.5194/isprsannals-II-4-W2-43-2015

  • Wang W, Cui Y, Luo Y, Li Z, Tan J (2019) Web-based decision support system for canal irrigation management. Comput Electron Agric 161:312–321. https://doi.org/10.1016/j.compag.2017.11.018

    Article  Google Scholar 

  • Warschauer M (2004) Technology and social inclusion. Rethinking the digital divide. The MIT Press, Massachusetts

    Book  Google Scholar 

  • Yang C, Goodchild M, Huang Q, Nebert D, Raskin R, Xu Y, Bambacus M, Fay D (2011) Spatial cloud computing: how can the geospatial sciences use and help shape cloud computing? Int J Digit Earth 4:305–329. https://doi.org/10.1080/17538947.2011.587547

Download references

Acknowledgements

The authors gratefully acknowledge Iban Cabrillo from the Instituto de Física de Cantabria (IFCA) for his full support with the cloud infrastructure used in this study. We are also grateful to Marta Jarque Durán and Amelia Arroquia Cuadros for their support in the preparation of this manuscript.

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization: Benjamín Arroquia-Cuadros, Pablo Fdez-Arroyabe, Ángel Marqués-Mateu; Methodology: Benjamín Arroquia-Cuadros, Ángel Marqués-Mateu; Formal analysis and investigation: Benjamín Arroquia-Cuadros, Pablo Fdez-Arroyabe; Writing—original draft preparation: Benjamín Arroquia-Cuadros, Pablo Fdez-Arroyabe; Writing—review and editing: Benjamín Arroquia-Cuadros, Ángel Marqués-Mateu, Pablo Fdez-Arroyabe, Laura Sebastia; Resources: Pablo Fdez-Arroyabe; Supervision: Ángel Marqués-Mateu, Pablo Fdez-Arroyabe, Laura Sebastia.

Corresponding author

Correspondence to Benjamín Arroquia-Cuadros.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

(MP4 224473 kb).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Arroquia-Cuadros, B., Marqués-Mateu, Á., Sebastia, L. et al. A web-based support system for biometeorological research. Int J Biometeorol 65, 1313–1323 (2021). https://doi.org/10.1007/s00484-020-01985-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00484-020-01985-y

Keywords

Navigation