Skip to main content

Advertisement

Log in

A comprehensive catalogue and classification of human thermal climate indices

  • Short Communication
  • Published:
International Journal of Biometeorology Aims and scope Submit manuscript

Abstract

The very large number of human thermal climate indices that have been proposed over the past 100 years or so is a manifestation of the perceived importance within the scientific community of the thermal environment and the desire to quantify it. Schemes used differ in approach according to the number of variables taken into account, the rationale employed, the relative sophistication of the underlying body–atmosphere heat exchange theory and the particular design for application. They also vary considerably in type and quality, as well as in several other aspects. Reviews appear in the literature, but they cover a limited number of indices. A project that produces a comprehensive documentation, classification and overall evaluation of the full range of existing human thermal climate indices has never been attempted. This paper deals with documentation and classification. A subsequent report will focus on evaluation. Here a comprehensive register of 162 thermal indices is assembled and a sorting scheme devised that groups them according to eight primary classification classes. It is the first stage in a project to organise and evaluate the full range of all human thermal climate indices. The work, when completed, will make it easier for users to reflect on the merits of all available thermal indices. It will be simpler to locate and compare indices and decide which is most appropriate for a particular application or investigation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  • Adamenko VN, Khairullin KS (1972) Evaluation of conditions under which unprotected parts of the human body may freeze in urban air during winter. Bound Layer Meteor 2:510–518

    Google Scholar 

  • Afanasieva R (1977) Hygienic theory of cold protection clothes projection. Legkaya Industriya, Moscow (in Russian)

    Google Scholar 

  • Afanasieva R, Bobrov A, Sokolov S (2009) Cold assessment criteria and prediction of cooling risk in humans: the Russian perspective. Ind Health 47(3):235–241

    Google Scholar 

  • Aizenshtat BA (1964) Methods for assessment of some bioclimate indices. Meteorol Hydrol 12:9–16 (in Russian)

    Google Scholar 

  • Aizenshtat LB, Aizenshtat BA (1974) Equation for equivalent-effective temperature. Questions of biometeorology. Hydrometeoizdat, Leningrad, pp 81–83 (in Russian)

    Google Scholar 

  • Akimovich NN, Balalla OA (1971) Sultry weathers at the south of Primorye and their influence on human body. Izvestia ASc USSR Geogr 4:94–100 (in Russian)

    Google Scholar 

  • Arnoldy IA (1962) Acclimatization of the man in north and south. Medgiz, Moscow (in Russian)

    Google Scholar 

  • ASHRAE (1981) ASHRAE handbook of fundamentals. American Society of Heating, Refrigerating and Air-conditioning Engineers Inc, Atlanta

    Google Scholar 

  • Auliciems A, Kalma JD (1981) Human thermal climates of Australia. Aust Geogr Stud 19(1):3–24

    Google Scholar 

  • Auliciems A, Szokolay SV (2007) Thermal comfort. Qld.: PLEA in association with Dept. of Architecture, University of Queensland, 1997, Brisbane

    Google Scholar 

  • Becker S (2000) Bioclimatological rating of cities and resorts in South Africa according to the Climate Index. Int J Climatol 20:1403–1414

    Google Scholar 

  • Bedford T (1936) Warmth factor in comfort at work. Med Res Council, Industrial Health Research Board, report no. 76

  • Bedford T (1951) Equivalent temperature, what it is, how it's measured. Heat Pip Air Condit 8:87–91

    Google Scholar 

  • Bedford T (1961) Researches on thermal comfort. The society's lecture given at Bristol, 17 April. Ergonomics 4(4):289–310

    Google Scholar 

  • Bedford T (1964) Basic principles of ventilation and heating, 2nd edn. Lewis, London

    Google Scholar 

  • Bedford T, Warner CD (1934) The globe thermometer in studies of heating and ventilation. J Hyg (Lond) 34(4):458–473

    CAS  Google Scholar 

  • Belding HS, Hatch TF (1955) Index for evaluating heat stress in terms of resulting physiological strain. Heat Pip Air Condit 27:129–136

    Google Scholar 

  • Belkin VS (1992) Biomedical aspects of the development of mountain regions: case-study for the Gorno-Badakhshan autonomic region, Tajikistan. J Mount Res Dev 12:63–70

    Google Scholar 

  • Beshir MY, Ramsey JD (1988) Heat stress indices: a review paper. Int J Indust Ergon 3:89–102

    Google Scholar 

  • Bidlot R, Ledent P (1947) Travail dans les milieux a haute temperature. Que savons-nous des limites de temperature humainement supportables? Institute d’Hygiene des Mines, Hasselt

    Google Scholar 

  • Blazejczyk K (2005) New indices to assess thermal risks outdoors. In: Holmér I, Kuklane K, Gao C (eds) Environmental Ergonomics XI. Proc. Of the 11th International Conference, 22–26 May, 2005 Ystat, Sweden, pp 222–225

    Google Scholar 

  • Blazejczyk K (2006) MENEX_2005—the updated version of man–environment heat exchange model (manuscript). COST Action 730 archive. http://www.igipz.pan.pl/tl_files/igipz/ZGiK/opracowania/indywidualne/blazejczyk/MENEX_2005.pdf

  • Blazejczyk K (2011) Assessment of regional bioclimatic contrasts in Poland. Miscellanea Geographica 15(1):79–91

    Google Scholar 

  • Blazejczyk K, Matzarakis A (2007) Assessment of bioclimatic differentiation of Poland based on the human heat balance. Geogr Pol 80:63–82

    Google Scholar 

  • Blazejczyk K, Holmer I, Nilsson H (1998) Absorption of solar radiation by an ellipsoid sensor simulated the human body. Appl Human Sci 17(6):267–273

    CAS  Google Scholar 

  • Blazejczyk K, Epstein Y, Jendritzky G, Staiger H, Tinz B (2012) Comparison of UTCI to selected thermal indices. Int J Biometeorol 56(3):515–535

    Google Scholar 

  • Bodman G (1908) Das Klima als eine Funktion von Temperatur und Windgeschwindigkeit in ihrer Verbindung: Lithogr. Institut des Generalstabs, Stockholm

    Google Scholar 

  • Bogatkin OG (2006) Meteorological index of health and economic possibilities of its application. Proceedings of the International conference “Weather and Biosystems” St.-Petersburg

  • Botsford JH (1971) A wet globe thermometer for environmental heat measurement. Am Indust Hyg Assoc J 32:1–10

    CAS  Google Scholar 

  • Brake D, Bates G (2002a) A valid method for comparing rational and empirical heat stress indices. Ann Occup Hyg 46(2):165–174

    Google Scholar 

  • Brake D, Bates G (2002b) Limiting metabolic rate (thermal work limit) as an index of thermal stress. Appl Occup Environ Hyg 17(3):176–186

    Google Scholar 

  • Brauner N, Shacham M (1995) Meaningful wind chill indicators derived from heat transfer principles. Int J Biometeorol 39:46–52

    CAS  Google Scholar 

  • Broughton V (2001) Faceted classification as a basis for knowledge organization in a digital environment; the Bliss Bibliographic Classification as a model for vocabulary management and the creation of multidimensional knowledge structures. New Review of Hypermedia Multimedia 7(1):67–102

    Google Scholar 

  • Brown RD, Gillespie TJ (1986) Estimating outdoor thermal comfort using a cylindrical radiation thermometer and an energy budget model. Int J Biometeor 30:43–52

    CAS  Google Scholar 

  • Bruce JL (1916) Vortrag. Roy Soc NSW (public health section) 14.11.1916

  • Brüner H (1959) Arbeitsmöglichkeiten unter Tage bei erschwerten Klimatischen Bedingungen. Int Z Angew Physiol Einschl Arbeitsphysiol 18:31–61

    Google Scholar 

  • Budyko M, Cicenko V (1960) Climatic factors of human thermal sensation. Izv AS USSR Ser Geogr 3:3–11 (in Russian)

    Google Scholar 

  • Bureau of Indian Standards (1987) Handbook of functional requirements of buildings (other than industrial buildings). New Delhi, SP:41

  • Burton A, Edholm O (1955) Man in cold environment: physiological and pathological effects of exposure to low temperatures. Arnold, London

    Google Scholar 

  • Cadarette BS, Montain SJ, Kolka MA, Stroschein L, Matthew W, Sawka MN (1999) Cross validation of USARIEM heat strain prediction models. U.S. ARMY Research Institute of Environmental Medicine. Aviat Space Environ Med 70(10):996–1006

    CAS  Google Scholar 

  • Carlucci S, Pagliano L (2012) A review of indices for the long-term evaluation of the general thermal comfort conditions in buildings. Energy Build 53:194–205. doi:10.1016/j.enbuild.2012.06.015

    Google Scholar 

  • d'Ambrosio Alfano FR, Palella BI, Riccio G (2011) Thermal environment assessment reliability using temperature–humidity indices. Indust Health 49(1):95–106

    Google Scholar 

  • Dasler AR (1977) Heat stress, work function and physiological heat exposure limits in man. In: Thermal analysis—human comfort–indoor environments. National Bureau of Standards, Washington, DC. https://play.google.com/books/reader?id=49fL2qrLF8gC&printsec=frontcover&output=reader&authuser=0&hl=en&pg=GBS.PP2

  • Dayal D (1974) An index for assessing heat stress in terms of physiological strain. Ph.D. thesis, Texas Tech University

  • De Freitas CR (1985) Assessment of human bioclimate based on thermal response. Int J Biometeorol 29:97–119

    Google Scholar 

  • De Freitas CR (1986) Human thermal climates of New Zealand. New Zealand Meteorological Service, Misk Publ, 190, Wellington

    Google Scholar 

  • De Freitas CR (1987) Bioclimates of heat and cold stress in New Zealand. Weather Clim 7:55–60

    Google Scholar 

  • De Freitas CR, Grigorieva E (2009) The Acclimatization Thermal Strain Index (ATSI): a preliminary study of the methodology applied to climatic conditions of the Russian Far East. Int J Biometeorol 53:307–315

    Google Scholar 

  • De Freitas CR, Ryken MG (1989) Climate and physiological heat strain during exercise. Int J Biometeorol 33:157–164

    Google Scholar 

  • De Freitas CR, Symon L (1987) A bioclimatic index of human survival time in the Antarctic. Polar Rec 23:651–659

    Google Scholar 

  • De Paula Xavier AA, Lamberts R (2000) Indices of thermal comfort developed from field survey in Brazil. ASHRAE Trans 106:45–58

    Google Scholar 

  • Dorno C (1928) Die Abkühlungsgrösse in verschiedenen Klimaten nach Dauerregistrierungen mittels des Davoser Frigorimeters. Meteorol Zeitschr 45:401–421

    Google Scholar 

  • Dufton AF (1929) The eupatheostat. J Sci Instrum 6:249–251

    Google Scholar 

  • Eissing G (1995) Climate assessment indices. Ergonomics 38(1):47–57

    Google Scholar 

  • Epstein Y, Moran DS (2006) Thermal comfort and heat stress indices. Indust Health 44:388–398

    Google Scholar 

  • Falconer R (1968) Windchill, a useful wintertime weather variable. Weather 21:227–229

    Google Scholar 

  • Fanger PO (1970) Thermal comfort: analysis and applications in environmental engineering. Danish Technical, Copenhagen

    Google Scholar 

  • Fanger PO, Melikov AK, Hanzawa H, Ring J (1988) Air turbulence and sensation of draught. Energy Build 12(1):21–39

    Google Scholar 

  • Flügge C (1912) Akten des Kgl. Oberbergamtes zu Halle/Sa. XXVa, 36-1, 13248/05; 18583/05

  • Fourt J, Hollies NRS (1970) Clothing: comfort and function. Dekker, New York

    Google Scholar 

  • Fox RH (1965) Heat. In: Edholm OG, Bacharach AL (eds) Physiology of human survival. Academic, London, pp 53–80

    Google Scholar 

  • Frank A, Moran D, Epstein Y, Belokopytov M, Shapiro Y (1996) The estimation of heat tolerance by a new cumulative heat strain index. In: Shapiro Y, Moran D, Epstein Y (eds) Environmental ergonomics: recent progress and new frontiers. Tel Aviv, Freund, pp 194–197

    Google Scholar 

  • Gagge AP (1941) Standard operative temperature, a single measure of the combined effect of radiant temperature, of ambient temperature and of air movement on the human body. In: Temperature, its measurement and control in science and industry. Reinhold, New York, pp 544–552

    Google Scholar 

  • Gagge AP, Stolwijk JAJ, Nishi Y (1971) An effective temperature scale based on a simple model of human physiological temperature response. ASHRAE Trans 72:247–262

    Google Scholar 

  • Gagge AP, Fobelts AP, Berglund LG (1986) A standard predictive index of human response to the thermal environment. ASHRAE Trans 92:709–731

    Google Scholar 

  • Gallagher M Jr, Robertson RJ, Goss FL, Nagle-Stilley EF, Schafer MA, Suyama J, Hostler D (2012) Development of a perceptual hyperthermia index to evaluate heat strain during treadmill exercise. Europ J Appl Physiol 112(6):2025–2034

    Google Scholar 

  • Givoni B (1969) Man, climate and architecture. Elsevier, Amsterdam

    Google Scholar 

  • Givoni B, Goldman RF (1972) Predicting rectal temperature response to work, environment and clothing. J Appl Physiol 32:812–822

    CAS  Google Scholar 

  • Givoni B, Goldman RF (1973a) Predicting heart rate response to work, environment, and clothing. J Appl Physiol 34:201–204

    CAS  Google Scholar 

  • Givoni B, Goldman RF (1973b) Predicting effects of heat acclimatization on heart rate and rectal temperature. J Appl Physiol 35:875–879

    CAS  Google Scholar 

  • Givoni B, Noguchi M, Saaroni H, Pochter O, Yaacov Y, Feller N, Becker S (2003) Outdoor comfort research issues. Energy Build 35:77–86

    Google Scholar 

  • Gonzalez RR, Nishi Y, Gagge AP (1974) Experimental evaluation of standard effective temperature: a new biometeorological index of man's thermal discomfort. Int J Biometeorol 18(1):1–15

    CAS  Google Scholar 

  • Gonzalez RR, Bergulnd LG, Gagge AP (1978) Indices of thermoregulatory strain for moderate exercise in the heat. J Appl Physiol 44:889–899

    CAS  Google Scholar 

  • Graveling RA, Morris LA, Graves RJ (1988) Working in hot conditions in mining: a literature review. Historical research report. Research report TM/88/13. Institute of Occupational Medicine, Edinburgh, Scotland

    Google Scholar 

  • Gregorczuk M (1968) Bioclimates of the world related to air enthalpy. Int J Biometeorol 12:33–39

    Google Scholar 

  • Gregorczuk M, Cena K (1967) Distribution of effective temperature over the surface of the earth. Int J Biometeorol 2:145–149

    Google Scholar 

  • Haldane JBS (1905) The influence of high air temperatures. J Hygiene 5:494–513

    CAS  Google Scholar 

  • Hall JF, Polte JW (1960) Physiological index of strain and body heat storage in hyperthermia. J Appl Physiol 15:1027–1030

    Google Scholar 

  • Hamdi M, Lachiver G, Michaud F (1999) A new predictive thermal sensation index of human response. Energy Build 29:167–178

    Google Scholar 

  • Hevener OF (1959) All about humiture. Weather 12:83–85

    Google Scholar 

  • Hill L, Hargood-Ash D (1919) On the cooling and evaporative powers of the atmosphere, as determined by the kata-thermometer. Proc R Soc Lond B Biol Sci 90:438–447

    CAS  Google Scholar 

  • Hill L, Griffith OW, Flack M (1916) The measurement of the rate of heat loss at body temperature by convection, radiation and evaporation. Physiol Trans R Soc B 207:183–220

    Google Scholar 

  • Holmer I (1984) Required clothing insulation (IREQ) as an analytical index of cold stress. ASHRAE Trans 90:1116–1128

    Google Scholar 

  • Holmer I (1988) Assessing of cold stress in terms of required clothing insulation IREQ. Int J Indust Ergon 3:159–166

    Google Scholar 

  • Holmer I (1993) Work in the cold. Review of methods for assessment of cold exposure. Int Arch Occup Environ Health 65(3):147–155

    CAS  Google Scholar 

  • Hori S (1978) Index for the assessment of heat tolerance. J Human Ergol (Tokyo) 7:135–144

    CAS  Google Scholar 

  • Houghten FC, Yagloglou CP (1923) Determining lines of equal comfort. J Am Soc Heat Vent Eng 29:165–176

    Google Scholar 

  • Hubac M, Strelka F, Borsky I, Hubacova L (1989) Application of the relative summary climatic indices during work in heat for ergonomic purposes. Ergonomics 32(7):733–750

    CAS  Google Scholar 

  • Ionides M, Plummer J, Siple PA (1945) The thermal acceptance ratio. Report from climatology and environmental protection section. United States: Office of the US Quartermaster General (Interim report no 17)

  • Isaev AA (2003) Ecological climatology. Nauchnyi Mir, Moscow (in Russian)

    Google Scholar 

  • Jendritzky G, Nübler W (1981) A model analysing the urban thermal environment in physiologically significant terms. Arch Met Geoph Biokl Ser B 29:313–326

    Google Scholar 

  • Jendritzky G, Staiger H, Bucher K, Graetz A, Laschewski G. (2000) The perceived temperature—the method of the Deutscher Wetterdienst for the assessment of cold stress and heat load for the human body. In: Internet Workshop on Windchill, hosted by Environment Canada, April 3–7, 2000; available at http://windchill-conference.ec.gc.ca/workshop/papers/pdf/session_1_paper_4_e.pdf

  • Jendritzky G, Havenith G, Weihs P, Batchvarova E (2009) Towards a Universal Thermal Climate Index UTCI for assessing the thermal environment of the human being. Final Report COST Action 730, Freiburg

  • Jendritzky G, de Dear R, Havenith G (2012) UTCI—why another thermal index? Int J Biometeorol 56(3):421–428

    Google Scholar 

  • Jokl MV (1982) Standard layers—a new criterion of the thermal insulating properties of clothing. Int J Biometeorol 26:37–48

    Google Scholar 

  • Kalkstein LS, Valimont KM (1986) An evaluation of summer discomfort in the United States using a relative climatological index. Bull Am Meteorol Soc 67:842–848

    Google Scholar 

  • Kalkstein LS, Valimont KM (1987) An evaluation of winter weather severity in the United States using the weather stress index. Bull Am Meteorol Soc 68:1535–1540

    Google Scholar 

  • Kalkstein LS, Nichols MC, Barthel CD, Greene JS (1996) A new spatial synoptic classification: application to air mass analysis. Int J Climatol 16(8):983–1004

    Google Scholar 

  • Kamon E, Ryan C (1981) Effective heat strain index using pocket computer. Am Indust Hyg Assoc J 42:611–615

    CAS  Google Scholar 

  • Kawamura W (1965) Distribution of discomfort index in Japan in summer season. J Met Res 17(7):460–466

    Google Scholar 

  • Kerslake DM (1972) The stress of hot environment. Cambridge University Press, Cambridge

    Google Scholar 

  • Kondratyev GM (1957) Approximate thermal assessment of clothing insulation. Trans V(C)NIISP, 6 (in Russian)

  • Lally VE, Watson BF (1960) Humiture revisited. Weather 13:254–256

    Google Scholar 

  • Landsberg HE (1972) The assessment of human bioclimate. A limited review of physical parameters. W.M.O. Tech. Note no. 123

  • Latyshev GT, Boksha VG (1965) Concerning medical estimation of weather (weather index and patients response). Quest Kurortol 4:345–351 (in Russian)

    Google Scholar 

  • Lecha L (1998) Biometeorological classification of daily weather types for the humid tropics. Int J Biometeorol 42:77–83

    Google Scholar 

  • Lee DHK (1958) Proprioclimates of man and domestic animals. Climatology: reviews of research. UNESCO Conf. Paris, 1956. Arid Zone Research Ser 10:102–125

    Google Scholar 

  • Lee DHK (1980) Seventy-five years of searching for a heat index. Environ Res 22:331–356

    CAS  Google Scholar 

  • Lee DHK, Henschel A (1966) Effects of physiological and clinical factors on response to heat. Ann NY Acad Sci 134:743–749

    Google Scholar 

  • Lee DHK, Vaughan IA (1964) Temperature equivalent of solar radiation on man. Int J Biometeorol 8(1):61–69

    CAS  Google Scholar 

  • Li PW, Chan ST (2000) Application of a weather stress index for alerting the public to stressful weather in Hong Kong. Meteorol Appl 7:369–375

    CAS  Google Scholar 

  • Lind AR, Hellon RF (1957) Assessment of physiologic severity of hot climate. J Appl Physiol 11:35–40

    CAS  Google Scholar 

  • Linke F (1926) Die Übertemperatur einer frei aufgestellten schwarzen Kugel. Meteorol Zeitschr 43:11

    Google Scholar 

  • Liopo TN, Cicenko GV (1971) Climatic conditions and human thermal state. Leningrad Hydrometeorological Publishing House (in Russian)

  • Macpherson RK (1962) The assessment of the thermal environment. A review. Bri J Indust Med 19:151–164

    CAS  Google Scholar 

  • Mairiaux P, Malchaire J (1995) Comparison and validation of heat stress indices in experimental studies. Ergonomics 38:58–72

    Google Scholar 

  • Malchaire J, Piette A, Kampmann B, Mehnert P, Gebhardt H, Havenith G, den Hartog E, Holmer I, Parsons K, Alfano G, Griefahn B (2001) Development and validation of the predicted heat strain model. Ann Occup Hyg 45(2):123–135

    CAS  Google Scholar 

  • Maloney SK, Forbes CF (2011) What effect will a few degrees of climate change have on human heat balance? Implications for human activity. Int J Biometeorol 55:147–160

    Google Scholar 

  • Masterson J, Richardson FA (1979) Humidex, a method of quantifying human discomfort due to excessive heat and humidity. Environment Canada, Downsview. http://ptaff.ca/humidex/?lang=en_CA

  • Mateeva Z, Filipov A (2003) Bioclimatic distance index in the Rila and Rhodopy area of Bulgaria. In: Błażejczyk K, Krawczyk B, Kuchcik M (eds) Postępy w badaniach klimatycznych i bioklimatycznych. Prace Geografi czne IGiPZ PAN 188:295–302

  • Matyukhin VA, Kushnirenko EY (1987) Complex quality assessment of environmental influence on the human body. Proceedings of the WMO; WHO, UNEP—Symposium on Climate and Human Health in Leningrad 1986, WMO-WCP. Geneva 2:41–45

    Google Scholar 

  • Mayer H, Höppe P (1987) Thermal comfort of man in different urban environments. Theor Appl Climatol 38:43–49

    Google Scholar 

  • McArdle B, Dunham W, Holling HE, Ladell WSS, Scott JW, Thomson ML, Weiner JS (1947) The prediction of the physiological effects of warm and hot environments. Med. Res. Coun. RNP Rep. 47/391 HMSO, London

  • McIntyre DA (1973) A guide to thermal comfort. Appl Ergon 4(2):66–72

    CAS  Google Scholar 

  • McLaughlin JT, Shulman M (1977) An anthropocentric summer severity index. Int J Biometeorol 21:16–28

    CAS  Google Scholar 

  • McPherson MJ (1992) The generalization of air cooling power. In: Proceedings of the 5th International Mine Ventilation Congress. Johannesburg: Mine Ventilation Society of South Africa. http://www.scribd.com/emiliofar/d/78400695/19-Air-Cooling-Power

  • Mehnert P, Malchaire J, Kampmann B, Piette A, Griefahn B, Gebhardt HJ (2000) Prediction of the average skin temperature in warm and hot environments. Europ J Appl Physiol 82:52–60

    CAS  Google Scholar 

  • Missenard A (1933) Étude physiologique et technique de la ventilation. Léon Eyrolles, Paris

    Google Scholar 

  • Missenard A (1935) Théorie simplifié du Thermomètre Résultant. Chauf Vent 12:347–352

    Google Scholar 

  • Missenard A (1948) Équivalence thermique des ambiances: équivalences de passage, équivalences de séjours. Chaleur et Industrie 276:159–172, 277:189–198

  • Mitchell D, Whillier A (1971) Cooling power of underground environments. J S Afr Inst Min Metallurg 72:93–99

    Google Scholar 

  • Mochida T (1979) Comfort Chart: an index for evaluating thermal sensation. Mem Fac Eng, Hokkaido Univ 15(2):175–185

    Google Scholar 

  • Moran DS (2000) Stress evaluation by the physiological strain index (PSI). J Basic Clin Physiol Pharmacol 11(4):403–423

    CAS  Google Scholar 

  • Moran DS, Shapiro Y, Epstein Y, Matthew W, Pandolf KB (1998a) A modified discomfort index (MDI) as an alternative to the wet bulb globe temperature (WBGT). In: Hodgdon JA, Heaney JH, Buono MJ (eds) Environmental ergonomics VIII. Int Conf Environ Ergo, San Diego, pp 77–80

    Google Scholar 

  • Moran DS, Shitzer A, Pandolf KB (1998b) A physiological strain index to evaluate heat stress. Am J Physiol Regul Integr Comp Physiol 275:R129–R134

    CAS  Google Scholar 

  • Moran DS, Castellani JW, O’Brien C, Young AJ, Pandolf KB (1999) Evaluating physiological strain during cold exposure using a new cold strain index. Am J Physiol 277(46):R556–R564

    CAS  Google Scholar 

  • Moran DS, Pandolf KB, Shapiro Y, Heled Y, Shani Y, Mathew WT, Gonzalez RR (2001) An environmental stress index (ESI) as a substitute for the wet bulb globe temperature (WBGT). J Therm Biol 26:427–431

    Google Scholar 

  • Moran DS, Pandolf KB, Laor A, Heled Y, Matthew WT, Gonzalez RR (2003) Evaluation and refinement of the environmental stress index (ESI) for different climatic conditions. J Basic Clin Physiol Pharmacol 14(1):1–15

    CAS  Google Scholar 

  • Mount LE, Brown D (1982) The use of the meteorological records in estimating the effects of weather on sensible heat loss from sheep. Agric Meteorol 27:241–255

    Google Scholar 

  • Mount LE, Brown D (1985) The calculation from weather records of the requirement for clothing insulation. Int J Biometeorol 29:311–321

    Google Scholar 

  • Nagano K, Horikoshi T (2011) Development of outdoor thermal index indicating universal and separate effects on human thermal comfort. Int J Biometeorol 55(2):19–227

    Google Scholar 

  • NIOSH (1986) Criteria for a recommended standard: occupational exposure to hot environment. National Institute for Occupational Safety and Health. DHHS (NIOSH) Publication no. 86–113, Washington, pp 101–110

    Google Scholar 

  • Nishi Y, Gagge AP (1971) Humid operative temperature: a biophysical index of thermal sensation and discomfort. J Geophys Res 63:365–368

    CAS  Google Scholar 

  • OFCM (2003) Report on wind chill temperature and extreme heat indices: evaluation and improvement projects. US Department of Commerce, Federal Coordinator for Meteorological Services and Supporting Research, FCM-R19-2003, Washington, DC (http://www.ofcm.gov/jagti/r19-ti-plan/r19-ti-plan.htm)

  • Ono HP, Kawamura T (1991) Sensible climates in monsoon Asia. Int J Biometeorol 35:39–47

    CAS  Google Scholar 

  • Osczevski R, Bluestein M (2005) The new wind chill equivalent temperature chart. Bull Am Meteorol Soc 86(10):1453–1458

    Google Scholar 

  • Osokin IM (1968) About severity of winter in northern Asia. Problems of regional researches of winter season. Chita, Zabaikalsk Geogr Soc USSR 2:28–31 (in Russian)

    Google Scholar 

  • Pandolf KB, Moran DS (2001) New Heat and Cold Strain Predictive Indices. RTO HFM Symposium on “Blowing Hot and Cold: Protecting Against Climatic Extremes”, Dresden, Germany, 8–10 October 2001

  • Pandolf KB, Stroschein LA, Drolet LL et al. (1986) Prediction modelling of physiological responses and human performance in the heat. Comput Biol Med 6:319–329

    Google Scholar 

  • Parsons K (2003) Human thermal environments—the effects of hot, moderate and cold environments on human health, comfort and performance, 2nd edn. Taylor and Francis, London

    Google Scholar 

  • Pedersen L (1948) Vaermestraalingsundersogelser. Committee for the study of domestic heating, Contribution Nr. 2, Kopenhagen

  • Pepi JW (1987) The summer simmer index. Weather 3:143–145

    Google Scholar 

  • Pepi JW (1999) The new Summer Simmer Index: a comfort index for the new millennium. http://www.summersimmer.com/home.htm

  • Pickup J, de Dear R (2000) An Outdoor Thermal Comfort Index (OUT_SET*)—Part I—The model and its assumptions. In: de Dear R, Kalma J, Oke T, Auliciems A (eds) Biometeorology and urban climatology at the turn of the millenium. Selected papers from the conference ICB-ICUC'99 (Sydney, 8–12 Nov. 1999). WMO, Geneva, WCASP 50:279–283

  • Poschmann A (1932) Dissertation. Frankfurt

  • Pulket C, Henschel A, Burg WR, Saltzman BE (1980) A comparison of heat stress indices in a hot-humid environment. Am Indust Hyg Assoc J 41(6):442–449

    CAS  Google Scholar 

  • Rissanen S, Rintamäki H (2007) Cold and heat strain during cold-weather field training with nuclear, biological, and chemical protective clothing. Mil Med 172(2):128–132

    Google Scholar 

  • Robinson S, Turrel ES, Gerking SD (1945) Physiologically equivalent conditions of air temperature and humidity. Am J Physiol 143:21–32

    Google Scholar 

  • Rodriguez C, Mateos J, Garmendia J (1985) Biometeorological comfort index. Int J Biometeorol 29(2):121–129

    CAS  Google Scholar 

  • Rohles FH, Nevin RG (1971) The nature of thermal comfort for sedentary man. ASHRAE Trans 77(1):239–246

    Google Scholar 

  • Rohles F, Hayter R, Milliken G (1975) Effective temperature (ET*) as a predictor of thermal comfort. ASHRAE Trans 81(2):148–156

    Google Scholar 

  • Romanova EN, Gobarova EO, Zhiltsova EL (2000) Methods of using of systematic climate and microclimate information in development of strategies for urban construction concepts. Hydrometeoizdat, St-Petersburg (in Russian)

    Google Scholar 

  • Rublack K, Medvedeva EF, Gaebelin H, Noach H, Schulz G (1981) Integrative bewertung der warmebelastung durch arbeit und klima (Integrative evaluation of heat loading due to work and climate). Zeitschrift fur die Gesamte Hygiene und ihre Grenzgebiete 27:12–17

    CAS  Google Scholar 

  • Rusanov VI (1973) Methods of climate research in medical purposes. Tomsk State University, Tomsk (in Russian)

    Google Scholar 

  • Rusanov VI (1981) Complex meteorological indices and methods of climate assessment in medical purposes. Handbook for Students. Tomsk, Tomsk State University (in Russian)

  • Rusanov VI (1987) Climate and human health. Proceedings of the WMO; WHO, UNEP—Symposium on climate and human health in Leningrad 1986, WMO-WCP. Geneva 2:101–106

    Google Scholar 

  • Rusanov VI (1989) Appraisal of meteorological conditions defining human respiration. Bull Russ Acad Med Sci 1:57–60 (in Russian)

    Google Scholar 

  • Santee WR, Wallace RF (2003) Evaluation of weather service heat indices using the USARIEM heat strain decision aid (HSDA) model. USARIEM technical report

  • Scharlau K (1943) Die Schwüle als Messbare Grösse. Bioklimat Beibl 10:19–23

    Google Scholar 

  • Schoen CA (2005) New empirical model of the temperature–Humidity Index. J Appl Meteorol 44:1413–1420

    Google Scholar 

  • Sheleihovskyi GV (1948) Microclimate of southern cities. Academy of Medicine Sciences of the USSR, Moscow (in Russian)

    Google Scholar 

  • Sheridan SC (2002) The redevelopment of a weather type classification scheme for North America. Int J Climatol 22:51–68

    Google Scholar 

  • Siple PA, Passel CF (1945) Measurements of dry atmospheric cooling in sub-freezing temperatures. Proc Am Philos Soc 89:177–199

    Google Scholar 

  • Smith FE (1952) Effective temperature as an index of physiological stress. Royal Navy Personnel Research Committee Report No RNP 53/728. Medical Research Council, London

    Google Scholar 

  • Smithson PA, Baldwin H (1979) The cooling power of wind and its influence on human comfort in upland areas of Britain. Arch Meteorol Geoph Biokl, Ser B 27:361–380

    Google Scholar 

  • Sohar E, Tennenbaum J, Yaski D (1962) Estimation of daily water intake (to replace water loss) from the cumulative discomfort index. In: Tromp SW (ed) Biometeorology. Pergamon, Oxford, pp 401–403

    Google Scholar 

  • Staiger H, Laschewski G, Grätz A (2012) The perceived temperature—a versatile index for the assessment of the human thermal environment. Part A: scientific basics. Int J Biometeorol 56:165–176

    Google Scholar 

  • Steadman RG (1971) Indices of windchill of clothed persons. J Appl Meteorol 10:674–683

    Google Scholar 

  • Steadman RG (1979) The assessment of sultriness. Part I: A temperature–humidity index based on human physiology and clothing science. J Appl Meteorol 18:861–873

    Google Scholar 

  • Steadman RG (1984) A universal scale of apparent temperature. J Cim Appl Meteorol 23:1674–1687

    Google Scholar 

  • Steadman RG (1994) Norms of apparent temperature in Australia. Aust Met Mag 43:1–16

    Google Scholar 

  • Tennenbaum J, Sohar E, Adar R, Gilat T, Yaski D (1961) The physiological significance of the cumulative discomfort index (Cum DI). Harefuah 60:315–319

    CAS  Google Scholar 

  • Terjung WH (1966) Physiologic climates of the conterminous US: a bioclimatological classification based on man. Ann Am Ass Geogr 56:141–179

    Google Scholar 

  • Terjung WH (1968) World patterns of distribution of the monthly comfort index. Int J Biometeorol 12:119–151

    Google Scholar 

  • Thilenius R, Dorno C (1925) Das Davoser Frigorimeter (ein Instrument zur Dauerregistrierung der physiologischen Abkühlungsgrösse). Meteorol Zeitschr 42:57–60

    Google Scholar 

  • Thom EC (1957) A new concept of cooling degree days. Air Condit Heat Ventil 54(6):73–80

    Google Scholar 

  • Thom EC, Bosen JF (1959) The discomfort index. Weather 12:57–60

    Google Scholar 

  • Tikhomirov II (1968) Bioclimatology of Central Antarctica and human acclimatization. Nauka, Moscow (in Russian)

    Google Scholar 

  • Tromp SW (1966) A physiological method for determining the degree of meteorological cooling. Nature 210:486–487

    CAS  Google Scholar 

  • Trubina MA, Hasso LA, Dyachko ZK (2010) Methods of bioclimatic estimation of the Northwest region of Russia. Trans Russ State Hydrometeorol Univ 13:121–137 (in Russian)

    Google Scholar 

  • Vernon HM (1932) The measurement of radiant heat in relation to human comfort. J Indust Hyg 14:95–111

    Google Scholar 

  • Vernon HM, Warner CG (1932) The influence of the humidity of the air on capacity for work at high temperatures. J Hyg 32:431–462

    CAS  Google Scholar 

  • Vogt JJ, Candas V, Libert JP, Hoeft A (1978) Die erforderliche Schweissabgabe als Index der Wiirmebelastung. Z Arb wiss 32:241–250

    Google Scholar 

  • Vogt JJ, Candas V, Libert JP, Daull F (1981) Required sweat rate as an index of thermal strain in industry. In: Cena K, Clark JA (eds) Bioengineering, thermal physiology and comfort. Elsevier, Amsterdam, pp 99–110

    Google Scholar 

  • Vogt JJ, Candas V, Libert JP (1982) Graphical determination of heat tolerance limits. Ergonomics 25(4):285–294

    CAS  Google Scholar 

  • Wallace RF, Kriebel D, Punnett L, Wegman DH, Wenger CB, Gardner JW, Gonzales RR (2005) The effects of continuous hot weather training on risk of exertional heat illness. Med Sci Sports Exerc 37:84–90

    Google Scholar 

  • Watts JD, Kalkstein SL (2004) The development of a Warm-Weather Relative Stress Index for environmental applications. J Appl Meteorol 43:503–513

    Google Scholar 

  • Webb CG (1959) An analysis of some observations of thermal comfort in an equatorial climate. Br J Indust Med 16:297–310

    CAS  Google Scholar 

  • Weiss M (1982) The humisery and other measures of summer discomfort. Nat Weather Digest 7(2):10–18

    Google Scholar 

  • Wenzel HG (1978) Heat stress upon undressed man due to different combinations of elevated environmental temperature, air humidity, and metabolic heat production: a critical comparison of heat stress indices. J Hum Ergol 7:185–206

    CAS  Google Scholar 

  • Winslow CEA, Herrington LP (1949) Temperature and human life. Princeton University Press, Princeton

    Google Scholar 

  • Winslow CEA, Gagge AP, Greenburg L, Moriyama IM, Rodee EJ (1935) The calibrating of the thermo-integrator. Am J Hyg 22:137–156

    Google Scholar 

  • Winslow CEA, Herrington LP, Gagge AP (1937) Physiological reactions of the human body to varying environmental temperatures. Am J Physiol 120:1–22

    CAS  Google Scholar 

  • Winterling GA (1979) Humiture-revised and adapted for the summer season in Jacksonville, Florida. Bull Am Meteorol Soc 60:329–330

    Google Scholar 

  • Yaglou CP, Minard D (1957) Control of heat casualties at military training centers. Arch Indust Health 16:302–316

    CAS  Google Scholar 

  • Yan YY (2005) Climate comfort indices. In: Oliver JE (ed) Encyclopedia of world climatology. Springer, Dordrecht, pp 227–231

    Google Scholar 

  • Young KC (1979) The influence of environmental parameters on heat stress during exercise. J Appl Meteorol 18:886–897

    Google Scholar 

  • Zaninović K (1992) Limits of warm and cold bioclimatic stress in different climatic regions. Theor Appl Climatol 45(1):65–70

    Google Scholar 

  • Zuhairy AA, Sayigh AAM (1993) The development of the bioclimatic concept in building design. Renew Energy 3:521–533

    Google Scholar 

Download references

Acknowledgments

This work was supported in part by the Fulbright Program.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. R. de Freitas.

Rights and permissions

Reprints and permissions

About this article

Cite this article

de Freitas, C.R., Grigorieva, E.A. A comprehensive catalogue and classification of human thermal climate indices. Int J Biometeorol 59, 109–120 (2015). https://doi.org/10.1007/s00484-014-0819-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00484-014-0819-3

Keywords

Navigation