Skip to main content

Advertisement

Log in

Tannat grape composition responses to spatial variability of temperature in an Uruguay’s coastal wine region

  • Original Paper
  • Published:
International Journal of Biometeorology Aims and scope Submit manuscript

Abstract

Spatial variability of temperature was studied in relation to the berry basic composition and secondary compounds of the Tannat cultivar at harvest from vineyards located in Canelones and Montevideo, the most important wine region of Uruguay. Monitoring of berries and recording of temperature were performed in 10 commercial vineyards of Tannat situated in the southern coastal wine region of the country for three vintages (2012, 2013, and 2014). Results from a multivariate correlation analysis between berry composition and temperature over the three vintages showed that (1) Tannat responses to spatial variability of temperature were different over the vintages, (2) correlations between secondary metabolites and temperature were higher than those between primary metabolites, and (3) correlation values between berry composition and climate variables increased when ripening occurred under dry conditions (below average rainfall). For a particular studied vintage (2013), temperatures explained 82.5% of the spatial variability of the berry composition. Daily thermal amplitude was found to be the most important spatial mode of variability with lower values recorded at plots nearest to the sea and more exposed to La Plata River. The highest levels in secondary compounds were found in berries issued from plots situated as far as 18.3 km from La Plata River. The increasing knowledge of temperature spatial variability and its impact on grape berry composition contributes to providing possible issues to adapt grapevine to climate change.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Anderson JD, Jones GV, Tait A, Hall A, Trought MCT (2012) Analysis of viticulture region climate structure and suitability in New Zealand. J Int Sci Vigne Vin 46:149–165

    Google Scholar 

  • Asselin C, Barbeau G, Morlat R (2001) Approche de la composante climatique à diverses échelles dans le zonage viticole. Bull OIV 74:301–318

    Google Scholar 

  • Baciocco KA, Davis RE, Jones GV (2014) Climate and Bordeaux wine quality: identifying the key factors that differentiate vintages based on consensus rankings. J Wine Res 25(2):75–90

    Article  Google Scholar 

  • Barnuud NN, Zerihun A, Gibberd M, Bates B (2014) Berry composition and climate: responses and empirical models. Int J Biometeorol 58:1207–1223

    Article  Google Scholar 

  • Blanco-Ward D, García Quejeiro JM, Jones GV (2007) Spatial climate variability and viticulture in the Miño River Valley of Spain. Vitis 46:63–70

    Google Scholar 

  • Bonada M, Sadras VO (2015) Review: critical appraisal of methods to investigate the effect of temperature on grapevine berry composition. Aust J Grape Wine Res 21:1–17

    Article  CAS  Google Scholar 

  • Bonnardot V, Planchon O, Cautenet S (2005) The sea breeze development under an offshore synoptic wind in the South Western Cape and implications for the Stellenbosch wine producing area. Theor Appl Climatol 81:203–218

    Article  Google Scholar 

  • Bonnefoy C, Quénol H, Bonnardot V, Barbeau G, Madelin M, Planchon O, Neethling E (2013) Temporal and spatial analyses of temperature in a French wine-producing area: the Loire Valley. Int J Climatol 33:1849–1862

    Article  Google Scholar 

  • Carbonneau A, Moueix A, Leclair N, Renoux J (1991) Proposition d’une mèthode de prélèvement de raisin à partir de l’analyse de l’hétérogenité de maturation sur un cep. Bull OIV 64:679–690

    Google Scholar 

  • Clingeleffer PR (2010) Plant management research: status and what it can offer to address challenges and limitations. Aust J Grape Wine Res 16:25–32

    Article  CAS  Google Scholar 

  • Ferrer M, Pedocchi R, Michelazzo M, González-Néves G, Carbonneau A (2007) Delimitación y descripción de regiones vitícolas del Uruguay en base al método de clasificación climática multicriterio utilizando índices bioclimáticos adaptados a las condiciones del cultivo. Agrociencia Uruguay 11:47–56

    Google Scholar 

  • Fourment M, Bonnardot V, Planchon O, Ferrer M, Quénol H (2014) Circulation atmosphérique locale et impacts thermiques dans un vignoble côtier: observations dans le sud de l’Uruguay. Climatologie 11:47–64

    Google Scholar 

  • Glories Y, Augustin M (1993) Maturité phénolique du raisin, conséquences technologiques: application aux millésimes 1991 et 1992. Proceedings of the Compte Rendu Colloque Journée Techn. CIVB, Bordeaux

    Google Scholar 

  • González-Néves G, Ferrer M, Gil G, Charamelo D, Balado J, Barreiro L, Bochicchio R, Gatto G, Tessore A (2010) Estudio plurianual del potencial polifenólico de uvas Tannat. Agrociencia Uruguay 14:10–21

    Google Scholar 

  • Goto-Yamamoto N, Mori K, Numata M, Koyama K, Kitayama M (2009) Effects of temperature and water regimes on flavonoid contents and composition in the skin of red-wine grapes. J Int Sci Vigne Vin, special issue Macrowine:75–80

  • Hall A, Jones GV (2010) Spatial analysis of climate in winegrape growing regions in Australia. Aust J Grape Wine Res 16:389–404

    Article  Google Scholar 

  • Huglin P (1978) Nouveau mode d’évaluation des possibilités héliothermiques d’un milieu viticole. In: Proceeding Symposium International sur l’ecologie de la Vigne. Ministère de l’Agriculture et de l’Industrie Alimentaire, Contança

  • Hunter JJ, Bonnardot V (2011) Suitability of some climatic parameters for grapevine cultivation in South Africa, with focus on key physiological processes. S Afr J Enol Vitic 32:137–154

    Google Scholar 

  • INAVI (2015) Instituto Nacional de Vitivinicultura. Estadísticas de los viñedos en http://www.inavi.com.uy/categoria/102-datos-nacionales-2015.html Accessed 11 March 2016

  • INIA (2015) Instituto Nacional de Investigación Agropecuaria. In: http://www.inia.uy/investigaci%C3%B3n-e-innovaci%C3%B3n/unidades/GRAS/Clima/Banco-datos-agroclimatico Accessed 20 April 2016

  • Jackson DI, Lombard PB (1993) Environmental and management practices affecting grape composition and wine quality: a review. Am J Enol Vitic 44:409–430

    CAS  Google Scholar 

  • Jones GV, Duff AA, Hall A, Myers JW (2010) Spatial analysis of climate in winegrape growing regions in the Western United States. Am J Enol Vitic 61:313–326

    Google Scholar 

  • Kliewer WM (1973) Berry composition of Vitis vinifera cultivars as influenced by photo-temperatures and nycto-temperatures during maturation. J Am Soc Hortic Sci 98:153–159

    Google Scholar 

  • Kottek M, Grieser J, Beck C, Rudolf B, Rubel F (2007) World map of the Köppen-Geiger climate classification updated. Meteorol Z 15:259–226

    Article  Google Scholar 

  • Madelin M, Bois B, Quénol H (2014) Variabilité topoclimatique et phénologique des terroirs de la montagne de Corton (Bourgogne). In: Quénol H (ed) Changement climatique et terroirs viticoles. Lavoisier, Paris, pp 215–227

    Google Scholar 

  • Matese A, Crisci A, Di Gennaro SF, Primicerio J, Tomasi D, Marcuzzo P, Guidoni S (2014) Spatial variability of meteorological conditions at different scales in viticulture. Agric For Meteorol 189-190:159–167

    Article  Google Scholar 

  • Mori K, Goto-Yamamoto N, Kitayamam M, Hashizume H (2007) Loss of anthocyanins in red-wine grape under high 877 temperature. J Exp Bot 58:1935–1945

    Article  CAS  Google Scholar 

  • Nicholas KA, Matthews MA, Lobell DB, Willits NH, Field CB (2011) Effect of vineyard-scale climate variability on Pinot noir phenolic composition. Agric For Meteorol 151:1556–1567

    Article  Google Scholar 

  • OIV (1990) Recueil des méthodes internationales d’analyse des vins et des moûts. Office International de la Vigne et du Vin, Paris

    Google Scholar 

  • Quénol H (2014) Changement climatique et terroirs viticoles. Lavoisier, Paris, p 444

    Google Scholar 

  • Sadras VO, Petrie PR, Moran MA (2012) Effects of elevated temperature in grapevine. II juice pH, titrable acidity and wine sensory attributes. Aust J Grape Wine Res 19:107–115

    Article  Google Scholar 

  • Sweetman C, Sadras VO, Hancock RD, Soole KL, Ford CM (2014) Metabolic effects of elevated temperature on organic acid degradation in ripening Vitis vinifera fruit. J Exp Bot 65:5975–5988

    Article  CAS  Google Scholar 

  • Tonietto J (1999) “Les macroclimats viticoles mondiaux et l'influence du mésoclimat sur la typicité de la Syrah et du Muscat de Hambourg dans le sud de la France”, PhD thesis, Université de Montpellier 2, France 236p

  • Tonietto J, Carbonneau A (2004) A multicriteria climatic classification system for grape-growing regions worldwide. Agric For Meteorol 124:81–97

    Article  Google Scholar 

  • Winkler AJ, Cook JA, Kliewer WM, Lider LA (1974) General viticulture. University of California Press, Berkeley

    Google Scholar 

Download references

Acknowledgements

We are grateful to the following grapevine growers for providing limitless access to their vineyards (Establecimiento Juanicó, Bodega Pisano, Pizzorno Wine States, Bodega Bouza, and Bodega La Estancia). Comments and suggestions of two anonymous reviewers were also much appreciated.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mercedes Fourment.

Ethics declarations

We declare that the experiment complies with the current laws of Uruguay. This article does not contain any studies with human participants or animals performed by any of the authors.

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fourment, M., Ferrer, M., González-Neves, G. et al. Tannat grape composition responses to spatial variability of temperature in an Uruguay’s coastal wine region. Int J Biometeorol 61, 1617–1628 (2017). https://doi.org/10.1007/s00484-017-1340-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00484-017-1340-2

Keywords

Navigation