Skip to main content
Log in

From responses of macroinvertebrate metrics to the definition of reference metrics and stressor threshold values

  • Original Paper
  • Published:
Stochastic Environmental Research and Risk Assessment Aims and scope Submit manuscript

Abstract

The main obstacles to monitoring aquatic ecosystems have always been the lack of data, the complex socio-economic context and the lack of specialised expertise that characterise the West African region. To overcome these challenges, it is necessary to invest in the definition of context-appropriate approaches that allow good ecological assessment, improve understanding of the functioning of these ecosystems and facilitate data collection. This study focused on using benthic macrofauna to assess the risks of moving away from Good Ecological Status towards the functioning of an anthropised system (Nokoué-Benin), based on the definition of reference values for macroinvertebrate metrics, stress thresholds and the responses of selected metrics to stressors. The approach used is a combination of a joint species distribution model and Bayesian networks. We used JSDM to select relevant metrics and generate posterior probabilities. We then converted these posterior probabilities into posterior response probabilities for each of the stress levels and fed them into a Bayesian network. We used the Bayesian network response predictions to define the reference values of the metrics and the stress thresholds derived from the probability density plots for the low pressure levels. An application of this approach was then carried out on a lagoon sampled during high and low water periods for three years, with 33 macroinvertebrate taxa present in all seasons and sampling points, and measurements of 14 environmental parameters used as application data. The relevance of the results, despite the small sample size, supports wider application of the approach in West Africa.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Ahoutou MK, Djeha RY, Yao EK, Quiblier C, Niamen-Ebrottié J, Hamlaoui S, Tambosco K, Perrin J-L, Troussellier M, Bernard C, Seguis L, Bouvy M, Pédron J, Konan FK, Humbert J-F, Coulibaly JK (2021) Assessment of some key indicators of the ecological status of an African freshwater lagoon (Lagoon Aghien, Ivory Coast). PLoS ONE 16:e0251065

    Google Scholar 

  • Alhejoj I, Salameh E, Bandel K (2014) Mayflies (Order Ephemeroptera): An Effective Indicator of Water Bodies Conditions in Jordan. IJSRES 2.

  • Applegate JM, Baumann PC, Emery EB, Wooten MS (2007) First steps in developing a multimetric macroinvertebrate index for the Ohio River. River Res Appl 23:683–697

    Google Scholar 

  • Archaimbault V, Usseglio-Polatera P, Garric J, Wasson J-G, Babut M (2010) Assessing pollution of toxic sediment in streams using bio-ecological traits of benthic macroinvertebrates. Freshw Biol 55:1430–1446

    CAS  Google Scholar 

  • Archaimbault V (2003) Réponses bio-écologiques des macroinvertébrés benthiques aux perturbations: la base d’un outil diagnostique fonctionnel des écosystèmes d’eaux courantes. Univ. Metz.

  • Argillier C, Causse S, Gevrey M, Pédron S, Bertoli J, Brucet S, Emmrich M, Jeppesen E, Lauridsen T, Mehner T, Olin M, Rask M, Volta P, Winfield I, Kelly F, Palm A, Holmgren K (2012) Development of a fish-based index to assess the eutrophication status of European lakes. Hydrobiologia 704:193–211

    Google Scholar 

  • Ávila MP, Carvalho RN, Casatti L, Simião-Ferreira J, Morais LF de, Teresa FB (2018) Metrics derived from fish assemblages as indicators of environmental degradation in Cerrado streams. Zool. Curitiba 35. Available at: https://doaj.org/article/acb5e337277c4c8eb78e4e36391b40a7 [Accessed August 25, 2022].

  • Azizi G, Baghour M, Mostafa L, Moumen A (2018) The use of Mytilus spp. mussels as bioindicators of heavy metal pollution in the coastal environment. A review. J Mater Environ Sci 9:1181

    Google Scholar 

  • Bae H, Im J, Joo S, Cho B, Kim T (2021) The Effects of Temperature and Salinity Stressors on the Survival, Condition and Valve Closure of the Manila Clam, Venerupis philippinarum in a Holding Facility. J Mar Sci Eng 9:754

    Google Scholar 

  • Bélanger D (2009) Utilisation de la faune macrobenthique comme bioindicateur de la qualité de l’environnement marin côtier.

  • Berger WH, Parker FL (1970) Diversity of planktonic foraminifera in deep-sea sediments. Science 168:1345–1347

    CAS  Google Scholar 

  • Birk S, Bonne W, Borja A, Brucet S, Courrat A, Poikane S, Solimini A, van de Bund W, Zampoukas N, Hering D (2012) Three hundred ways to assess Europe’s surface waters: An almost complete overview of biological methods to implement the Water Framework Directive. Ecol Indic 18:31–41

    Google Scholar 

  • Bis B, Usseglio-Polatera P (2005) The EU-STAR: Species traits analysis: The application of species trait analysis to the establishment of reference conditions and the assessment of Ecological Status for the implementation of the Water Framework Directive (Deliverable N2). 588.

  • Boyle TP, Smillie GM, Anderson JC, Beeson DR (1990) A sensitivity analysis of nine diversity and seven similarity indices. Res J Water Pollut Control Fed 62:749–762

    Google Scholar 

  • Bressan M, Chinellato A, Munari M, Matozzo V, Manci A, Marčeta T, Finos L, Moro I, Pastore P, Badocco D, Marin MG (2014) Does seawater acidification affect survival, growth and shell integrity in bivalve juveniles? Mar Environ Res 99:136–148

    CAS  Google Scholar 

  • Brooks A, Bray J, Nichols S, Shenton M, Kaserzon S, Mac Nally R, Kefford B (2021) Sensitivity and specificity of macroinvertebrate responses to gradients of multiple agricultural stressors. Environ Pollut 291:118092

    CAS  Google Scholar 

  • Brysiewicz A, Czerniejewski P, Dąbrowski J, Formicki K (2022) Characterisation of benthic macroinvertebrate communities in small watercourses of the European central plains ecoregion and the effect of different environmental factors. Anim Open Access J MDPI 12:606

    Google Scholar 

  • Bulger AJ, Hayden BP, Monaco ME, Nelson DM, McCormick-Ray MG (1993) Biologically-based estuarine salinity zones derived from a multivariate analysis. Estuaries 16:311–322

    Google Scholar 

  • Carignan V, Villard M-A (2002) Selecting indicator species to monitor ecological integrity: a review. Environ Monit Assess 78:45–61

    Google Scholar 

  • Carlier A, Riera P, Amouroux J-M, Bodiou J-Y, Desmalades M, Grémare A (2008) Food web structure of two Mediterranean lagoons under varying degree of eutrophication. J Sea Res 60:264–275

    Google Scholar 

  • Chapman PM (2012) Management of coastal lagoons under climate change. Estuar Coast Shelf Sci 110:32–35

    Google Scholar 

  • Charvet S, Kosmala A, Statzner B (1998) Biomonitoring through biological traits of benthic macroinvertebrates: perspectives for a general tool in stream management. Arch Für Hydrobiol 142:415–432

    Google Scholar 

  • Christensen JD, Monaco ME, Lowery TA (1997) An index to assess the sensitivity of Gulf of Mexico species to changes in estuarine salinity regimes. Gulf Caribb Res 9:219–229

    Google Scholar 

  • Correa-Araneda F, Contreras A, De Los R-E (2010) Amphipoda and Decapoda as potential bioindicators of water quality in an urban stream (38°S, Temuco, Chile). Crustaceana 83:897–902

    Google Scholar 

  • Dalu T, Chauke R (2019) Assessing macroinvertebrate communities in relation to environmental variables: the case of Sambandou wetlands. Vhembe Biosphere Reserve Appl Water Sci 10:16

    Google Scholar 

  • Damásio J, Navarro-Ortega A, Tauler R, Lacorte S, Barcelo D, Soares A, Lopez Robles MA, Riva M, Barata C (2010) Identifying major pesticides affecting bivalve species exposed to agricultural pollution using multi-biomarker and multivariate methods. Ecotoxicol Lond Engl 19:1084–1094

    Google Scholar 

  • Dash A (2013) Characterization of domestic wastewater at Bhubaneswar, Odisha, India.

  • Davis JP, Wing SR (2012) Niche partitioning in the Fiordland wrasse guild. Mar Ecol Prog Ser 446:207–220

    Google Scholar 

  • de Vries J, Kraak MHS, Skeffington RA, Wade AJ, Verdonschot PFM (2021) A Bayesian network to simulate macroinvertebrate responses to multiple stressors in lowland streams. Water Res 194:116952

    Google Scholar 

  • Demars BO, Kemp JL, Friberg N, Usseglio-Polatera P, Harper DM (2012) Linking biotopes to invertebrates in rivers: biological traits, taxonomic composition and diversity. Ecol Indic 23:301–311

    Google Scholar 

  • Djihouessi MB, Djihouessi MB, Aina MP (2019) A review of habitat and biodiversity research in Lake Nokoué, Benin Republic: Current state of knowledge and prospects for further research. Ecohydrol Hydrobiol 19(1):131–145

    Google Scholar 

  • Drouineau H, Lobry J, Delpech C, Bouchoucha M, Mahévas S, Courrat A, Pasquaud S, Lepage M (2012) A Bayesian framework to objectively combine metrics when developing stressor specific multimetric indicator. Ecol Indic 13:314–321

    Google Scholar 

  • Drouineau H, Delpech C, Lepage M (2010) Fish assemblage responses to eutrophication and suggestion of a method for the definition of reference status.

  • El Mahrad B, Abalansa S, Newton A, Icely J, Snoussi M, Kacimi I (2020) Social-environmental analysis for the management of coastal lagoons in north Africa. Front Environ Sci 8:37

    Google Scholar 

  • Erasmus JH, Lorenz AW, Zimmermann S, Wepener V, Sures B, Smit NJ, Malherbe W (2021) A diversity and functional approach to evaluate the macroinvertebrate responses to multiple stressors in a small subtropical austral river. Ecol Indic 131:108206

    Google Scholar 

  • Farrell MD, Good J, Hornsby D, Janicki A, Mattson R, Upchurch S, Champion K, Chen J, Grabe S, Malloy K (2005) Technical report: MFL establishment for the lower suwannee river and estuary, little fanning, fanning, and manatee springs. Water Resour. Assoc. Tampa Fla.

  • Flemming BW (2000) A revised textural classification of gravel-free muddy sediments on the basis of ternary diagrams. Cont Shelf Res 20:1125–1137

    Google Scholar 

  • Chevene F, Doléadec S, Chessel D (1994) A fuzzy coding approach for the analysis of long-term ecological data. Freshw Biol 31:295–309

    Google Scholar 

  • Francé J, Varkitzi I, Stanca E, Cozzoli F, Skejić S, Ungaro N, Vascotto I, Mozetič P, Ninčević Gladan Ž, Assimakopoulou G, Pavlidou A, Zervoudaki S, Pagou K, Basset A (2021) Large-scale testing of phytoplankton diversity indices for environmental assessment in Mediterranean sub-regions (Adriatic, Ionian and Aegean Seas). Ecol Indic 126:107630

    Google Scholar 

  • Frank EHJ (2022) Hmisc: Harrell Miscellaneous. R package version 4.7–0. Available at: https://CRAN.R-project.org/package=Hmisc [Accessed July 7, 2022].

  • Galimany E, Ramón M, Ibarrola I (2011) Feeding behavior of the mussel Mytilus galloprovincialis (L.) in a Mediterranean estuary: a field study. Aquaculture 314:236–243

    Google Scholar 

  • Galloway JN, Townsend AR, Erisman JW, Bekunda M, Cai Z, Freney JR, Martinelli LA, Seitzinger SP, Sutton MA (2008) Transformation of the nitrogen cycle: recent trends, questions, and potential solutions. Science 320:889–892

    CAS  Google Scholar 

  • Gamito S, Patrício J, Neto JM, Teixeira H, Marques JC (2012) Feeding diversity index as complementary information in the assessment of ecological quality status. Ecol Indic 19:73–78

    Google Scholar 

  • Gesteira JLG, Dauvin J-C (2000) Amphipods are Good Bioindicators of the Impact of Oil Spills on Soft-Bottom Macrobenthic Communities. Mar. Pollut. Bull. 40:1017–1027

    Google Scholar 

  • Gnohossou PM (2006a) La faune benthique d’une lagune ouest africaine (le lac Nokoue au Benin): diversité, abondance, variations temporelles et spatiales, place dans la chaine trophique. Université d’Abomey-Calavi. Available at: http://www.theses.fr/11425558X [Accessed January 16, 2020].

  • Greenwood MT (1992) Ecology and classification of North American freshwater invertebrates. In: Edited By James H. Thorp and Alan P. Covich, Academic Press, New York, 1991. No. of pages 991. ISBN 0 12 690645 9. Price: $36.50. Regul. Rivers Res. Manag. 7, 305–306.

  • Helmholz H, Ruhnau C, Pröfrock D, Erbslöh H-B, Prange A (2016) Seasonal and annual variations in physiological and biochemical responses from transplanted marine bioindicator species Mytilus spp. during a long term field exposure experiment. Sci Total Environ 565:626–636

    CAS  Google Scholar 

  • Hering D, Moog O, Sandin L, Verdonschot PFM (2004) Overview and application of the AQEM assessment system. Hydrobiologia 516:1–20

    Google Scholar 

  • Hering D, Johnson RK, Kramm S, Schmutz S, Szoszkiewicz K, Verdonschot PFM (2006) Assessment of European streams with diatoms, macrophytes, macroinvertebrates and fish: a comparative metric-based analysis of organism response to stress. Freshw Biol 51:1757–1785

    Google Scholar 

  • Hounyèmè R, Logez M, Mama D, Argillier C (2023) Bayesian inference of physicochemical quality elements of tropical lagoon Nokoué (Benin). Environ Monit Assess 195:446

    Google Scholar 

  • Hounyèmè R, Daouda M (2021) Dataset related to article “Bayesian inference of physico-chemical quality elements of a tropical lagoon Nokoué.” Available at: https://zenodo.org/record/5865635 [Accessed January 4, 2023].

  • Hyland J, Balthis L, Karakassis I, Magni P, Petrov A, Shine J, Vestergaard O, Warwick R (2005) Organic carbon of sediments as an indicator of stress in the marine benthos. Mar Ecol Prog Ser 295:91–103

    CAS  Google Scholar 

  • Johnson R, Lindegarth M, Carstensen J (2013) Establishing reference conditions and setting class boundaries.,

  • Kaboré I, Jäch M, Oueda A, Moog O, Melcher A, Guenda W (2016) Dytiscidae, Noteridae and Hydrophilidae of semi-arid rivers and reservoirs of Burkina Faso: species inventory, diversity and ecological notes. J Biodivers Environ Sci 8:1–14

    Google Scholar 

  • Kamelan T, Diomande A, Yao K, Berte S, Kouamelan E (2022) Reference values of the physico-chemical parameters of the water streams of Tai national Park (Côte d’Ivoire). Int J Biol Chem Sci 16:1331–1349

    CAS  Google Scholar 

  • Kang S-R, King SL (2012) Influence of salinity and prey presence on the survival of aquatic macroinvertebrates of a freshwater marsh. Aquat Ecol 46:411–420

    Google Scholar 

  • Kazanci N, Girgin S (1998) Distribution of Oligochaeta species as bioindicators of organic pollution in Ankara Stream and their use in biomonitoring. Turk J Zool 22:83–87

    CAS  Google Scholar 

  • Laine M (2013) Une approche multi-compartiments (macroinvertébrés benthiques, diatomées, macrophytes et faune piscicole) afin d’évaluer l’impact de rejets industriels sur un cours d’eau landais: mise en évidence d’indicateurs de toxicité.

  • Lazic SE, Mellor JR, Ashby MC, Munafo MR (2020) A Bayesian predictive approach for dealing with pseudoreplication. Sci Rep 10:2366

    CAS  Google Scholar 

  • Lazo DG (2004) Bivalve taphonomy: testing the effect of life habits on the shell condition of the littleneck clam protothaca (Protothaca) staminea (Mollusca: Bivalvia). Palaios 19:451–459

    Google Scholar 

  • Lencioni V, Marziali L, Rossaro B (2012) Chironomids as bioindicators of environmental quality in mountain springs. Freshw Sci 31:525–541

    Google Scholar 

  • Lloret J, Marín A, Marín-Guirao L (2008) Is coastal lagoon eutrophication likely to be aggravated by global climate change? Estuar Coast Shelf Sci 78:403–412

    Google Scholar 

  • Lu Y, Aitken RJ, Lin M (2017) Detailed analysis of the male reproductive system in a potential bio-indicator species – The marine invertebrate Galeolaria caespitosa (Polychaeta: Serpulidae). PLoS ONE 12:e0174907

    Google Scholar 

  • Lu J, Yao T, Shi S, Ye L (2022) Effects of acute ammonia nitrogen exposure on metabolic and immunological responses in the Hong Kong oyster Crassostrea hongkongensis. Ecotoxicol Environ Saf 237:113518

    CAS  Google Scholar 

  • Mai H (2013) Evaluation of the deleterious effects of heavy metals and pesticides on early life stages and gametes of the Pacific Oyster, Crassostrea gigas: application to the pollution context of the Arcachon Bay. 237.

  • Maiti SK (2003) Handbook of methods in environmental studies. ABD publishers Jaipur, Jaipur

    Google Scholar 

  • Mama D, Aina M, Alassane A, Boukari O, Chouti W, Deluchat V, Bowen J, Afouda A, Baudu M (2012) Caractérisation physico-chimique et évaluation du risque d’eutrophisation du lac Nokoué (Bénin). Int. J. Biol. Chem. Sci. Available at: https://go.exlibris.link/LbC1lT4X.

  • Margalef R (1958) Information theory in biology. Gen Syst Yearb 3:36–71

    Google Scholar 

  • Maynou F, Galimany E, Ramón M, Solé M (2020) Impact of temperature increase and acidification on growth and the reproductive potential of the clam Ruditapes philippinarum using DEB. Estuar Coast Shelf Sci 247:107099

    CAS  Google Scholar 

  • Medeiros JP, Chaves ML, Silva G, Azeda C, Costa JL, Marques JC, Costa MJ, Chainho P (2012) Benthic condition in low salinity areas of the Mira estuary (Portugal): lessons learnt from freshwater and marine assessment tools. Ecol Indic 19:79–88

    CAS  Google Scholar 

  • Menetrey N, Oertli B, Sartori M, André W, Lachavanne J (2008) Eutrophication: are mayflies (Ephemeroptera) good bioindicators for ponds? Hydrobiologia 597:125–135

    CAS  Google Scholar 

  • Miguet P, Logez M, Argillier C (2019) Incertitudes liées aux interactions de pressions. 30.

  • Navarro-Barranco C, Ros M, Figueroa J, Guerra-García J (2020a) Marine Crustaceans as Bioindicators: Amphipods as Case Study. In pp 435–463.

  • Navarro-Barranco C, Ros M, Tierno de Figueroa JM, Guerra-García JM (2020b) Les crustacés marins en tant que bioindicateurs : les amphipodes en tant qu’étude de cas. In G. Lovrich & M. Thiel, eds. Fisheries and Aquaculture: Volume 9. Oxford University Press, pp.0. Available at: https://doi.org/10.1093/oso/9780190865627.003.0017 [Accessed April 14, 2023].

  • Nerlović V, Doğan A, Hrs-Brenko M (2011) Response to oxygen deficiency (depletion): bivalve assemblages as an indicator of ecosystem instability in the northern Adriatic Sea. Biologia (bratisl) 66:1114–1126

    Google Scholar 

  • Nguyen HH, Everaert G, Gabriels W, Hoang TH, Goethals PLM (2014) A multimetric macroinvertebrate index for assessing the water quality of the Cau river basin in Vietnam. Limnologica 45:16–23

    Google Scholar 

  • Nizam YA, Yanta N, Wood A (2004) The use of bivalves as bio-indicators in the assessment of marine pollution along a coastal area. J Radioanal Nucl Chem 259:119–127

    Google Scholar 

  • Norberg A, Tikhonov G, Blanchet FG, Abrego N, Ovaskainen O (2019) User manual for the software packages HMSC-MATLAB 2.0 and HMSC-R 2.0. 66.

  • Ntislidou C, Lazaridou M, Tsiaoussi V, Bobori DC (2018) A new multimetric macroinvertebrate index for the ecological assessment of Mediterranean lakes. Ecol Indic 93:1020–1033

    CAS  Google Scholar 

  • OECD, Díaz RJ (2010) Agriculture’s impact on aquaculture: Hypoxia and eutrophication in marine waters. In Advancing the Aquaculture Agenda. OECD, pp.275–318. Available at: https://www.oecd-ilibrary.org/agriculture-and-food/advancing-the-aquaculture-agenda/agriculture-s-impact-on-aquaculture-hypoxia-and-eutrophication-in-marine-waters_9789264088726-20-en [Accessed August 26, 2022].

  • Österling M, Högberg J-O (2014) The impact of land use on the mussel Margaritifera margaritifera and its host fish Salmo trutta. Hydrobiologia 735:213–220

    Google Scholar 

  • Ovaskainen O, Tikhonov G, Norberg A, Blanchet FG, Duan L, Dunson D, Roslin T, Abrego N (2017) How to make more out of community data? A conceptual framework and its implementation as models and software. Ecol Lett 20:561–576

    Google Scholar 

  • Padmanabha B (2011) Diversity of Macroinvertebrates as a Tool to Assess Aquatic Pollution in Lentic Ecosystems. Nat Environ Pollut Technol 10(1):69–71

    Google Scholar 

  • Paine RT, Tegner MJ, Johnson EA (1998) Compounded perturbations yield ecological surprises. Ecosystems 1:535–545

    Google Scholar 

  • Parry M, Canziani O, Palutikof J, van der Linden P, Hanson C (2007) Climate Change 2007: Impacts, Adaptation and Vulnerability. In Contribution of Working Group II to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change.

  • Patrício J, Neto JM, Teixeira H, Salas F, Marques JC (2009) The robustness of ecological indicators to detect long-term changes in the macrobenthos of estuarine systems. Mar Environ Res 68:25

    Google Scholar 

  • Pearson RK (2020) Mining Imperfect Data: With Examples in R and Python, Second Edition, SIAM.

  • Petersen JK, Holmer M, Termansen M, Hasler B (2019) Nutrient extraction through bivalves. In: Smaal AC, Ferreira JG, Grant J, Petersen JK, Strand Ø (eds) Goods and Services of Marine Bivalves. Springer International Publishing, Cham, pp 179–208

    Google Scholar 

  • Piggott JJ, Townsend CR, Matthaei CD (2015) Reconceptualizing synergism and antagonism among multiple stressors. Ecol Evol 5:1538–1547

    Google Scholar 

  • Poirrier M, Partridge M (1979) The Barnacle, Balanus subalbidus, as a Salinity Bioindicator in the Oligohaline Estuarine Zone. Estuaries 2:204–206

    Google Scholar 

  • Redha HA, Al-Zurfi SKL (2021) Impact of Physicochemical Parameters on Macroinvertebrates distribution attached to aquatic plants. In IOP Conference Series: Earth and Environmental Science. IOP Publishing, pp.012045.

  • Reise K (1982) Long-term changes in the macrobenthic invertebrate fauna of the Wadden Sea: Are polychaetes about to take over? Neth J Sea Res 16:29–36

    Google Scholar 

  • Reizopoulou S, Thessalou-Legaki M, Nicolaidou A (1996) Assessment of distubance in Mediterranean lagoons: an evaluation of methods. Mar Biol 125:189–197

    Google Scholar 

  • Roberts SM, Halpin PN, Clark JS (2022) Jointly modeling marine species to inform the effects of environmental change on an ecological community in the Northwest Atlantic. Sci Rep 12:132

    CAS  Google Scholar 

  • Robertson BM, Stevens L, Robertson B, Zeldis J, Green M, Madarasz-Smith A, Plew D, Storey R, Hume T, Oliver M (2016) NZ Estuary Trophic Index Screening Tool 2: determining monitoring indicators and assessing estuary trophic state. Prep. Envirolink Tools Proj. Estuar. Trophic Index MBIENIWA Contract, 68.

  • Rong Y, Tang Y, Ren L, Taylor WD, Razlutskij V, Naselli-Flores L, Liu Z, Zhang X (2021) Effects of the filter-feeding benthic bivalve corbicula fluminea on plankton community and water quality in aquatic ecosystems: a mesocosm study. Water 13:1827

    CAS  Google Scholar 

  • Sankare Y, Kodjo E, Kouassi N (2021) L’aquaculture en habitat artificiel (acadja-enclos): modifications et transformations du milieu lagunaire (lagune Tendo - Côte-d’Ivoire) Aquaculture in artificial habitat (Acadja-enclos): Modification and transformation of the lagoonal environment (Tendo lagoon - Ivory Coast). , 9.

  • Schoolmaster DR, Grace JB, Schweiger EW, Guntenspergen GR, Mitchell BR, Miller KM, Little AM (2013) An algorithmic and information-theoretic approach to multimetric index construction. Ecol Indic 26:14–23

    Google Scholar 

  • Šidagytė E, Višinskienė G, Arbačiauskas K (2013) Macroinvertebrate metrics and their integration for assessing the ecological status and biocontamination of Lithuanian lakes. Limnologica 43:308–318

    Google Scholar 

  • Siddig AAH, Ellison AM, Ochs A, Villar-Leeman C, Lau MK (2016) How do ecologists select and use indicator species to monitor ecological change? Insights from 14 years of publication in Ecological Indicators. Ecol Indic 60:223–230

    Google Scholar 

  • Simpson EH (1949) Measurement of Diversity. Nature 163:688–688

    Google Scholar 

  • Sossou-Agbo AL (2013) La mobilité dans le complexe fluvio-lagunaire de la basse vallée de l’Ouémé au Bénin, en Afrique de l’Ouest. phdthesis. Université de Grenoble. Available at: https://tel.archives-ouvertes.fr/tel-00995697 [Accessed January 21, 2020].

  • Souchu P, Bec B, Smith VH, Laugier T, Fiandrino A, Benau L, Orsoni V, Collos Y, Vaquer A (2010) Patterns in nutrient limitation and chlorophyll a along an anthropogenic eutrophication gradient in French Mediterranean coastal lagoons. Can J Fish Aquat Sci 67:743–753

    CAS  Google Scholar 

  • Soudant D, Belin C (2011) Note sur l’approche statistique de la diversité en écologie. Application à l’indice composition pour le phytoplancton - Convention 2010 - Action 1. Available at: https://archimer.ifremer.fr/doc/00037/14843/ [Accessed August 31, 2022].

  • Staniczenko PPA, Sivasubramaniam P, Suttle KB, Pearson RG (2017) Linking macroecology and community ecology: refining predictions of species distributions using biotic interaction networks. Ecol Lett 20:693–707

    Google Scholar 

  • Steeves LE, Filgueira R, Guyondet T, Chasse J, Comeau L (2018) Past, present, and future: performance of two bivalve species under changing environmental conditions. Front Mar Sci 5:184

    Google Scholar 

  • Suarez-Menendez M, Planes S, Garcia-Vazquez E, Ardura A (2020) Early alert of biological risk in a coastal lagoon through eDNA metabarcoding. Front Ecol Evol. https://doi.org/10.3389/fevo.2020.00009

    Article  Google Scholar 

  • Tachet H, Bournaud M, Richoux P, Usseglio-Polatera P (2010) Invertébrés d’eau douce: systématique, biologie, écologie Editions CNRS, Paris.

  • Tampo L, Kaboré I, Alhassan EH, Ouéda A, Bawa LM, Djaneye-Boundjou G (2021) Benthic macroinvertebrates as ecological indicators: their sensitivity to the water quality and human disturbances in a tropical river. Front Water. https://doi.org/10.3389/frwa.2021.662765

    Article  Google Scholar 

  • Teixeira HLG (2010) Dissertação apresentada à Universidade de Coimbra para obtenção do grau de Doutor em Biologia (especialidade Ecologia). 181.

  • Tikhonov G, Abrego N, Dunson D, Ovaskainen O (2017) Using joint species distribution models for evaluating how species-to-species associations depend on the environmental context. Methods Ecol Evol 8:443–452

    Google Scholar 

  • Tikhonov G, Opedal ØH, Abrego N, Lehikoinen A, de Jonge MMJ, Oksanen J, Ovaskainen O (2020) Joint species distribution modelling with the r-package Hmsc. Methods Ecol Evol 11:442–447

    Google Scholar 

  • Tilman D, Fargione J, Wolff B, D’Antonio C, Dobson A, Howarth R, Schindler D, Schlesinger WH, Simberloff D, Swackhamer D (2001) Forecasting agriculturally driven global environmental change. Science 292:281–284

    CAS  Google Scholar 

  • Trichet-Arce E (2013) Intérêt des traits fonctionnels des communautés macrobenthiques dans le diagnostic dynamique de récupération biotique d’un cours d’eau suite à des actions de restauration. Available at: https://hal.univ-lorraine.fr/tel-01750620/document.

  • Tutu H (2017) Water Quality, Available at: https://www.intechopen.com/books/undefined/books/5355 [Accessed July 18, 2022].

  • Uherek CB, Pinto Gouveia FB (2014) Biological Monitoring Using Macroinvertebrates as Bioindicators of Water Quality of Maroaga Stream in the Maroaga Cave System, Presidente Figueiredo, Amazon. Brazil Int J Ecol 2014:e308149

    Google Scholar 

  • UNECA (2016) The Demographic profile of African countries. p 77

  • Vandewalle M, Bello F, Berg M, Bolger T, Dolédec S, Dubs F, Feld C, Harrington R, Harrison P, Lavorel S, Silva P, Moretti M, Niemelä J, Santos P, Sattler T, Sousa JP, Sykes M, Vanbergen A, Woodcock B (2010) Functionaltraits as indicators of biodiversity response to land use changes across ecosystems and organisms. Biodivers Conserv 19:2921–2947

    Google Scholar 

  • Van Loon WMGM, Walvoort DJJ, Van Hoey G, Vina-Herbon C, Blandon A, Pesch R, Schmitt P, Scholle J, Heyer K, Lavaleye MSS, Phillips G, Duineveld GCA, Blomqvist M (2018) A regional benthic fauna assessment method for the Southern North Sea using Margalef diversity and reference value modelling. Ecol. Indic. Available at: https://www.vliz.be/en/imis?refid=294286 [Accessed August 22, 2022].

  • Ventura A (2018) Bivalves in the face of ocean acidification. 49.

  • Villantes Y (2015) Macroinvertebrates as bioindicators of water quality in labo and clarin rivers, misamis occidental, Philippines. 6.

  • Wagenhoff A (2016) A review of benthic macroinvertebrate metrics for assessing stream ecosystem health. Prep. Environ. Southl. 49p.

  • Warwick RM, Clarke KR (1993) Comparing the severity of disturbance: a metaanalysis of marine macrobenthic community data. Mar Ecol Prog Ser 92:221–231

    Google Scholar 

  • Wilber D, Clarke D (2001) Biological effects of suspended sediments: a review of suspended sediment impacts on fish and shellfish with relation to dredging activities in estuaries. North Am J Fish Manag 21:855–875

    Google Scholar 

  • Wildsmith MD, Rose TH, Potter IC, Warwick RM, Clarke KR, Valesini FJ (2009) Changes in the benthic macroinvertebrate fauna of a large microtidal estuary following extreme modifications aimed at reducing eutrophication. Mar Pollut Bull 58:1250–1262

    CAS  Google Scholar 

  • Wildsmith MD, Rose TH, Potter IC, Warwick RM, Clarke KR (2011) Benthic macroinvertebrates as indicators of environmental deterioration in a large microtidal estuary. Mar Pollut Bull 62:525–538

    CAS  Google Scholar 

  • WRI (2001) Pilot analysis of global ecosystems, Coastal Ecosystems. 93.

  • Zhou XD, Xu MZ, Lei FK, Zhang JH, Wang ZY, Luo YY (2022) Responses of Macroinvertebrate Assemblages to Flow in the Qinghai-Tibet Plateau: Establishment and Application of a Multi-Metric Habitat Suitability Model. Water Resour. Res. 58:e2021WR030909

    Google Scholar 

Download references

Funding

The authors also acknowledge the financial support provided by International Foundation for Science (IFS) (IFS Grant A/6533–1). We thank the IFS for all that it does for scientific research in Africa.

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization, data management, methodology, analysis, formal interpretation, and redaction of the manuscript, by RH; Contribution to data collection and commentary on the results, by MD; Supervision of the study and contribution to the writing, by CA; All authors have read and approved the published version of the manuscript.

Corresponding author

Correspondence to Romuald Hounyèmè.

Ethics declarations

Conflict of interest

The authors have no relevant financial or non-financial interests to disclose.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 4030 kb)

Supplementary file2 (XLSX 42 kb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hounyèmè, R., Mama, D. & Argillier, C. From responses of macroinvertebrate metrics to the definition of reference metrics and stressor threshold values. Stoch Environ Res Risk Assess 37, 4737–4754 (2023). https://doi.org/10.1007/s00477-023-02533-x

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00477-023-02533-x

Keywords

Navigation