Skip to main content
Log in

Conditional multiple-point geostatistical simulation for unevenly distributed sample data

  • Original Paper
  • Published:
Stochastic Environmental Research and Risk Assessment Aims and scope Submit manuscript

Abstract

To expand the applicability/versatility of multiple-point geostatistical (MPS) methods to the unevenly distributed sample data acquired from geological and environmental surveys, this paper presents a conditional MPS-based simulation method which considers the distribution characteristics of sample data adequately. In this work, we mainly focus on the improvement of two key steps in MPS methods, i.e. the selection of simulation paths and the construction of data events, aiming at mitigating the adverse effects of unevenly distributed conditioning data. First, a simulation path sensitive to the distribution density of informed samples is adopted to ensure that each simulation of the unknown nodes in a simulation grid is done from the location with the highest density of informed nodes around. Second, a stable data event is obtained by evenly extracting several informed nodes closest to the current node from each subarea. This improvement avoids the excessive concentration of the nodes in a data event, so that the nodes in an obtained data event are more evenly distributed around the current node. The two improvements are embedded into a widely used MPS method, the direct sampling. Several 2D and 3D synthetic experiments with categorical or continuous variables are used to test the proposed method. The results demonstrate their applicability in characterizing heterogeneous phenomena when faced with unevenly distributed conditioning data.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

(adapted from Mariethoz and Caers 2014)

Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18

Similar content being viewed by others

References

  • Abdollahifard MJ (2016) Fast multiple-point simulation using a data-driven path and an efficient gradient-based search. Comput Geosci 86:64–74

    Article  Google Scholar 

  • Abedini MJ, Nasseri M, Ansari A (2008) Cluster-based ordinary kriging of piezometric head in west Texas/New Mexico–testing of hypothesis. J Hydrol 351(3–4):360–367

    Article  Google Scholar 

  • Abedini MJ, Nasseri M, Burn DH (2012) The use of a genetic algorithm-based search strategy in geostatistics: application to a set of anisotropic piezometric head data. Comput Geosci 41:136–146

    Article  Google Scholar 

  • Arpat GB (2005) Sequential simulation with patterns. Stanford University, Stanford

    Google Scholar 

  • Arpat GB, Caers J (2007) Conditional simulation with patterns. Math Geol 39(2):177–203

    Article  Google Scholar 

  • Bayer P, Huggenberger P, Renard P, Comunian A (2011) Three-dimensional high resolution fluvio-glacial aquifer analog: part 1: field study. J Hydrol 405(1):1–9

    Article  Google Scholar 

  • Caers J (2011) Modeling uncertainty in the earth sciences. Wiley, London

    Book  Google Scholar 

  • Caumon G, Collon-Drouaillet P, De Veslud CLC, Viseur S, Sausse J (2009) Surface-based 3-D modeling of geological structures. Math Geosci 41(8):927–945

    Article  CAS  Google Scholar 

  • Chen Q, Mariethoz G, Liu G, Comunian A, Ma X (2018) Locality-based 3-D multiple-point statistics reconstruction using 2-D geological cross-sections. Hydrol Earth Syst Sci 22:6547–6566

    Article  Google Scholar 

  • Daly C (2005) Higher order models using entropy, Markov random fields and sequential simulation. Geostatistics Banff 2004. Springer, Dordrecht, pp 215–224

    Google Scholar 

  • de Carvalho PRM, da Costa JFCL, Rasera LG, Varella LES (2017) Geostatistical facies simulation with geometric patterns of a petroleum reservoir. Stoch Env Res Risk Assess 31:1805–1822

    Article  Google Scholar 

  • Deutsch CV (1992) Annealing techniques applied to reservoir modeling and the integration of geological and engineering (well test) data. Doctoral dissertation, Stanford University

  • Guardiano FB, Srivastava RM (1993) Multivariate geostatistics: beyond bivariate moments. Geostatistics Troia’92. Springer, Netherlands, pp 133–144

    Google Scholar 

  • Gueting N, Caers J, Comunian A, Vanderborght J, Englert A (2018) Reconstruction of three-dimensional aquifer heterogeneity from two-dimensional geophysical data. Math Geosci 50(1):53–75

    Article  Google Scholar 

  • Hansen TM, Vu LT, Mosegaard K, Cordua KS (2018) Multiple point statistical simulation using uncertain (soft) conditional data. Comput Geosci 114:1–10

    Article  Google Scholar 

  • Hoffman BT, Caers J (2007) History matching by jointly perturbing local facies proportions and their spatial distribution: application to a North Sea reservoir. J Petrol Sci Eng 57(3–4):257–272

    Article  CAS  Google Scholar 

  • Høyer A-S, Vignoli G, Hansen TM, Vu LT, Keefer DA, Jørgensen F (2017) Multiple-point statistical simulation for hydrogeological models: 3-D training image development and conditioning strategies. Hydrol Earth Syst Sci 21:6069–6089

    Article  Google Scholar 

  • Hu LY, Chugunova T (2008) Multiple-point geostatistics for modeling subsurface heterogeneity: a comprehensive review. Water Resour Res 44:W11413. https://doi.org/10.1029/2008WR006993

    Article  CAS  Google Scholar 

  • Huysmans M, Peeters L, Moermans G, Dassargues A (2008) Relating small-scale sedimentary structures and permeability in a cross-bedded aquifer. J Hydrol 361(1–2):41–51

    Article  Google Scholar 

  • Jha SK, Mariethoz G, Kelly BFJ (2013) Bathymetry fusion using multiple-point geostatistics: novelty and challenges in representing non-stationary bedforms. Environ Model Softw 50:66–76

    Article  Google Scholar 

  • Jha SK, Comunian A, Mariethoz G, Kelly BF (2014) Parameterization of training images for aquifer 3-D facies modeling integrating geological interpretations and statistical inference. Water Resour Res 50(10):7731–7749

    Article  Google Scholar 

  • Liu Y, Journel A (2004) Improving sequential simulation with a structured path guided by information content. Math Geol 36(8):945–964

    Article  Google Scholar 

  • Mahmud K, Mariethoz G, Caers J, Tahmasebi P, Baker A (2014) Simulation of Earth textures by conditional image quilting. Water Resour Res 50(4):3088–3107

    Article  Google Scholar 

  • Mariethoz G, Caers J (2014) Multiple-point geostatistics: Stochastic modeling with training images. Wiley, London

    Book  Google Scholar 

  • Mariethoz G, Renard P (2010) Reconstruction of incomplete data sets or images using direct sampling. Math Geosci 42(3):245–268

    Article  Google Scholar 

  • Mariethoz G, Renard P, Straubhaar J (2010) The Direct Sampling method to perform multiple-point geostatistical simulations. Water Resour Res 46(11):W11536. https://doi.org/10.1029/2008WR007621

    Article  Google Scholar 

  • Mariethoz G, Linde N, Jougnot D, Rezaee H (2015) Feature-preserving interpolation and filtering of environmental time series. Environ Model Softw 72:71–76

    Article  CAS  Google Scholar 

  • Meerschman E, Pirot G, Mariethoz G, Straubhaar J, Van Meirvenne M, Renard P (2013) A practical guide to performing multiple-point statistical simulations with the Direct Sampling algorithm. Comput Geosci 52:307–324

    Article  Google Scholar 

  • Michael HA, Li H, Boucher A, Sun T, Caers J, Gorelick SM (2010) Combining geologic-process models and geostatistics for conditional simulation of 3-D subsurface heterogeneity. Water Resour Res 46(5):W05527. https://doi.org/10.1029/2009WR008414

    Article  Google Scholar 

  • Okabe H, Blunt MJ (2007) Pore space reconstruction of vuggy carbonates using microtomography and multiple-point statistics. Water Resour Res 43(12):W12S02. https://doi.org/10.1029/2006wr005680

    Article  Google Scholar 

  • Oriani F, Saubhaar J, Renard P, Mariethoz G (2014) Simulation of rainfall time series from different climatic regions using the direct sampling technique. Hydrol Earth Syst Sci 18:3015–3031

    Article  Google Scholar 

  • Oriani F, Mehrotra R, Mariethoz G, Straubhaar J, Sharma A, Renard P (2018) Simulating rainfall time-series: how to account for statistical variability at multiple scales? Stoch Env Res Risk Assess 32(2):321–340

    Article  Google Scholar 

  • Paola C, Mullin J, Ellis C, Mohrig DC, Swenson JB, Parker G, Hickson T, Heller PL, Pratson L, Syvitski J, Sheets B, Strong N (2001) Experimental stratigraphy. GSA Today 11(7):4–9

    Article  Google Scholar 

  • Pardo-Igúzquiza E, Dowd P (2003) CONNEC3D: a computer program for connectivity analysis of 3D random set models. Comput Geosci 29:775–785

    Article  Google Scholar 

  • Parra A, Ortiz JM (2011) Adapting a texture synthesis algorithm for conditional multiple point geostatistical simulation. Stoch Env Res Risk Assess 25(8):1101–1111

    Article  Google Scholar 

  • Pyrcz MJ, Deutsch CV (2014) Geostatistical reservoir modeling. Oxford University Press, Oxford

    Google Scholar 

  • Rezaee H, Asghari O, Koneshloo M, Ortiz JM (2014) Multiple-point geostatistical simulation of dykes: application at Sungun porphyry copper system, Iran. Stoch Environ Environ Research Risk Assess 28(7):1913–1927

    Article  Google Scholar 

  • Ritzi RW (2000) Behavior of indicator variograms and transition probabilities in relation to the variance in lengths of hydrofacies. Water Resour Res 36(11):3375–3381

    Article  Google Scholar 

  • Soares A, Nunes R, Azevedo L (2017) Integration of uncertain data in geostatistical modelling. Math Geosci 49(2):253–273

    Article  Google Scholar 

  • Straubhaar J, Renard P, Mariethoz G, Froidevaux R, Besson O (2011) An improved parallel multiple-point algorithm using a list approach. Math Geosci 43(3):305–328

    Article  Google Scholar 

  • Strebelle S (2002) Conditional simulation of complex geological structures using multiple-point statistics. Math Geol 34(1):1–21

    Article  Google Scholar 

  • Tahmasebi P, Sahimi M (2015) Geostatistical simulation and reconstruction of porous media by a cross-correlation function and integration of hard and soft data. Transp Porous Media 107(3):871–905

    Article  Google Scholar 

  • Tahmasebi P, Hezarkhani A, Sahimi M (2012) Multiple-point geostatistical modeling based on the cross-correlation functions. Comput Geosci 16(3):779–797

    Article  Google Scholar 

  • Tan X, Tahmasebi P, Caers J (2014) Comparing training-image based algorithms using an analysis of distance. Math Geosci 46(2):149–169

    Article  Google Scholar 

  • Wojcik R, McLaughlin D, Konings A, Entekhabi D (2009) Conditioning stochastic rainfall replicates on remote sensing data. IEEE Trans Geosci Remote Sens 47(8):2436–2449

    Article  Google Scholar 

  • Yin G, McCabe M, Mariethoz G (2017) Gap-filling of Landsat 7 imagery using the Direct Sampling method. Remote Sens 9(1):12. https://doi.org/10.3390/rs9010012

    Article  Google Scholar 

  • Zhang T, Switzer P, Journel A (2006) Filter-based classification of training image patterns for spatial simulation. Math Geol 38(1):63–80

    Article  CAS  Google Scholar 

  • Zhang T, Du Y, Huang T, Li X (2015) Reconstruction of porous media using multiple-point statistics with data conditioning. Stoch Env Res Risk Assess 29:727–738

    Article  Google Scholar 

  • Zukovic M, Hristopulos DT (2013) Reconstruction of missing data in remote sensing images using conditional stochastic optimization with global geometric constraints. Stoch Env Res Risk Assess 27:785–806

    Article  Google Scholar 

Download references

Acknowledgements

We are grateful to editors and three anonymous reviewers for their insightful comments and suggestions which led to the improvements in the manuscript. This work is supported by the National Natural Science Foundation of China (U1711267), the Fundamental Research Funds for National Universities, China University of Geosciences (CUGCJ1810) and the project of Ministry of Education Key Laboratory of Geological Survey and Evaluation (CUG2019ZR03). The authors wish to thank Gregoire Mariethoz and Alessandro Comunian for the fruitful discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gang Liu.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, Q., Liu, G., Ma, X. et al. Conditional multiple-point geostatistical simulation for unevenly distributed sample data. Stoch Environ Res Risk Assess 33, 973–987 (2019). https://doi.org/10.1007/s00477-019-01671-5

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00477-019-01671-5

Keywords

Navigation