Skip to main content
Log in

Dimensionality reduction for efficient Bayesian estimation of groundwater flow in strongly heterogeneous aquifers

  • Original Paper
  • Published:
Stochastic Environmental Research and Risk Assessment Aims and scope Submit manuscript

Abstract

We focus on the Bayesian estimation of strongly heterogeneous transmissivity fields conditional on data sampled at a set of locations in an aquifer. Log-transmissivity, Y, is modeled as a stochastic Gaussian process, parameterized through a truncated Karhunen–Loève (KL) expansion. We consider Y fields characterized by a short correlation scale as compared to the size of the observed domain. These systems are associated with a KL decomposition which still requires a high number of parameters, thus hampering the efficiency of the Bayesian estimation of the underlying stochastic field. The distinctive aim of this work is to present an efficient approach for the stochastic inverse modeling of fully saturated groundwater flow in these types of strongly heterogeneous domains. The methodology is grounded on the construction of an optimal sparse KL decomposition which is achieved by retaining only a limited set of modes in the expansion. Mode selection is driven by model selection criteria and is conditional on available data of hydraulic heads and (optionally) Y. Bayesian inversion of the optimal sparse KLE is then inferred using Markov Chain Monte Carlo (MCMC) samplers. As a test bed, we illustrate our approach by way of a suite of computational examples where noisy head and Y values are sampled from a given randomly generated system. Our findings suggest that the proposed methodology yields a globally satisfactory inversion of the stochastic head and Y fields. Comparison of reference values against the corresponding MCMC predictive distributions suggests that observed values are well reproduced in a probabilistic sense. In a few cases, reference values at some unsampled locations (typically far from measurements) are not captured by the posterior probability distributions. In these cases, the quality of the estimation could be improved, e.g., by increasing the number of measurements and/or the threshold for the selection of KL modes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Akaike H (1974) A new look at the statistical model identification. IEEE Trans Autom Control 19:716–723. doi:10.1109/TAC.1974.1100705

    Article  Google Scholar 

  • Chen X, Murakami H, Hahn MS, Hammond GE, Rockhold ML, Zachara JM, Rubin Y (2012) Three-dimensional Bayesian geostatistical aquifer characterization at the Hanford 300 Area using tracer test data. Water Resour Res 48:W06501. doi:10.1029/2011WR010675

    Google Scholar 

  • Cui T, Fox C, O’Sullivan MJ (2011) Bayesian calibration of a large scale geothermal reservoir model by a new adaptive delayed acceptance metropolis hastings algorithm. Water Resour Res 47:W10521. doi:10.1029/2010WR010352

    Article  Google Scholar 

  • Dagan G (1989) Flow and transport in porous formations. Springer, New York

    Book  Google Scholar 

  • Das NN, Mohanty BP, Efendiev Y (2010) Characterization of effective saturated hydraulic conductivity in an agricultural field using Karhunen–Loève expansion with the Markov chain Monte Carlo technique. Water Resour Res 46:W06521. doi:10.1029/2008WR007100

    Article  Google Scholar 

  • Efendiev Y, Hou TY, Luo W (2006) Preconditioning Markov chain Monte Carlo simulations using coarse-scale models. SIAM J Sci Comput 28:776–803. doi:10.1137/050628568

    Article  Google Scholar 

  • Genton MG (2007) Separable approximations of space-time covariance matrices. Environmetrics 18(Special Issue for METMA3):681–695

    Article  Google Scholar 

  • Gneiting T, Genton MG, Guttorp P (2007) Geostatistical space-time models, stationarity, separability and full symmetry. In: Finkenstaedt B, Held L, Isham V (eds) Statistics of spatio-temporal systems. Monographs in statistics and applied probability. Chapman & Hall/CRC Press, Boca Raton, pp 151–175

    Google Scholar 

  • Green PJ, Mira A (2001) Delayed rejection in reversible jump metropolis-hastings. Biometrika 88:1035–1053. doi:10.1093/biomet/88.4.1035

    Article  Google Scholar 

  • Haario H, Saksman E, Tamminen J (2001) An adaptive metropolis algorithm. Bernouilli 7(2):223–242

    Article  Google Scholar 

  • Higdon D, Gattiker J, Williams B, Rightley M (2008) Computer model calibration using high-dimensional output. J Am Stat Assoc 103:570–583. doi:10.1198/016214507000000888

    Article  CAS  Google Scholar 

  • Huard D, Mailhot A, Duchesne S (2010) Bayesian estimation of intensity–duration–frequency curves and of the return period associated to a given rainfall event. Stoch Environ Res Risk Assess. 24(3):337–347. doi:10.1007/s00477-009-0323-1

    Article  Google Scholar 

  • Hurvich CM, Tsai CL (1989) Regression and time series model selection in small sample. Biometrika 76(2):297–307

    Article  Google Scholar 

  • Kashyap RL (1982) Optimal choice of AR and MA parts in autoregressive moving average models. IEEE Trans Pattern Anal Mach Intell 4(2):99–104. doi:10.1109/TPAMI.1982.4767213

    Article  CAS  Google Scholar 

  • Keating EH, Doherty J, Vrugt JA, Kang Q (2010) Optimization and uncertainty assessment of strongly nonlinear groundwater models with high parameter dimensionality. Water Resour Res 46:W10517. doi:10.1029/2009WR008584

    Article  Google Scholar 

  • Kennedy MC, O’Hagan A (2001) Bayesian calibration of computer models. J R Stat Soc 63(B):425–464. doi:10.1111/1467-9868.00294

    Article  Google Scholar 

  • Laloy E, Vrugt JA (2012) High-dimensional posterior exploration of hydrologic models using multiple-try DREAM(ZS) and high-performance computing. Water Resour Res 48:W01526. doi:10.1029/2011WR010608

    Google Scholar 

  • Laloy E, Rogiers B, Vrugt JA, Mallants D, Jacques D (2013) Efficient posterior exploration of a high-dimensional groundwater model from two-stage Markov chain Monte Carlo simulation and polynomial chaos expansion. Water Resour Res 49:2664–2682. doi:10.1002/wrcr.20226

    Article  Google Scholar 

  • Levenberg K (1944) A method for the solution of certain non-linear problems in least squares. Q Appl Math 2:164–168

    Article  Google Scholar 

  • Li W, Cirpka OA (2006) Efficient geostatistical inverse methods for structured and unstructured grids. Water Resour Res 42:W06402. doi:10.1029/2005wr004668

    Google Scholar 

  • Lin G, Tartakovsky AM, Tartakovsky DM (2010) Uncertainty quantification via random domain decomposition and probabilistic collocation on sparse grids. J Comput Phys 229:6995–7012. doi:10.1016/j.jcp.2010.05.036

    Article  CAS  Google Scholar 

  • Loeve M (1977) Probability theory, 4th edn. Springer, New York

    Google Scholar 

  • Mara TA, Fajraoui N, Younes A, Delay F (2015) Inversion and uncertainty of highly parameterized models in a Bayesian framework by sampling the maximal conditional posterior distribution of parameters. Adv Water Resour 76:1–10. doi:10.1016/j.advwatres.2014.11.013

    Article  Google Scholar 

  • Marquardt D (1963) An algorithm for least-squares estimation of nonlinear parameters. SIAM J Appl Math 11:431–441. doi:10.1137/0111030

    Article  Google Scholar 

  • Marzouk Y, Najm HN (2009) Dimensionality reduction and polynomial chaos acceleration of Bayesian inference in inverse problems. J Comput Phys 228:1862–1902. doi:10.1016/j.jcp.2008.11.024

    Article  Google Scholar 

  • Mercer J (1909) Functions of positive and negative type and their connection with the theory of integral equations. Philos Trans R Soc 209:415–446

    Article  Google Scholar 

  • Murakami H, Chen X, Hahn MS, Liu Y, Rockhold ML, Vermeul VR, Zachara JM, Rubin Y (2010) Bayesian approach for three-dimensional aquifer characterization at the Hanford 300 area. Hydrol Eart Syst Sci 14:1989–2001. doi:10.5194/hess-14-1989-2010

    Article  Google Scholar 

  • Over MW, Chen X, Yang Y, Rubin Y (2013) A strategy for improved computational efficiency of the method of anchored distributions. Water Resour Res 49:1–19. doi:10.1002/wrcr.20182

    Article  Google Scholar 

  • Phoon KK, Huang SP, Quek ST (2002) Implementation of Karhunen–Loeve expansion for simulation using a wavelet-Galerkin scheme. Probab Eng Mech 17:293–303. doi:10.1016/S0266-8920(02)00013-9

    Article  Google Scholar 

  • Ray J, McKenna SA, van Bloemen Waanders B, Marzouk YM (2012) Bayesian reconstruction of binary media with unresolved fine-scale spatial structures. Adv Water Resour 44(2012):1–19. doi:10.1016/j.advwatres.2012.04.009

    Article  Google Scholar 

  • Rubin Y, Chen X, Murakami H, Hahn M (2010) A Bayesian approach for inverse modeling, data assimilation, and conditional simulation of spatial random fields. Water Resour Res 46:W10523. doi:10.1029/2009WR008799

    Article  Google Scholar 

  • Schöniger A, Wöhling T, Samaniego L, Nowak W (2014) Model selection on solid ground: rigorous comparison of nine ways to evaluate Bayesian model evidence. Water Resour Res 50:9484–9513. doi:10.1002/2014WR016062

    Article  Google Scholar 

  • Schoups G, Vrugt JA (2010) A formal likelihood function for parameter and predictive inference of hydrologic models with correlated, heteroscedastic and non-Gaussian errors. Water Resour Res 46:W10531. doi:10.1029/2009WR008933

    Google Scholar 

  • Schwarz GE (1978) Estimating the dimension of a model. Ann Stat 6(2):461–464. doi:10.1214/aos/1176344136

    Article  Google Scholar 

  • Shi X, Ye M, Finsterle S, Wu J (2012) Comparing nonlinear regression and Markov chain Monte Carlo methods for assessment of predictive uncertainty in vadose zone modeling. Vadose Zone J. doi:10.2136/vzj2011.0147

    Google Scholar 

  • Spanos Pol D, Beer M, Red-Horse J (2007) Karhunen–Loève expansion of stochastic processes with a modified exponential covariance kernel. J Eng Mech 133:773–779

    Article  Google Scholar 

  • Su C-H, Lucor D (2006) Covariance kernel representations of multidimensional second-order stochastic processes. J Comput Phys 217:82–99

    Article  Google Scholar 

  • Tartakovsky DM (2013) Assessment and management of risk in subsurface hydrology: a review and perspective. Adv Water Resour 51:247–260. doi:10.1016/j.advwatres.2012.04.007

    Article  Google Scholar 

  • Tartakovsky DM, Nowak W, Bolster D (2012) Introduction to the special issue on uncertainty quantification and risk assessment. Adv Water Resour 36:1–2. doi:10.1016/j.advwatres.2011.12.010

    Article  Google Scholar 

  • ter Braak C, Vrugt J (2008) Differential Evolution Markov Chain with snooker updater and fewer chains. Stat Comput 18(4):435–446. doi:10.1007/s11222-008-9104-9

    Article  Google Scholar 

  • Tsantili IC, Hristopulos DT (2016) Karhunen–Loève expansion of spartan spatial random fields. Probab Eng Mech 43:132–147

    Article  Google Scholar 

  • Vrugt JA, Bouten W (2002) Validity of first-order approximations to describe parameter uncertainty in soil hydrologic models. Soil Sci Soc Am J 66:1740–1751. doi:10.2136/sssaj2002.1740

    Article  CAS  Google Scholar 

  • Vrugt JA, Gupta HV, Bouten W, Sorooshian S (2003) A shuffled complex evolution metropolis algorithm for optimization and uncertainty assessment of hydrologic model parameters. Water Resour Res 39(8):1201. doi:10.1029/2002WR001642

    Google Scholar 

  • Vrugt JA, ter Braak CJF, Clark MP, Hyman JM, Robinson BA (2008) Treatment of input uncertainty in hydrologic modeling: doing hydrology backward with Markov chain Monte Carlo simulation. Water Resour Res 44:W00B09. doi:10.1029/2007WR006720

    Article  Google Scholar 

  • Vrugt JA, ter Braak CJF, Diks CGH, Higdon D, Robinson BA, Hyman JM (2009a) Accelerating Markov chain Monte Carlo simulation by differential evolution with self-adaptive randomized subspace sampling. Int J Nonlinear Sci Numer Simul 10(3):273–290. doi:10.1515/IJNSNS.2009.10.3.273

    Article  Google Scholar 

  • Vrugt JA, ter Braak CJF, Gupta HV, Robinson BA (2009b) Equifinality of formal (DREAM) and informal (GLUE) Bayesian approaches in hydrologic modeling? Stoch Environ Res Risk Assess. 23(7):1011–1026. doi:10.1007/s00477-008-0274-y

    Article  Google Scholar 

  • Younes A, Ackerer P, Delay F (2010) Mixed finite element for solving 2D diffusion-type equations. Rev Geophys 48:RG1004. doi:10.1029/2008RG000277

    Article  Google Scholar 

  • Zanini A, Kitanidis PK (2009) Geostatistical inversing for large-contrast transmissivity fields. Stoch Environ Res Risk Assess 23:565–577. doi:10.1007/s00477-008-0241-7

    Article  Google Scholar 

  • Zhang D (2002) Stochastic methods for flow in porous media, coping with uncertainties. Academic Press, San Diego

    Google Scholar 

  • Zhang D, Lu Z (2004) An efficient, higher-order perturbation approach for flow in randomly heterogeneous porous media via Karhunen–Loeve decomposition. J Comput Phys 194:773–794. doi:10.1016/j.jcp.2003.09.015

    Article  Google Scholar 

  • Zheng Y, Han F (2016) Markov Chain Monte Carlo (MCMC) uncertainty analysis for watershed water quality modeling and management. Stoch Environ Res Risk Assess 30(1):293–308. doi:10.1007/s00477-015-1091-8

    Article  Google Scholar 

Download references

Acknowledgments

The authors are grateful to the French National Research Agency who funded this work through the program AAP Blanc-SIMI 6 project RESAIN (no ANR-12-BS06-0010-02). AG acknowledges funding from the European Union’s Horizon 2020 Research and Innovation programme in the context of the Water JPI (WATERWORKS2014 ERA-NET cofunded program; Project “WatEr NEEDs, availability, quality and sustainability” WE-NEED).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anis Younes.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mara, T.A., Fajraoui, N., Guadagnini, A. et al. Dimensionality reduction for efficient Bayesian estimation of groundwater flow in strongly heterogeneous aquifers. Stoch Environ Res Risk Assess 31, 2313–2326 (2017). https://doi.org/10.1007/s00477-016-1344-1

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00477-016-1344-1

Keywords

Navigation