Skip to main content

Advertisement

Log in

Accumulation versus storage of total non-structural carbohydrates in woody plants

  • Review
  • Published:
Trees Aims and scope Submit manuscript

Abstract

Key message

A contribution to understand the eco-physiological significance of the total non-structural carbohydrate reserves through making a distinction between accumulated and stored pools along with their respective roles played in woody plants.

Abstract

Plant assimilates are partitioned to growth, defense, maintenance and reserves. Reserves of total non-structural carbohydrates (TNC) are accumulated when the demand for carbon (C) is lower than C supply. Accumulated TNC are stored if not used for growth and metabolism during the growing period. The assessment of the physiological significance of TNC reserves in trees should distinguish between accumulated and stored pools. Accumulated fraction of TNC is characterized by a rapid turnover rate that buffers temporary negative C balance of trees in an annual cycle, whereas stored fraction is characterized by a slow turnover rate that could buffer demand for TNC throughout all tree life during stressful conditions. The increased need for TNC during acute adverse environmental conditions associated with the slow turnover of stored TNC reserves induces the remobilization of the fraction of TNC initially destined for growth and defense which could be a cause of tree mortality. The observed C “sequestration” could be due to the slow turnover dynamic of stored TNC that could be in turn, an adaptive strategy to survive adverse conditions at long term, especially in areas characterized by poor nutrient availability, repeated disturbance and prolonged drought periods. The storage-growth tradeoff is discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Availability of data and material

Not applicable.

Code availability

Not applicable.

Abbreviations

TNC:

Total non-structural carbohydrates

C:

Carbon

References

  • Adams HD, Germino MJ, Breshears DD, Barron-Gafford GA, Guardiola-Claramonte M, Zou CB, Huxman TE (2013) Nonstructural leaf carbohydrate dynamics of Pinus edulis during drought-induced tree mortality reveal role for carbon metabolism in mortality mechanism. New Phytol 197:1142–1151

    Article  CAS  PubMed  Google Scholar 

  • Allen MT, Prusinkiewicz P, DeJong TM (2005) Using L-systems for modeling source-sink interactions, architecture and physiology of growing trees: the L-PEACH model. New Phytol 166:869–880

    Article  CAS  PubMed  Google Scholar 

  • Anderegg WRL, Anderegg LDL (2013) Hydraulic and carbohydrate changes in experimental drought-induced mortality of saplings in two conifer species. Tree Physiol 33:252–260. https://doi.org/10.1093/treephys/tpt016

    Article  CAS  PubMed  Google Scholar 

  • Arneth A, Kelliher FM, McSeveny TM, Byers JN (1998) Net ecosystem productivity, net primary productivity and ecosystem m C sequestration in a Pinus radiata plantation subject to soil water deficit. Tree Physiol 18:785–793

    Article  PubMed  Google Scholar 

  • Avice JC, Ourry A, Lemaire G, Boucaud J (1996) Nitrogen and C Flows Estimated by 15N and 13C Pulse-Chase Labeling during Regrowth of Alfalfa. Plant Physiol 112:281–290. https:/​/​doi.​org/​10.​1104/​pp.​112.​1.​281

  • Bansal S, Germino MJ (2008) Carbon balance of conifer seedlings at timberline: relative changes in uptake, storage, and utilization. Oecologia 158:217–227 ([PubMed: 18810499])

    Article  CAS  PubMed  Google Scholar 

  • Berninger F, Nikinmaa E, Sievanen R, Nygren P (2000) Modelling of reserve carbohydrate dynamics, regrowth and nodulation in a N2-fixing tree managed by periodic prunings. Plant Cell Environ 23:1025–1040

    Article  CAS  Google Scholar 

  • Bowen BJ, Pate JS (2017) Patterns of storage tissue and starch distribution in the young taproot of obligate seeders and resprouters of Australian Proteaceae (Juss.): Possible evidence of homoplastic evolution. Austral Ecology 42(5):617–629.

  • Breen K, Tustin S, Palmer J, Boldingh H, Close D (2020) Revisiting the role of carbohydrate reserves in fruit set and early-season growth of apple. Scientia Horticulturae 261:109034

  • Bustan A, Avni A, Lavee S, Zipori I, Yeselson Y, Schaffer AA, Riov J, Dag A (2011) Role of carbohydrate reserves in yield production of intensively cultivated oil olive (Olea europaea L.) trees. Tree Physiol 31:519–530

    Article  CAS  PubMed  Google Scholar 

  • Canadell J, López-Soria L (1998) Lignotuber reserves support regrowth following clipping of two Mediterranean shrubs. Funct Ecol 12:31–38

    Article  Google Scholar 

  • Canham CD, Kobe RK, Latty EF, Chazdon RL (1999) Interspecific and intraspecific variation in tree seedling survival: Effects of allocation to roots versus carbohydrate reserves. Oecologia 121:1–11. https://doi.org/10.1007/s004420050900

    Article  PubMed  Google Scholar 

  • Carbone MS, Trumbore SE (2007) Contribution of new photosynthetic assimilates to respiration by perennial grasses and shrubs: residence times and allocation patterns. New Phytol 176:124–135

    Article  CAS  PubMed  Google Scholar 

  • Carbone MS, Still CJ, Ambrose AR, Dawson TE, Williams AP et al (2011) Seasonal and episodic moisture controls on plant and microbial contributions to soil respiration. Oecologia 167:265–278

    Article  PubMed  Google Scholar 

  • Carbone MS, Czimczik CI, Keenan TF, Murakami PF, Pederson N et al (2014) Age, allocation and availability of nonstructural C in mature red maple trees. New Phytol 200:1145–1155

    Article  CAS  Google Scholar 

  • Cerasoli S, Maillard P, Scartazza A, Brugnoli E, Chaves MM, Pereira JS (2004) Carbon and nitrogen winter storage and remobilisation during seasonal flush growth in two-year-old cork oak(Quercus suber L.) saplings. Ann for Sci 61:721–729

    Article  CAS  Google Scholar 

  • Chantuma P, Lacointe A, Kasemsap P, Thanisawanyangkura S, Gohet E, Clement A, Guilliot A, Ameglio T, Thaler P (2009) Carbohydrate storage in wood and bark of rubber trees submitted to different level of C demand induced by latex tapping. Tree Physiol 29:1021–1031

    Article  CAS  PubMed  Google Scholar 

  • Chapin FS, Schulze ED, Mooney HA (1990) The ecology and economics of storage in plants. Annu Rev Ecol Syst 21:423–447

    Article  Google Scholar 

  • Chew SJ, Bonser SP (2009) The evolution of growth rate, resource allocation and competitive ability in seeder and resprouter tree seedlings. Evol Ecol 23:723–735

    Article  Google Scholar 

  • Czimczik CI, Trumbore SE, Carbone MS, Winston GC (2006) Changing sources of soil respiration with time since fire in a boreal forest. Glob Change Biol 12:957–971

    Article  Google Scholar 

  • Da Silva D, Qin L, DeBuse C, DeJong TM (2014) Measuring and modelling seasonal patterns of carbohydrate storage and mobilization in the trunks and root crowns of peach trees. Ann Bot 114(4):643–652. https://doi.org/10.1093/aob/mcu033

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Davidson AM, Le ST, Cooper KB, Lange E, Zwieniecki MA (2021) No time to rest: seasonal dynamics of non-structural carbohydrates in twigs of three Mediterranean tree species suggest year-roundactivity. Sci Rep 11:5181. https://doi.org/10.1038/s41598-021-83935-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • DeJong TM (2016) Demystifying carbohydrate allocation to storage in fruit tree. Acta Hortic 1130:329–334 https://doi.org/10.17660/ActaHortic.2016.1130.49

    Article  Google Scholar 

  • Dietze MC, Sala A, Carbone MS, Czimczik CI, Mantooth JA, Richardson AD, Vargas R (2014) Nonstructural C in Woody Plants. Annu Rev Plant Biol 65:667–687

    Article  CAS  PubMed  Google Scholar 

  • Druege U, Zerche S, Kadner R, Ernst M (2000) Relation between nitrogen status, carbohydrate distribution and subsequent rooting of Chrysanthemum cuttings as affected by pre-harvest nitrogen supply and cold-storage. Ann Bot 85(5):687–701

    Article  CAS  Google Scholar 

  • Druege U, Zerche S, Kadner R (2004) Nitrogen- and storage-affected carbohydrate partitioning in high-light-adapted Pelargonium cuttings in relation to survival and adventitious root formation under low light. Ann Bot 94(6):831–842

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • El Omari B, Aranda X, Verdaguer D et al (2003) Resource remobilization in Quercus ilex L. resprouts. Plant Soil 252:349–357. https://doi.org/10.1023/A:1024792206369

    Article  Google Scholar 

  • El Zein R, Maillard P, Breda N, Marchand J, Montpied P, Gerant D (2011) Seasonal changes of C and N non-structural compounds in the stem sapwood of adult sessile oak and beech trees. Tree Physiol 31:843–854

    Article  PubMed  CAS  Google Scholar 

  • Epron D, Ngao J, Dannoura M et al (2011) Seasonal variations of belowground C transfer assessed by in situ 13CO2 pulse labelling of trees. Biogeosciences 8:1153–1168

    Article  CAS  Google Scholar 

  • Eyles A, Pinkard EA, Mohammed C (2009) Shifts in biomass and resource allocation patterns following defoliation in Eucalyptus globulus growing with varying water and nutrient supplies. Tree Physiol 29:753–764

    Article  CAS  PubMed  Google Scholar 

  • Fatichi S, Leuzinger S, Körner C (2014) Moving beyond photosynthesis: from carbon source to sink-driven vegetation modeling. New Phytol 201:1086–1095

    Article  CAS  PubMed  Google Scholar 

  • Fischer S, Hanf S, Frosch T, Gleixner G, Popp J, Trumbore S, Hartmann H (2015) Pinus sylvestris switches respiration substrates under shading but not during drought. New Phytol 207:542–550

    Article  CAS  PubMed  Google Scholar 

  • Fitter AH, Hay RKM (2002) Environmental physiology of plants, 3d edn. Academic Press, London

    Google Scholar 

  • Furze ME, Huggett BA, Aubrecht DM, Stolz CD, Carbone MS, Richardson AD (2019) Whole-tree nonstructural carbohydrate storage and seasonal dynamics in five temperate species. New Phytol 221:1466–1477. https://doi.org/10.1111/nph.15462

    Article  CAS  PubMed  Google Scholar 

  • Furze ME, Huggett BA, Chamberlain CJ, Wieringa MM, Aubrecht DM, Carbone MS, Walker JC, Xu X, Czimczik CI, Richardson AD (2020) Seasonal fluctuation of nonstructural carbohydrates reveals the metabolic availability of stemwood reserves in temperate trees with contrasting wood anatomy. Tree Physiol 40(10):1355–1365. https://doi.org/10.1093/treephys/tpaa080

    Article  CAS  PubMed  Google Scholar 

  • Galiano L, Martinez-Vilalta J, Lloret F (2011) Carbon reserves and canopy defoliation determine the recovery of Scots pine 4 yr after a drought episode. New Phytol 190:750–759

    Article  CAS  PubMed  Google Scholar 

  • Galvez DA, Landhäusser SM, Tyree MT (2011) Root carbon reserve dynamics in aspen seedlings: does simulated drought induce reserve limitation? Tree Physiol 31:250–257

    Article  PubMed  Google Scholar 

  • Galvez DA, Landhausser SM, Tyree MT (2013) Low root reserve accumulation during drought may lead to winter mortality in poplar seedlings. New Phytol 198:139–148

    Article  PubMed  Google Scholar 

  • Gaudinski JB, Torn MS, Riley WJ, Swanston C, Trumbore SE, Joslin JD, Majdi H, Dawson TE, Hanson PJ (2009) Use of stored carbon reserves in growth of temperate tree roots and leaf buds: analyses using radiocarbon measurements and modeling. Glob Change Biol 15:992–1014

    Article  Google Scholar 

  • Genet H, Bréda N, Dufrêne E (2010) Age-related variation in carbon allocation at tree and stand scales in beech (Fagus sylvatica L.) and sessile oak (Quercus petraea (Matt.) Liebl.) using a chronosequence approach. Tree Physiol 30:177–192. https://doi.org/10.1093/treephys/tpp105

    Article  CAS  PubMed  Google Scholar 

  • Gibon Y, Bläsing OE, Palacios-Rojas N, Pankovic D, Hendriks JH, Fisahn J, Höhne M, Gunther M, Stitt M (2004) Adjustment of diurnal starch turnover to short days, depletion of sugar during the night leads to a temporary inhibition of carbohydrate utilization, accumulation of sugars and post-translational activation of ADP-glucose pyrophosphorylase in the following light period. Plant J 39:847–862

    Article  CAS  PubMed  Google Scholar 

  • Gordon AJ, Ryle GJA, Powell CE, Mitchell D (1980) Export, mobilization and respiration of assimilates in Uniculm barley during light and darkness. J Exp Bot 31:461–473

    Article  Google Scholar 

  • Gougherty AV, Gougherty SW (2018) Sequence of flower and leaf emergence in deciduous trees is linked to ecological traits, phylogenetics, and climate. New Phytol 220:121–131. https://doi.org/10.1111/nph.15270

    Article  PubMed  Google Scholar 

  • Grainger J (1939) Studies upon the time of flowering of plants: Anatomical, floristic and phenological aspects of the problem. Ann Appl Biol 26:684–704

    Article  Google Scholar 

  • Hartmann H, Trumbore S (2016) Understanding the roles of nonstructural carbohydrates in forest trees - from what we can measure to what we want to know. New Phytol 211(2):386–403. https://doi.org/10.1111/nph.13955

    Article  CAS  PubMed  Google Scholar 

  • Hartmann H, Ziegler W, Trumbore S (2013) Lethal drought leads to reduction in nonstructural carbohydrates in Norway spruce tree roots but not in the canopy. Funct Ecol 27:413–427

    Article  Google Scholar 

  • Hartmann H, Adams HD, Hammond WM, Hoch G, Landhäusser SM, Wiley E et al (2018) Identifying differences in carbohydrate dynamics of seedlings and mature trees to improve carbon allocation in models for trees and forests. Environ Exp Bot 152:7–18

    Article  CAS  Google Scholar 

  • Helle G, Schleser GH (2004) Beyond CO2-fixation by Rubisco – an interpretation of 13C/12C variations in tree rings form novel intra-seasonal studies on broad-leaf trees. Plant Cell Environ 27:367–380

    Article  CAS  Google Scholar 

  • Hoch G (2007) Cell wall hemicelluloses as mobile C stores in non-reproductive plant tissues. Funct Ecol 21:823–834

    Article  Google Scholar 

  • Hoch G, Richter A, Körner C (2003) Non-structural carbon compounds in temperate forest trees. Plant Cell Environ 26:1067–1081

    Article  CAS  Google Scholar 

  • Högberg P, Högberg MN, Göttlicher SG, Betson NR, Keel SG et al (2008) High temporal resolution tracing of photosynthate C from the tree canopy to forest soil microorganisms. New Phytol 177:220–228

    Article  PubMed  CAS  Google Scholar 

  • Kagawa A, Sugimoto A, Trofim CM (2006) Seasonal course of translocation, storage and remobilization of 13C pulse-labeled photoassimilate in naturally growing Larix gmelinii saplings. New Phytol 171:793–804. https://doi.org/10.1111/j.1469-8137.2006.01780.x

    Article  CAS  PubMed  Google Scholar 

  • Keel SG, Siegwolf RTW, Jäggi M, Körner C (2007) Rapid mixing between old and new C pools in the canopy of mature forest trees. Plant Cell Environ 30:963–972

    Article  CAS  PubMed  Google Scholar 

  • Klein T, Hoch G, Yakir D, Körner C (2014) Drought stress, growth and nonstructural carbohydrate dynamics of pine trees in a semi-arid forest. Tree Physiol 34(9):981–992. https://doi.org/10.1093/treephys/tpu071

    Article  CAS  PubMed  Google Scholar 

  • Kobe RK (1997) Carbohydrate allocation to storage as a basis of interspecific variation in sapling survivorship and growth. Oikos 80:226–233

    Article  Google Scholar 

  • Körner C (2015) Paradigm shift in plant growth control. Curr Opin Plant Biol 25:107–114

    Article  PubMed  CAS  Google Scholar 

  • Kozlowski TT (1992) Carbohydrate sources and sinks in woody plants. Bot Rev 58:107–222

    Article  Google Scholar 

  • Kuptz D, Fleischmann F, Matyssek R, Grams TEE (2011) Seasonal patterns of carbon allocation to respiratory pools in 60-yr-old deciduous (Fagus sylvatica) and evergreen (Picea abies) trees assessed via whole-tree stable carbon isotope labeling. New Phytol 191:160–172

    Article  PubMed  Google Scholar 

  • Lacointe A, Deleens E, Ameglio T, Saint-Joanis B, Lelarge C, Vandame M, Song GC, Daudet FA (2004) Testing the branch autonomy theory: a 13C/14C double-labelling experiment on differentially shaded branches. Plant Cell Environ 27:1159–1168. https://doi.org/10.1111/j.1365-3040.2004.01221.x

    Article  CAS  Google Scholar 

  • Launay M, Graux AI, Brisson N, Guerif M (2009) Carbohydrate remobilization from storage root to leaves after a stress release in sugar beet (Beta vulgaris L.): Experimental and modelling approaches. J Agr Sci 147(6):669–682. https://doi.org/10.1017/S0021859609990116

  • Le Roux X, Lacointe A, Escobar-Gutierrez A, Le Dizès S (2001) C-based models of individual tree growth: a critical appraisal. Ann for Sci 58:469–506

    Article  Google Scholar 

  • Maguire AJ, Kobe RK (2015) Drought and shade deplete nonstructural carbohydrate reserves in seedlings of five temperate tree species. Ecol Evol 5(23):5711–5721. https://doi.org/10.1002/ece3.1819

    Article  PubMed  PubMed Central  Google Scholar 

  • Margolis HA, Waring RH (1986) Carbon and nitrogen allocation patterns of Douglas-fir seedlings fertilized with nitrogen in autumn. II. Field performance. Canadian Journal of Forest Research 16(5):903–909. https://doi.org/10.1139/x86-161

  • McCarroll D, Whitney M, Young GHF, Loader NJ, Gagen MH (2017) A simple stable carbon isotope method for investigating changes in the use of recent versus old carbon in oak. Tree Physiol 37(8):1021–1027. https://doi.org/10.1093/treephys/tpx030

    Article  CAS  PubMed  Google Scholar 

  • McDowell NG (2011) Mechanisms linking drought, hydraulics, C metabolism, and vegetation mortality. Plant Physiol 155:1051–1059

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Millard P, Grelet G (2010) Nitrogen storage and remobilization by trees: ecophysiological relevance in a changing world. Tree Physiol 30(9):1083–1095. https://doi.org/10.1093/treephys/tpq042

    Article  CAS  PubMed  Google Scholar 

  • Mitchell PJ, O’Grady AP, Tissue DT, White DA, Ottenschlaeger ML, Pinkard EA (2013) Drought response strategies define the relative contributions of hydraulic dysfunction and carbohydrate depletion during tree mortality. New Phytol 197:862–872

    Article  CAS  PubMed  Google Scholar 

  • Morvan-Bertrand A, Pavis N, Boucaud J, Prud’homme MP, (1999) Partitioning of reserve and newly assimilated carbon in roots and leaf tissues of Lolium perenne during regrowth after defoliation: assessment by 13C steady-state labelling and carbohydrate analysis. Plant Cell Environ 22:1097–1108

    Article  CAS  Google Scholar 

  • Muhr J, Angert A, Juárez RN, Muñoz WA, Kraemer G, Chambers JQ, Trumbore SE (2013) Carbon dioxide emitted from live stems of tropical trees is several years old. Tree Physiol 33(7):743–752. https://doi.org/10.1093/treephys/tpt049

    Article  CAS  PubMed  Google Scholar 

  • Muller B, Pantin F, Génard M, Turc O, Freixes S, Piques M, Gibon Y (2011) Water deficits uncouple growth from photosynthesis, increase carbon content, and modify the relationships between carbon and growth in sink organs. J Exp Bot 62:1715–1729

    Article  CAS  PubMed  Google Scholar 

  • Navarro MNV, Jourdan C, Sileye T, Braconnier S, Mialet-Serra I, Saint-Andre L, Dauzat J, Nouvellon Y, Epron D, Bonnefond JM et al (2008) Fruit development, not GPP, drives seasonal variation in NPP in a tropical palm plantation. Tree Physiol 28:1661–1674

    Article  CAS  PubMed  Google Scholar 

  • O’Brien MJ, Leuzinger S, Philipson CD, Tay J, Hector A (2014) Drought survival of tropical tree seedlings enhanced by non-structural carbohydrate levels. Nature Clim Change 4:710–714

    Article  CAS  Google Scholar 

  • Ogee J, Barbour MM, Wingate L, Bert D, Bosc A et al (2009) A single-substrate model to interpret intra-annual stable isotope signals in tree-ring cellulose. Plant Cell Environ 32:1071–1090

    Article  CAS  PubMed  Google Scholar 

  • Ogle K, Pacala SW (2009) A modeling framework for inferring tree growth and allocation from physiological, morphological and allometric traits. Tree Physiol 29:587–605

    Article  CAS  PubMed  Google Scholar 

  • Palacio S, Paterson E, Hester AJ, Nogués S, Lino G, Anadon-Rosell A, Maestro M, Millard P (2020) No preferential carbon-allocation to storage over growth in clipped birch and oak saplings. Tree Physiol 40(5):621–636. https://doi.org/10.1093/treephys/tpaa011.PMID:32050021;PMCID:PMC7201831

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pate JS, Froend RH, Bowen BJ, Hansen A, Kuo J (1990) Seedling Growth and Storage Characteristics of Seeder and Resprouter Species of Mediterranean-type Ecosystems of S. W Australia Annals of Botany 65(6):585–601. https://doi.org/10.1093/oxfordjournals.aob.a087976

    Article  Google Scholar 

  • Paula S, Naulin PI, Arce C et al (2016) Lignotubers in Mediterranean basin plants. Plant Ecol 217:661–676. https://doi.org/10.1007/s11258-015-0538-9

    Article  Google Scholar 

  • Piper FI (2020) Decoupling between growth rate and storage remobilization in broadleaf temperate tree species. Funct Ecol 34:1180–1192. https://doi.org/10.1111/1365-2435.13552

    Article  Google Scholar 

  • Piper FI, Paula S (2020) The Role of Nonstructural Carbohydrates Storage in Forest Resilience under Climate Change. Curr Forestry Rep 6:1–13. https://doi.org/10.1007/s40725-019-00109-z

    Article  Google Scholar 

  • Piper FI, Fajardo A, Hoch G (2017) Single-provenance mature conifers show higher non-structural carbohydrate storage and reduced growth in a drier location. Tree Physiol 37(8):1001–1010. https://doi.org/10.1093/treephys/tpx061

    Article  CAS  PubMed  Google Scholar 

  • Poorter H, Pepin S, Rijkers T, De Jong Y, Evans JR, Körner C (2006) Construction costs, chemical composition and payback time of high- and low-irradiance leaves. J Exp Bot 57:355–371

    Article  CAS  PubMed  Google Scholar 

  • Pratt RB, Jacobsen AL, Ewers FW, Davis SD (2007) Relationships among xylem transport, biomechanics and storage in stems and roots of nine Rhamnaceae species of the California chaparral. New Phytol 174:787–798

    Article  CAS  PubMed  Google Scholar 

  • Puri E, Hoch G, Körner C (2015) Defoliation reduces growth but not carbon reserves in Mediterranean Pinus pinaster. Trees 29:1187–1196. https://doi.org/10.1007/s00468-015-1199-y

    Article  Google Scholar 

  • Richardson AD, Carbone MS, Keenan TF, Czimczik CI, Hollinger DY et al (2013) Seasonal dynamics and age of stemwood nonstructural carbohydrates in temperate forest trees. New Phytol 197:850–861

    Article  CAS  PubMed  Google Scholar 

  • Richardson AD, Carbone MS, Huggett BA, Furze ME, Czimczik CI, Walker JC, Xu X, Schaberg PG, Murakami P (2015) Distribution and mixing of old and new nonstructural C in two temperate trees. New Phytol 206:590–597

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rocha AV, Goulden ML (2009) Why is marsh productivity so high? New insights from eddy covariance and biomass measurements in a Typha marsh. Agric for Meteorol 149:159–168

    Article  Google Scholar 

  • Ryan MG (2011) Tree responses to drought. Tree Physiol 31(3):237–239. https://doi.org/10.1093/treephys/tpr022

    Article  PubMed  Google Scholar 

  • Ryan MG, Binkley D, Fownes JH (1997) Age-related decline in forest productivity: pattern and process. Adv Ecol Res 27:213–262

    Article  Google Scholar 

  • Sala A, Woodruff DR, Meinzer FC (2012) Carbon dynamics in trees: feast or famine? Tree Physiol 32(6):764–775. https://doi.org/10.1093/treephys/tpr143

    Article  CAS  PubMed  Google Scholar 

  • Scartazza A, Moscatello S, Matteucci G, Battistelli A, Brugnoli E (2013) Seasonal and inter-annual dynamics of growth, non-structural carbohydrates and C stable isotopes in a Mediterranean beech forest. Tree Physiol 33(7):730–742. https://doi.org/10.1093/treephys/tpt045

    Article  CAS  PubMed  Google Scholar 

  • Schaberg PG, Snyder MC, Shane JB, Donnelly JR (2000) Seasonal patterns of carbohydrate reserves in red spruce seedlings. Tree Physiol 20(8):549–555. https://doi.org/10.1093/treephys/20.8.549

    Article  CAS  PubMed  Google Scholar 

  • Schädel C, Blöchl A, Richter A, Hoch G (2009) Short-term dynamics of non-structural carbohydrates and hemicelluloses in young branches of temperate forest trees during bud break. Tree Physiol 29:901–911

    Article  PubMed  CAS  Google Scholar 

  • Schaefer K, Collatz GJ, Tans P, Denning AS, Baker I et al (2008) Combined Simple Biosphere/Carnegie Ames-Stanford Approach terrestrial carbon cycle model. J Geophys Res 113:G03034

    Google Scholar 

  • Schmid S, Palacio S, Hoch G (2017) Growth reduction after defoliation is independent of CO2 supply in deciduous and evergreen young oaks. New Phytol 214:1479–1490. https://doi.org/10.1111/nph.14484

    Article  CAS  PubMed  Google Scholar 

  • Schutz AEN, Bond WJ, Cramer MD (2009) Juggling carbon: allocation patterns of a dominant tree in a fire-prone savanna. Oecologia 160(2):235–246. https://doi.org/10.1007/s00442-009-1293-1

    Article  PubMed  Google Scholar 

  • Schuur EAG, Trumbore SE (2006) Partitioning sources of soil respiration in boreal black spruce forest using radiocarbon. Glob Change Biol 12:165–176

    Article  Google Scholar 

  • Schwilk DW, Ackerly DD (2005) Is there a cost to resprouting? Seedling growth rate and drought tolerance in sprouting and nonsprouting Ceanothus (Rhamnaceae). Am J Bot 92:404–410

    Article  PubMed  Google Scholar 

  • Silpi U, Lacointe A, Kasempsap P, Thanysawanyangkura S, Chantuma P, Gohet E, Musigamart N, Clément A, Améglio T, Thaler P (2007) Carbohydrate reserves as a competing sink: evidence from tapping rubber trees. Tree Physiol 27:881–889

    Article  CAS  PubMed  Google Scholar 

  • Smith SE, Smith FA (2012) Fresh perspectives on the roles of arbuscular mycorrhizal fungi in plant nutrition and growth. Mycologia 104(1):1–13. https://doi.org/10.3852/11-229

    Article  PubMed  Google Scholar 

  • Spann TM, Beede RH, DeJong TM (2008) Seasonal carbohydrate storage and mobilization in bearing and non-bearing pistachio (Pistacia vera) trees. Tree Physiol 28(2):207–213

    Article  CAS  PubMed  Google Scholar 

  • Tromp J (1983) Nutrient reserves in roots of fruit trees, in particular carbohydrates and nitrogen. Plants 71:401. https://doi.org/10.1007/BF02182682

    Article  CAS  Google Scholar 

  • Trumbore S, Czimczik CI, Sierra CA, Muhr J, Xu X (2015) Non-structural carbon dynamics and allocation relate to growth rate and leaf habit in California oaks. Tree Physiol 35(11):1206–1222. https://doi.org/10.1093/treephys/tpv097

    Article  CAS  PubMed  Google Scholar 

  • Verdaguer D, Ojeda F (2002) Root starch storage and allocation patterns in seeder and resprouter seedlings of two Cape Erica (Ericaceae) species. Am J Bot 89:1189–1196

    Article  PubMed  Google Scholar 

  • Vilela AE, Agüero PR, Ravetta D, González-Paleo L (2016) Long-term effect of carbohydrate reserves on growth and reproduction of Prosopis denudans (Fabaceae): implications for conservation of woody perennials. Conserv Physiol 4(1):cov068. https://doi.org/10.1093/conphys/cov068

  • Warren JM, Iversen CM, Garten CT, Norby RJ, Childs J et al (2012) Timing and magnitude of carbon partitioning through a young loblolly pine (Pinus taeda L.) stand using 13C labeling and shade treatments. Tree Physiol 32:799–813

    Article  CAS  PubMed  Google Scholar 

  • Wiley E, Helliker B (2012) A re-evaluation of carbon storage in trees lends greater support for carbon limitation to growth. New Phytol 195:285–289

    Article  CAS  PubMed  Google Scholar 

  • Wiley E, Huepenbecker S, Casper BB, Helliker BR (2013) The effects of defoliation on carbon allocation: can carbon limitation reduce growth in favour of storage? Tree Physiol 33:1216–1228

    Article  CAS  PubMed  Google Scholar 

  • Willaume M, Pagès L (2011) Correlated responses of root growth and sugar concentrations to various defoliation treatments and rhythmic shoot growth in oak tree seedlings (Quercus pubescens). Ann Bot 107(4):653–662

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Würth MKR, Pelaez-Riedl S, Wright SJ, Korner C (2005) Non-structural carbohydrate pools in a tropical forest. Oecologia 143:11–24

    Article  PubMed  Google Scholar 

  • Wyka TP, Karolewski P, Żytkowiak R, Chmielarz P, Oleksyn J (2016) Whole-plant allocation to storage and defense in juveniles of related evergreen and deciduous shrub species. Tree Physiol 36(5):536–547. https://doi.org/10.1093/treephys/tpv108

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank Mrs. Dolors Verdaguer (University of Girona) for feedback on a previous version of the manuscript.

Funding

This research did not receive any specific grant from funding agencies in the public, commercial, or not-for-profit sectors.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bouchra El Omari.

Ethics declarations

Conflict of interest

The author, Bouchra El Omari declares that there is no conflicts of interest.

Additional information

Communicated by Lin.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

El Omari, B. Accumulation versus storage of total non-structural carbohydrates in woody plants. Trees 36, 869–881 (2022). https://doi.org/10.1007/s00468-021-02240-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00468-021-02240-6

Keywords

Navigation