Skip to main content
Log in

Vertical variability of tension wood formation in the stem of Fagus sylvatica L. affected by landslide movement

  • Original Article
  • Published:
Trees Aims and scope Submit manuscript

Abstract

Key message

Complex detailed analysis—3D extension of tension wood, Anatomical intensity and tree-ring eccentricity—of one Fagus sylvatica L. individual provides unique insight into tree growth response to landsliding

Compression wood formation and tree ring eccentricity of coniferous trees have often been used to date past geomorphic events because of their well-defined tree ring boundaries and visible reaction wood. On the other hand, complex analysis of the ability of tree rings and anatomy of broadleaved trees to detect past geomorphic events is rather rare. Although analysis of broadleaved trees has some limitations, a combination of both approaches (tree ring anatomy and eccentricity) can provide a suitable dendrogeomorphological tool for dating and understanding past landslide events. From an example of a young Fagus sylvatica L. individual, vertical variability of growth responses in the whole stem was detected. The sampled individual was tilted as a direct response to a landslide event caused by intense rainfall in July 1997. It was found that the growth responses of the sampled individual varied with increasing height. By analysing 14 cross sections in the tree stem, it was detected that the sampled individual started to form tension wood (TW) immediately in 1997. This response was also confirmed by the decrease of the vessel lumen area (VLA). The largest decrease of the VLA was in axes A and D. As a result of TW formation, the sampled individual started to form eccentric tree rings. It was observed that with the increasing height of the tree, the number of tree rings with TW and VLA decreased. The formation of TW and eccentricity, but not VLA, also depends on the stem tilting intensity. According to our experimental results, a combination of both approaches can provide a suitable tool to detect the moment of tree growth responses and therefore date landslide movement events.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Availability of data and material

On request.

References

  • Agafonov L, Strunk H, Nuber T (2004) Thermokarst dynamics in Western Siberia: insights from dendrochronological research. Palaeogeogr Palaeoclimatol Palaeoecol 209:183–196

    Article  Google Scholar 

  • Alestalo J (1971) Dendrochronological interpretation of geomorphic processes. Fennia

    Google Scholar 

  • Arbellay E, Stoffel M, Bollschweiler M (2010) Dendrogeomorphic reconstruction of past debris-flow activity using injured broad-leaved trees. Eart Surf Process Landforms 35:399–406

    Google Scholar 

  • Archer RR (1986) Growth stresses and strains in trees. Springer, Berlin

    Google Scholar 

  • Ballesteros JA, Stoffel M, Bollschweiler M, Bodoque JM, Díez-Herrero A (2010) Flash-flood impastc cause changes in wood anatomy of Alnus glutinosa, Fraxinus angustifolia and Quercus pyrenaica. Tree Physiol 30:773–781

    Article  CAS  PubMed  Google Scholar 

  • Barbacci A, Constant T, Farré E, Harroué M, Nepveu G (2008) Shiny beech wood is confirmed as an indicator of tension wood. IAWA J 29:35–46

    Article  Google Scholar 

  • Braam R, Weiss E, Burrough P (1987) Spatial and temporal analysis of mass movement using dendrochronology. CATENA 14:573–584

    Article  Google Scholar 

  • Bräker OU (2002) Measuring and data processing in tree-ring research—a methodological introduction. Dendrochronologia 20:203–216

    Article  Google Scholar 

  • Burda J (2010) Dendrogeomorphological analysis of mass movement dynamics in the Jezeří Chateau area. Geografie 115:440–460

    Article  Google Scholar 

  • Carrillo I, Aguayo MG, Valenzuela S, Mendonça RT, Elissetche J (2015) Variations in wood anatomy and fiber biometry of Eucalyptus globulus genotypes with different wood density. Wood Research 60:1–10

    Google Scholar 

  • Chalupová O, Šilhán K, Kapustová V, Chalupa V (2020) Spatiotemporal distribution of growth releases and suppressions along a landslide body. Dendrochronologia 60:125676

    Article  Google Scholar 

  • Clair B, Thibaut B, Sugiyama J (2005) On the detachment of gelatinous layer in tension wood fibre. J Wood Sci 51:218–221

    Article  CAS  Google Scholar 

  • Corominas J, Moya J (1999) Reconstructing recent landslide activity in relation to rainfall in the Llobregat River basin, eastern Pyrenees, Spain. Geomorphology 30:79–93

    Article  Google Scholar 

  • Coutand C, Jeronimidis G, Chanson B, Loup C (2004) Comparison of mechanical properties of tension wood and opposite wood in Populus. Wood Sci Technol 38:11–24

    Article  CAS  Google Scholar 

  • Déjardin A, Laurans F, Arnaud D, Breton C, Pilate G, Leplé JC (2010) Wood formation in Angiosperms. CR Biol 333:325–334

    Article  Google Scholar 

  • Dickinson WC (2000) Integrative plant anatomy. Harcourt Academic Press, New York

    Google Scholar 

  • Donaldson LA, Singh AP (2016) Reaction Wood. In: Kim YS, Funada R, Singh AP (eds) Secondary xylem biology: origins, functions, and applications. Elsevier/academic press, Amsterdam, pp 100–109

    Google Scholar 

  • Du S, Sugano M, Tsushima M, Nakamura T, Yamamoto F (2004) Endogenous indole-3-acetic acid and ethylene evolution in tilted Metasequoia glyptostroboides stems in relation to compression-wood formation. J Plant Res 117:171–174

    Article  CAS  PubMed  Google Scholar 

  • Fantucci R, Sorriso-Valvo M (1999) Dendrogeomorphological analysis of a slope near Lago, Calabria (Italy). Geomorphology 30:165–174

    Article  Google Scholar 

  • Gärtner HW, Schweingruber FH, Dikau R (2001) Determination of erosion rates by analyzing structural changes in the growth pattern of exposed roots. Dendrochronologia 19:81–91

    Google Scholar 

  • Gärtner H, Lucchinetti S, Schweingruber FH (2014) New perspectives for wood anatomical analysis in Dendrosciences: the GSL1-microtome. Dendrochronologia 32:47–51

    Article  Google Scholar 

  • Heinrich I, Gärtner H (2008) Variations in tension wood of two broad-leaved tree species in response to different mechanical treatments: implications for dendrochronology and mass movement studies. Int J Plant Sci 169:928–936

    Article  Google Scholar 

  • Hitz OM, Gärtner H, Heinrich I, Monbaron M (2008) First time application of ash (Fraxinus excelsior L.) roots to determine erosion rates in mountain torrents. CATENA 72:248–258

    Article  Google Scholar 

  • Hungr O, Leroueil S, Picarelli L (2014) The Varnes classification of landslide types, an update. Landslides 11:167–194

    Article  Google Scholar 

  • Jourez B, Riboux A, Leclercq A (2001) Anatomical characteristics of tension wood and opposite wood in young inclined stems of Poplar (Populus euramericana cv “Ghoy”). IAWA J 22:133–157

    Article  Google Scholar 

  • Koprowski M, Winchester V, Zielski A (2010) Tree reactions and dune movements: Slowinski National Park, Poland. CATENA 81:55–65

    Article  Google Scholar 

  • Kozlowski TT, Pallardy SG (1997) Environmental regulation of vegetative growth. Growth control in woody plants. Elsevier/Academic Press

    Google Scholar 

  • Krejčí O, Baroň I, Bíl M, Hubatka F, Julová Z, Kirchner K (1997) Slope movements in the Flysch Carpathians of Eastern Czech Republic triggered by extreme rainfalls in 1997: a case study. Phys Chem Earth 27:1567–1576

    Article  Google Scholar 

  • Leal S, Sousa VB, Pereira H (2006) Radial variation of vessel size and distribution in cork oak wood (Quercus suber L.). Wood Sci Technol 41:339–350

    Article  Google Scholar 

  • Lehringer C, Daniel G, Schmitt U (2009) TEM/FE-SEM studies on tension wood fibres of Acer spp., Fagus sylvatica L. and Quercus robur L. Wood Sci Technol 43:691–702

    Article  CAS  Google Scholar 

  • Liu Y, Zhou L, Zhu Y, Liu S (2020) Anatomical features and its radial variations among different catalpa Bungei clones. Forests 11(8):824

    Article  Google Scholar 

  • Lopez-Saez J, Corona C, Stoffel M, Astrade L, Berger F, Malet JP (2012) Dendrogeomorphic reconstruction of past landslide reactivation with seasonal precision: Bois Noir landslide, southern French Alps. Landslides 9:189–203

    Article  Google Scholar 

  • Lopez-Saez J, Corona C, Stoffel M, Berger F (2013) Climate change increases frequency of shallow spring landslides in the French Alps. Geology 41:619–622

    Article  Google Scholar 

  • Lundström T, Heiz U, Stoffel M, Stöckli V (2008) Fresh-wood bending: linking the mechanical and growth properties of a Norway spruce stem. Tree Physiol 27:1229–1241

    Article  Google Scholar 

  • Marziliano PA, Tognetti R, Lombardi F (2019) Is tree age or tree size reducing height increment in Abies alba Mill at. its southernmost distribution limit? Ann for Sci 76:17

    Article  Google Scholar 

  • Mattheck C (1993) Design in der Natur. Rombach, Freiburg

  • Menčík E, Adamová M, Dvořák J, Dudek A, Jetel J, Jurková A, Hanzlíková E, Houša V, Peslová H, Rybářová L, Šmíd B, Šebesta J, Tyráček J, Vašíček Z (1983) Geologie Moravskoslezských Beskyd a Podbeskydské pahorkatiny (Geology of the Moravskoslezské Beskydy Mts and Podbeskydská pahorkatina Hilly land). Ústřední Ústav Geologický, Praha

    Google Scholar 

  • Pánek T, Šilhán K, Tábořík P, Hradecký J, Smolková V, Lenart J, Brázdil R, Kašičková L, Pazdur A (2011) Catastrophic slope failure and its precedings: case of the May 2010 Girová Mountain long-runout rockslide (Czech Republic). Geomorphology 130:352–364

    Article  Google Scholar 

  • Pánek T, Smolková V, Hradecký J, Baroň I, Šilhán K (2013) Holocene reactivations of catastrophic complex flow-like landslides in the Flysch Carpathians (Czech Republic/Slovakia). Quatern Res 80:33–46

    Article  Google Scholar 

  • Pilate G, Chabbert B, Cathala B, Yoshinaga A, Leplé JC, Laurans F, Lapierre C, Ruel K (2004) Lignification and tension wood. C r Biologies 327:889–901

    Article  CAS  PubMed  Google Scholar 

  • Ramos LMA, Figueiredo Latorraca JV, Castor Neto TC, Souza Martins L, Durgante Severo ET (2016) Anatomical characterization of tension wood in Hevea brasiliensis (Willd. Ex A. Juss.) Mull. Arg Revista Árvore 40:1109–1116

    Google Scholar 

  • Régent Instruments Inc. (2013) http://www.regentinstruments.com. Accessed 10 Nov 2020

  • Sahling I (2007) Rekonstruktion geomorphologischer Prozessablaüfe unter Verwendung dendrogeomorphologischer Methoden und der holzanatomischen Analyse von Jahrringen in Buchenwurzeln. PhD diss. Martin-Luther-University, Halle-Wittenberg, Halle, Germany

  • Schweingruber FH (1961) Tree rings and environment: dendroecology. Haupt Verlag, Wien

    Google Scholar 

  • Schweingruber FH (2001) Modifications of wood anatomical structures by variable internal and external environmental condition. In: Navi P (ed) Pre-Proceedings of the First International Conference of the European Society for Wood Mechanics. Swiss Federal Institute of Technology, Lausanne, pp135–143

  • Shroder JF (1978) Dendrogeomorphological analysis of mass movement on Table Cliffs Plateau, Utah. Quat Res 9:168–185

    Article  Google Scholar 

  • Šilhán K (2012) Dendrogeomorphological analysis of the evolution of slope processes on flysch rocks (Vsetínské vrchy Mts; Czech Republic). Carpathian J Earth Environ Sci 7:39–49

    Google Scholar 

  • Šilhán K (2015) Can tree tilting indicate mechanism of slope movement? Eng Geol 199:157–164

    Article  Google Scholar 

  • Šilhán K (2019) Tree-ring eccentricity in the dendrogeomorphic analysis—a comparative study. CATENA 174:1–10

    Article  Google Scholar 

  • Šilhán K (2020) Dendrogeomorphology of landslides: principles, results, perspectives. Landslides 17:2421–2441

    Article  Google Scholar 

  • Šilhán K, Stoffel M (2015) Impacts of age-dependent tree sensitivity and dating approaches on dendrogeomorphic time series of landslides. Geomorphology 236:34–43

    Article  Google Scholar 

  • Šilhán K, Pánek T, Hradecký J (2012) Tree-ring analysis in the reconstruction of slope in stabilities associated with earthquakes and precipitation (the Crimean Mountains, Ukraine). Geomorphology 173–174:174–184

    Article  Google Scholar 

  • Šilhán K, Pánek T, Turský O, Brázdil R, Klimeš J, Kašičková L (2014) Spatio-temporal patterns of recurrent slope instabilities affecting undercut slopes in flysch: a dendrogeomorphic approach using broad-leaved trees. Geomorphology 213:240–254

    Article  Google Scholar 

  • Šilhán K, Tichavský R, Fabiánová A, Chalupa V, Chalupová O (2019) Understanding complex slope deformation through tree-ring analyses. Sci Total Environ 665:1083–1094

    Article  PubMed  Google Scholar 

  • State Administration of Land Surveying and Cadastre (2017) Digital elevation model of Czech Republic, 5th generation (DEM 5G)

  • Stoffel M (2005) Assessing the vertical distribution and visibility of rockfall scars in trees. Schweiz Z Forstwes 156:195–199

    Article  Google Scholar 

  • Stoffel M (2010) Magnitude-frequency relationship of debris flows—a case study based on field surveys and tree-ring records. Geomorphology 116:67–76

    Article  Google Scholar 

  • Stoffel M, Bollschweiler M (2008) Tree-ring analysis in natural hazards research—an overview. Nat Hazards Earth Syst Sci 8:187–202

    Article  Google Scholar 

  • Stoffel M, Bollschweiler M (2009) What tree rings can tell about earth-surface processes: teaching the principles of dendrogeomorphology. Geogr Compass 3:1013–1037

    Article  Google Scholar 

  • Stoffel M, Corona C (2014) Dendroecological dating of geomorphic disturbance in trees. Tree-Ring Res 70:3–20

    Article  Google Scholar 

  • Stoffel M, Klinkmüller M (2013) 3D analysis of anatomical reactions in conifers after mechanical wounding: first qualitative insight from X-ray computed tomography. Trees 27:1805–1811

    Article  Google Scholar 

  • Stoffel M, Perret S (2006) Reconstructing past rockfall activity with tree rings: some methodological consideration. Dendrochronologia 24:1–15

    Article  Google Scholar 

  • Stoffel M, Lièvre I, Monbaron M, Perret S (2005) Seasonal timing of rockfall activity on a forested slope at Täschgufer (Valais, Swiss Alps)—a dendrochronological approach. Z Geomorphol 49:89–106

    Google Scholar 

  • Sumida A, Miyaura T, Torii H (2013) Relationships of tree height and diameter at breast height revisited: analyses of stem growth using 20-year data of an even aged Chamaecyparis obtusa stand. Tree Physiol 33:106–118

    Article  PubMed  PubMed Central  Google Scholar 

  • Timell TE (1986) Compression wood in gymnosperms. Springer, Berlin

    Book  Google Scholar 

  • Tolasz R, Míková T, Valeriánová A, Voženílek V (2007) Climate Atlas of Czechia. Czech Hydrometeorological Institute and Palacký University Olomouc, Prague

    Google Scholar 

  • Trappmann D, Corona C, Stoffel M (2013) Rolling stones and tree rings: a state of research on dendrogeomorphic reconstructions of rockfall. Prog Phys Geogr 37:701–716

    Article  Google Scholar 

  • Tumajer J, Treml V (2019) Disentangling the effects of disturbance, climate and tree age on xylem hydraulic conductivity of Betula pendula. Ann Bot 123:783–792

    Article  PubMed  Google Scholar 

  • Van Den Eeckhaut M, Muys B, Van Loy K, Poesen J, Beeckman H (2009) Evidence for repeated re-activation of old landslides under forest. Earth Surf Process Landf 34:352–365

    Article  Google Scholar 

  • VIAS (2005) Vienna institute of archaeological science: time table. Installation and instruction manual. ver 2.1. VIAS, Vienna

    Google Scholar 

  • Westing AH (1968) Formation and function of compression wood in gymnosperms II. Bot Rev 34:51–78

    Article  Google Scholar 

  • Wheeler E (2001) Wood: macroscopic anatomy. Encyclopedia of materials: science and technology, 2nd edn. Elsevier/Academic Press

    Google Scholar 

  • Wistuba M, Chochół K, Malik I, Michałowicz P, Pilorz W, Kojs P (2015) Vertical variability of tree-ring eccentricity in stems of Scots pine trees (Pinus sylvestris L.). Sci Tech Rep 12:132–138

    Google Scholar 

Download references

Acknowledgements

The language was reviewed by American Journal Experts.

Funding

This research was funded by Czech Science Foundation, grant number 19-01866S and University of Ostrava project no. SGS02/PřF/2019-2020.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Karel Šilhán.

Ethics declarations

Conflict of interest

The author declares no conflict of interest.

Consent to participate

All co-authors agree.

Consent for publication

All co-authors agree.

Additional information

Communicated by H. Gärtner.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chalupová, O., Chalupa, V. & Šilhán, K. Vertical variability of tension wood formation in the stem of Fagus sylvatica L. affected by landslide movement. Trees 35, 1863–1874 (2021). https://doi.org/10.1007/s00468-021-02156-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00468-021-02156-1

Keywords

Navigation