Skip to main content

Advertisement

Log in

Wind and salt spray alter tree shape and dry mass density in Casuarina equisetifolia L.

  • Original Article
  • Published:
Trees Aims and scope Submit manuscript

Abstract

Key message

Wind, salt spray, and the proximity to the coastline significantly caused the variation of tree shape and dry mass density of Casuarina equisetifolia L. planted in coastal areas.

Abstract

Despite negative effects of exotic plants, they play an important role in the erosion control and the accumulation of wind-borne deposits in coastal areas. Identifying the adaptive strategies of exotic species and predicting their ability for stress adaption are of great interest to improve the management and regeneration of coastwise protective forests. We studied Casuarina equisetifolia L., an introduced tree planted successfully for dampening wind speed and preventing coastal soil erosion in coastal regions of southern China, 450–1400 m from the coastline in Taiwan Strait. Morphological and functional traits were measured on the windward and leeward sides of each of 48 trees of identical age and diameter. Coastal stress was measured by wind speed and salt spray. Traits were summarized using the Principal Component Analysis (PCA), and PC scores were related to coastal stress and to other environmental effects. Morphological traits were summarized as PCs describing tree shape, branch supporting capacity, and branching pattern. Coastal stress significantly influenced tree shape, but not branch supporting capacity and branching pattern. Tree shape was also affected by other environmental factors. Functional traits were summarized by PCs describing dry mass density, dry matter content, and water balance, but only dry mass density was influenced by coastal stress or other environmental factors. Our study indicated that C. equisetifolia adapts to coastal stress by altering its tree shape and dry mass density. Our results provide useful information for the selection of adequate species for the erosion control and management of coastal areas.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Alpha CG, Drake DR, Goldstein G (1996) Morphological and physiological responses of Scaevola sericea (Goo-deniaceae) seedlings to salt spray and substrate salinity. Am J Bot 83:86–92

    Article  Google Scholar 

  • Anten NPR, Alcalá-Herrera R, Schieving F, Onoda Y (2010) Wind and mechanical stimuli differentially affect leaf traits in Plantago major. New Phytol 188:554–564. doi:10.1111/j.1469-8137.2010.03379.x

    Article  PubMed  Google Scholar 

  • Bennett BM, Kruger FJ (2013) Ecology, forestry and the debate over exotic trees in South Africa. J Hist Geogr 42:100–109. doi:10.1016/j.jhg.2013.06.004

    Article  Google Scholar 

  • Berthier S, Stokes A (2006) Righting response of artificially inclined maritime pine (Pinus pinaster) saplings to wind loading. Tree Physiol 26:73–79. doi:10.1093/treephys/26.1.73

    Article  PubMed  Google Scholar 

  • Brüchert F, Gardiner BA (2006) The effect of wind exposure on the tree aerial architecture and biomechanics of Sitka spruce (Picea sitchensis, Pinaceae). Am J Bot 93(10):1512–1521. doi:10.3732/ajb.93.10.1512

    Article  PubMed  Google Scholar 

  • Brudi E, van Wassenaer P (2002) Trees and statics: non destructive failure analysis. In: Thomas ES, Kim C (eds) Tree structure and mechanics conference proceedings: how trees stand up and fall down. ISA, Champaign, pp 53–69

    Google Scholar 

  • Chapin FS III, Zavaleta ES, Eviner VT, Naylor RL, Vitousek PM, Reynolds HL, Hooper DU, Lavorel S, Sala OE, Hobbie SE, Mack MC, Diaz S (2000) Consequences of changing biodiversity. Nature 405:234–242. doi:10.1038/35012241

    Article  CAS  PubMed  Google Scholar 

  • Chung CH (2006) Forty years of ecological engineering with Spartina plantations in China. Ecol Eng 27:49–57. doi:10.1016/j.ecoleng.2005.09.012

    Article  Google Scholar 

  • de Kroon H, Huber H, Stuefer JF, van Groenendael JM (2005) A modular concept of phenotypic plasticity in plants. New Phytol 166:73–82. doi:10.1111/j.1469-8137.2004.01310.x

    Article  PubMed  Google Scholar 

  • de Langre E (2008) Effects of wind on plants. Ann Rev Fluid Mech 40(1):141–168. doi:10.1146/annurev.fluid.40.111406.102135

    Article  Google Scholar 

  • Ennos AR (1997) Wind as an ecological factor. Trends Ecol Evol 12(3):108–111. doi:10.1016/S0169-5347(96)10066-5

    Article  CAS  PubMed  Google Scholar 

  • Florida Exotic Pest Plant Council (1991) Exotic woody plant control. In: Langeland K (ed) Aquatic pest control applicator training manual: to be studied in preparation for passing Florida's certification exam in category 6, Aquatic pest control. Florida Cooperative Extension Service, University of Florida, Gainesville, pp 8–9

  • Flückiger W, Oertli JJ, Flückiger-Keller H (1978) The effect of wind gusts on leaf growth and foliar water relations of aspen. Oecologia 34(1):101–106. doi:10.1007/BF00346244

    Article  Google Scholar 

  • Forestry Department of Fujian Province (2004) The report of the construction of coastwise protective shelterbelt system in Fujian province (in Chinese)

  • Gardiner B, Byrne KE, Hale S, Mitchell SJ, Peltola H, Ruel J (2008) A review of mechanistic modeling of wind damage risk to forests. Forestry 81(3):447–463. doi:10.1093/forestry/cpn022

    Article  Google Scholar 

  • Grace J (1988) Plant response to wind. Agric Ecosyst Environ 22(3):71–88. doi:10.1016/0167-8809(88)90008-4

    Article  Google Scholar 

  • Griffiths ME (2006) Salt spray and edaphic factors maintain dwarf stature and community composition in coastal sandplain heathlands. Plant Ecol 186:69–86. doi:10.1007/s11258-006-9113-8

    Article  Google Scholar 

  • Griffiths ME, Orians CM (2003) Responses of common and successional healthland species to manipulated salt spray and water levels. Am J Bot 90:1720–1728. doi:10.3732/ajb.90.12.1720

    Article  PubMed  Google Scholar 

  • Griffiths ME, Orians CM (2004) Salt spray effects on forest succession in rare coastal sandplain heathlands: evidence from field surveys and Pinus rigida transplant experiments. J Torrey Bot Soc 131:23–31. doi:10.2307/4126925

    Article  Google Scholar 

  • Halle F (1978) Architectural variation at the specific level in tropical trees. In: Tomlinson PB, Zimmerman MH (eds) Tropical trees as a living systems. Cambridge University Press, London, pp 187–208

    Google Scholar 

  • Hesp PA (1991) Ecological processes and plant adaptations on coastal dunes. J Arid Environ 21:165–191

    Google Scholar 

  • Holroyd EW III (1970) Prevailing winds on Whiteface mountain as indicated by flag trees. For Sci 16:222–229

    Google Scholar 

  • Jaffe MJ, Forbes S (1993) Thigmomorphogenesis: the effect of mechanical perturbation on plants. Plant Growth Regul 12:313–324. doi:10.1007/BF00027213

    Article  CAS  PubMed  Google Scholar 

  • James JC, Grace J, Hoad SP (1994) Growth and photosynthesis of Pinus sylvestris at its altitudinal limit in Scotland. J Ecol 82:297–306. doi:10.2307/2261297

    Article  Google Scholar 

  • James K, Hallam C, Spencer C (2013) Tree stability in winds: measurements of root plate tilt. Biosyst Eng 115:324–331. doi:10.1016/j.biosystemseng.2013.02.010

    Article  Google Scholar 

  • Janet M, John (1996) Invasive plants: weeds of the global garden. Brooklyn Botanic Garden Club Inc., Brooklyn, p 30 (handbook No. 149)

    Google Scholar 

  • Lavorel S, Garnier E (2002) Predicting changes in community composition and ecosystem functioning from plant traits: revisiting the Holy Grail. Funct Ecol 16:546–556. doi:10.1046/j.1365-2435.2002.00664.x

    Article  Google Scholar 

  • Lavorel S, Diaz S, Cornelissen JHC, Garnier E, Harrison SP, McIntyre S, Pausas JG, Perez-Harguindeguy N, Roumet C, Urcelay C (2007) Plant functional types: are we getting any closer to the Holy Grail? In: Pataki DE, Pitelka LF, Canadell JG (eds) Terrestrial ecosystems in a changing world. Springer, Berlin, pp 149–164

    Chapter  Google Scholar 

  • Le Houérou HN (1996) The role of cacti (Opuntia spp.) in erosion control, land reclamation, rehabilitation and agricultural development in the Mediterranean Basin. J Arid Environ 33:135–159

    Article  Google Scholar 

  • Le Houérou HN (2000) Utilization of fodder trees and shrubs in the arid and semiarid zones of West Asia and North Africa. Arid Soil Res Rehabil 14:101–135

    Article  Google Scholar 

  • Liu XZ, Lu YC, Xue Y, Zhang XQ (2014) Testing the importance of native plants in facilitation the restoration of coastal plant communities dominated by exotics. For Ecol Manage 322:19–26. doi:10.1016/j.foreco.2014.03.020

    Article  Google Scholar 

  • Luck GW, Harrington R, Harrison PA, Kremen C, Berry PM, Bugter R, Dawson TP, de Bello F, Diaz S, Feld CK, Haslett JR, Hering D, Kontogianni A, Lavorel S, Rounsevell MDA, Samways MJ, Sandin L, Settele J, Sykes MT, van den Hove S, Vandewalle M, Zobel M (2009) Quantifying the contribution of organisms to the provision of ecosystems services. Bioscience 59:223–235. doi:10.1525/bio.2009.59.3.7

    Article  Google Scholar 

  • Marden M, Herzig A, Basher L (2014) Erosion process contribution to sediment yield before and after the establishment of exotic forest: waipaoa catchment, New Zealand. Geomorphology 226:162–174. doi:10.1016/j.geomorph.2014.08.007

    Article  Google Scholar 

  • McArthur C, Bradshaw OS, Jordan GJ, Clissold FJ, Pile AJ (2010) Wind affects morphology, function and chemistry of eucalypt tree seedlings. Int J Plant Sci 17:73–80. doi:10.1086/647917

    Article  Google Scholar 

  • Mitchell RM, Bakker JD (2014) Quantifying and comparing intraspecific functional trait variability: a case study with Hypochaeris radicata. Funct Ecol 28:258–269. doi:10.1111/1365-2435.12167

    Article  Google Scholar 

  • Moulia B, Coutand C, Lenne C (2006) Posture control and skeletal mechanical acclimation in terrestrial plants: implications for mechanical modeling of plant architecture. Am J Bot 93:1477–1489. doi:10.3732/ajb.93.10.1477

    Article  PubMed  Google Scholar 

  • Nicoll BC, Gardiner BA, Rayner B, Peace AJ (2006) Anchorage of coniferous trees in relation to species, soil type, and rooting depth. Can J For Res 36:1871–1883. doi:10.1139/x06-072

    Article  Google Scholar 

  • Niklas KJ (1996) Differences between Acer saccharum leaves from open and wind-protected sites. Ann Bot 78(1):61–66. doi:10.1006/anbo.1996.0096

    Article  Google Scholar 

  • Niklas KJ (2002) Wind, size and tree safety. J Arboric 28(2):84–92

    Google Scholar 

  • Nishimura TB (2005) Tree characteristics related to stem breakage of Picea glehnii and Abies sachalinensis. For Ecol Manage 215:295–306. doi:10.1016/j.foreco.2005.05.018

    Article  Google Scholar 

  • Osunkoya OO, Omar-Ali K, Amit N, Dayan J, Daud DS, Sheng TK (2007) Comparative height-crown allometry and mechanical design in 22 tree species of Kuala Belalong rainforest, Brunei, Borneo. Am J Bot 94(12):1951–1962. doi:10.3732/ajb.94.12.1951

    Article  PubMed  Google Scholar 

  • Rouvinen S, Kuuluvainen T (1997) Structure and asymmetry of tree crowns in relation to local competition in a natural mature Scots pine forest. Can J For Res 27:890–902. doi:10.1139/x97-012

    Article  Google Scholar 

  • Rowe N, Speck T (2005) Plant growth forms: an ecological and evolutionary perspective. New Phytol 166:61–72. doi:10.1111/j.1469-8137.2004.01309.x

    Article  PubMed  Google Scholar 

  • Selaya NG, Anten NPR, Mathies M, Oomen RJ, Werger MJA (2007) Above-ground biomass investments and light interception of tropical forest trees early in succession. Ann Bot 99:141–151. doi:10.1093/aob/mcl235

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sellier D, Fourcaud T (2009) Crown structure and wood properties: influence on tree sway and response to high winds. Am J Bot 96(5):885–896. doi:10.3732/ajb.0800226

    Article  PubMed  Google Scholar 

  • Smith AP (1972) Notes on wind-related growth patterns of paramo plants in Venezuela. Biotropica 4:10–16

    Article  Google Scholar 

  • Smith VC, Ennos AR (2003) The effects of air flow and stem flexure on the mechanical and hydraulic properties of the stems of sunflowers Helianthus annuus L. J Exp Bot 54:845–849. doi:10.1093/jxb/erg068

    Article  CAS  PubMed  Google Scholar 

  • Stokes A, Nicoll BC, Coutts MP, Fitter AH (1997) Responses of young Sitka spruce clones to mechanical perturbation and nutrition: effects on biomass allocation, root development, and resistance to bending. Can J For Res 27(7):1049–1057. doi:10.1139/x97-041

    Article  Google Scholar 

  • Sun SC, Chen LZ (1999) Architectural analysis of crown geometry in Quercus Liaotungensis. Acta Phytoecol Sin 23(5):433–440 (In Chinese with English abstract)

    Google Scholar 

  • Tarara JM, Ferguson JC, Hoheisel GA, Perez Peña JE (2005) Asymmetrical canopy architecture due to prevailing wind direction and row orientation creates an imbalance in irradiance at the fruiting zone of grapevines. Agric For Meteorol 135:144–155. doi:10.1016/j.agrformet.2005.11.011

    Article  Google Scholar 

  • Telewski FW (2012) Is windswept tree growth negative thigmotropism? Plant Sci 184:20–28. doi:10.1016/j.plantsci.2011.12.001

    Article  CAS  PubMed  Google Scholar 

  • Telewski FW, Jaffe MJ (1986) Thigmomorphogenesis: anatomical, morphological and mechanical analysis of genetically different sibs of Pinus taeda L. in response to mechanical perturbation. Physiol Plant 66(2):219–226. doi:10.1111/j.1399-3054.1986.tb02412.x

    Article  CAS  PubMed  Google Scholar 

  • Telewski FW, Pruyn ML (1998) Thigmomorphogenesis: a dose response to flexing in Ulmus Americana L. seedlings. Tree Physiol 18:65–68. doi:10.1093/treephys/18.1.65

    Article  PubMed  Google Scholar 

  • van Bloem SJ, Murphy PG, Lugo AE (2003) Subtropical dry forest trees with no apparent damage sprout following a hurricane. Trop Ecol 44(2):137–145

    Google Scholar 

  • Wang SL, Kong FZ, Guan DX, Zhu DX, Sun MQ, Wang HS (1995) Protection effect of salt damage by coastal windbreak forest. Chin J Appl Ecol 6(3):251–254 (in Chinese with English abstract)

    Google Scholar 

  • Watt MS, Moore JR, Mckinlay B (2005) The influence of wind on branch characteristics of Pinus radiata. Trees Struct Funct 19:58–65. doi:10.1007/s00468-004-0363-6

    Article  Google Scholar 

  • White DO, Turner NC, Galbraith JH (2000) Leaf water relations and stomatal behavior of four allopatric Eucalyptus species planted in Mediterranean southwestern Australia. Tree Physiol 20:1157–1165. doi:10.1093/treephys/20.17.1157

    Article  PubMed  Google Scholar 

  • Whitehead FH (1962) Experimental studies of the effect of wind on plant growth and anatomy IV. Growth substances and adaptative anatomical and morphological changes. New Phytol 62(1):86–90

    Article  Google Scholar 

  • Whitney GG (1976) The bifurcation ratio as an indicator of adaptive strategy in wood/plant species. Bull Torr Bot Club 103:67–72

    Article  Google Scholar 

  • Xu JS, Luo MJ, Ye GF, Lin WX, Xu XL (2001) Introduction of Casuarina equisetifolia L. and construction of coastal windbreak forest in Fujian province. Protection. For Sci Technol 48(1):34–36 (in Chinese)

    Google Scholar 

  • Yu YJ, Shi PJ, Lu CX, Liu JQ (2003) Response of the eco-physiological characteristics of some plants under blown sand. Chin J Plant Ecol 27(1):53–58 (in Chinese with English abstract)

    Article  Google Scholar 

  • Zhang D, Li CR, Xu JW, Liu LC, Zhou Z, Wang XL, Huang C (2011) Branching pattern characteristics and anti-windbreakage ability of Pinus thunbergii in sandy coast. Chin J Plant Ecol 35(9):926–936. doi:10.3724/SP.J.1258.2011.00926 (in Chinese with English abstract)

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by the Fujian Provincial Natural Science Foundation (Grant no. 2015J01607), the National Natural Science Foundation of China (Grant nos. 31400533 and 41201564), the National Ministry of Education Foundation for Ph.D Program of China (Grant no. 20090315120008), and Sponsoring Agreement for Overseas Studies in Fujian Province (Grant no. 20131227). The authors thank G. X. Zheng, Z. B. Wu, J. L. Wang, and the staff of Dahe state-owned forest plantation for help collecting and analyzing the data.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chengzhen Wu.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Communicated by Y. Sano.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 1122 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lin, Y., Li, J., Bakker, J.D. et al. Wind and salt spray alter tree shape and dry mass density in Casuarina equisetifolia L.. Trees 31, 15–26 (2017). https://doi.org/10.1007/s00468-016-1450-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00468-016-1450-1

Keywords

Navigation