Skip to main content

Plant Functional Types: Are We Getting Any Closer to the Holy Grail?

  • Chapter
Terrestrial Ecosystems in a Changing World

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Ackerly DD (2003) Community assembly, niche conservatism, and adaptive evolution in changing environments. International Journal of Plant Sciences 164:S165–S184

    Google Scholar 

  • Ackerly DD (2004a) Adaptation, niche conservatism, and convergence: Comparative studies of leaf evolution in the California chaparral. American Naturalist 163:654–671

    Google Scholar 

  • Ackerly DD (2004b) Functional strategies of chaparral shrubs in relation to seasonal water deficit and disturbance. Ecological Monographs 74:25–44

    Google Scholar 

  • Ackerly DD, Dudley SA, Sultan SE, Schmitt J, Coleman JS, Linder CR, Sandquist DR, Geber MA, Evans AS, Dawson TE, Lechowicz MJ (2000) The evolution of plant ecophysiological traits: recent advances and future directions. Bioscience 50:979–995

    Google Scholar 

  • Adler PB, Milchunas DG, Lauenroth WK, Sala OE, Burke IC (2004) Functional traits of graminoids in semi-arid steppes: a test of grazing histories. Journal of Applied Ecology 41:653–663

    Google Scholar 

  • Adler PB, Milchunas DG, Sala OE, Burke IC, Lauenroth WK (2005) Plant traits and ecosystem grazing effects: Comparison of U.S. sagebrush steppe and Patagonian steppe. Ecological Applications 15:774–792

    Google Scholar 

  • Aerts R, Chapin III FS (2000) The mineral nutrition of wild plants revisited: a re-evaluation of processes and patterns. Advances in Ecological Research 30:1–67

    Google Scholar 

  • Arora VK, Boer GJ (2005) A parameterization of leaf phenology for the terrestrial ecosystem component of climate models. Global Change Biology 11:39–59

    Google Scholar 

  • Austin MP, Smith TM (1989) A new model for the continuum concept. Vegetatio 83:35–47

    Google Scholar 

  • Bazzaz FA (1996) Plants in Changing Environments — Linking physiological, population and community ecology. Cambridge University Press, Cambridge

    Google Scholar 

  • Berendse F (1994) Litter decomposability — a neglected component of plant fitness. Journal of Ecology 82:187–190

    Google Scholar 

  • Berry SL, Roderick ML (2002a) CO2 and land-use effects on Australian vegetation over the last two centuries. Australian Journal of Botany 50:511–531

    Google Scholar 

  • Berry SL, Roderick ML (2002b) Estimating mixtures of leaf functional types using continental-scale satellite and climate data. Global Ecology and Biogeography 11:23–39

    Google Scholar 

  • Berry SL, Roderick ML (2004) Gross primary productivity and transpiration flux of the Australian vegetation from 1788 to 1988 ad: effects of CO2 and land use change. Global Change Biology 10:1884–1898

    Google Scholar 

  • Bertness MD, Callaway R (1994) Positive interactions in communities. Trends in Ecology and Evolution 9:191–193

    Google Scholar 

  • Bigelow NH, Brubaker LB, Edwards ME, Harrison SP, Prentice IC, Anderson PM, Andreev AA, Bartlein PJ, Christensen TR, Cramer W, Kaplan JO, Lozhkin AV, Matveyeva NV, Murray DF, McGuire AD, Razzhivin VY, Rtchie JC, Smith B, Walker DA, Gajewski K, Wolf V, Holmqvist BH, Igarashi Y, Kremenetskii K, Paus A, Pisaric MFJ, Volkova VS (2003) Climate change and Arctic ecosystems: 1. Vegetation changes north of 55°N between the last glacial maximum, mid-Holocene and present. Journal of Geophysical Research 108:8170, doi: 8110.1029/2002JD002558

    Google Scholar 

  • Boer M, Stafford Smith M (2003) A plant functional approach to the prediction of changes in Australian rangeland vegetation under grazing and fire. Journal of Vegetation Science 14:333–344

    Google Scholar 

  • Bond WJ, Midgley JJ (1995) Kill thy neighbour: an individualistic argument for the evolution of flammability. Oikos 73:79–85

    Google Scholar 

  • Bond WJ, Midgley JJ (2001) Ecology of sprouting in woody plants: the persistence niche. Trends in Ecology and Evolution 16:45–51

    Google Scholar 

  • Bond WJ, Midgley GF, Woodward FI (2003) The importance of low atmospheric CO2 and fire in promoting the spread of grasslands and savannas. Global Change Biology 9:973–982

    Google Scholar 

  • Boot RGA (1989) The significance of size and morphology of root systems for nutrient acquisition and competition. In: Lambers H, Cambridge ML, Konings H, Pons TL (eds) Causes ans consequences of variation in growth rate and productivity of higher plants. SPB Academic Publishing, The Hague, pp 299–311

    Google Scholar 

  • Box EO (1981) Macroclimate and Plant Forms:An Introduction to Predictive Modelling in Phytogeography. Junk, The Hague

    Google Scholar 

  • Brant SP, Chapin III FS, Klein DR (1983) Carbon/nutrient balance of boreal plants in relation to vertebrate herbivory. Oikos 40:357–368

    Google Scholar 

  • Bruno JF, Stachowicz JJ, Bertness MD (2003) Inclusion of facilitation into ecological theory. Trends in Ecology and Evolution 18:119–125

    Google Scholar 

  • Bryant JP, Provenza FD, Pastor J, Reichardt PB, Clausen TP, du Toit JT (1991) Interactions between woody plants and browsing mammals mediated by secondary metabolites. Annual Review of Ecology and Systematics 22:431–446

    Google Scholar 

  • Bullock JM, Franklin J, Stevenson MJ, Silvertown J, Coulson SJ, Gregory SJ, Tofts R (2001) A plant trait analysis of responses to grazing in a long-term experiment. Journal of Applied Ecology 38:253–267

    Google Scholar 

  • Campbell C, Stafford Smith DM, Ash JE (1999) A rule-based model for the functional analysis of vegetation change in Australasian grasslands. Journal of Vegetation Science 10:723–730

    Google Scholar 

  • Cebrian J, Williams M, McClelland J, Valiela I (1998) The dependence of heterotrophic consumption and C accumulation on autotrophic nutrient content in ecosystems. Ecology Letters 1:165–170

    Google Scholar 

  • Chapin III FS (1993) Functional role of growth forms in ecosystem and global processes. In: Ehrlinger JR, Field CB (eds) Scalling physiological processes: leaf to globe. Academic press, San Diego, pp 287–312

    Google Scholar 

  • Chapin III FS (2003) Effects of plant traits on ecosystem and regional processes: a conceptual framework for predicting the consequences of global change. Annals of Botany 91:1–9

    Google Scholar 

  • Chapin III STA, Autumn K, Pugnaire F (1993) Evolution of suites of traits in response to environmental stress. The American Naturalist 142:578–592

    Google Scholar 

  • Colasanti RL, Hunt R, Askew AP (2001) A self-assembling model of resource dynamics and plant growth incorporating plant functional types. Functional Ecology 15:676–687

    Google Scholar 

  • Coley PD, Bryant JP, Chapin III S (1985) Resource availability and plant antiherbivore defense. Science 230:895–899

    Google Scholar 

  • Collins SC (1987) Interaction of disturbances in a tallgrass prairie: a field experiment. Ecology 68:1243–1250

    Google Scholar 

  • Comas LH, Eissenstat DM (2002) Linking root traits to potential growth rate in six temperate tree species. Oecologia 132:34–43

    Google Scholar 

  • Comas LH, Eissenstat DM (2004) Linking fine root traits to maximum potential growth rate among 11 mature temperate tree species. Functional Ecology 18:388–397

    Google Scholar 

  • Cornelissen JHC, Pérez-Harguindeguy N, Díaz S, Grime JP, Marzano B, Cabido M, Vendramini F, Cerabolini B (1999) Leaf structure and defence control litter decomposition rate across species and life forms in regional flora on two continents. New Phytologist 143:191–200

    Google Scholar 

  • Cornelissen HJC, Aerts R, Cerabolini B, Werger MJA, van der Heijden MGA (2001) Carbon cycling traits of plant species are linkedwith mycorrhizal strategy. Oecologia 129:611–619

    Google Scholar 

  • Cornelissen JHC, Cerabolini B, Castro-Díez P, Villar-Salvador P, Montserrat-Martí G, Puyravaud JP, Maestro M, Werger MJA, Aerts R (2003a) Functional traits of woody plants: correspondence of species rankings between field adults and laboratorygrown seedlings? Journal of Vegetation Science 14:311–322

    Google Scholar 

  • Cornelissen JHC, Lavorel S, Garnier E, Díaz S, Buchmann N, Gurvich DE, Reich PB, ter Steege H, Morgan HD, van der Heijden MGA, Pausas JG, Poorter H (2003b) Handbook of protocols for standardised and easy measurement of plant functional traits worldwide. Australian Journal of Botany 51:335–380

    Google Scholar 

  • Cousins S, Lavorel S, Davies ID (2003) Modelling the effects of landscape pattern and grazing regimes on the persistence of plant species with high conservation value in grasslands in south-eastern Sweden. Landscape Ecology 18:315–332

    Google Scholar 

  • Craine JM, Lee WG (2003) Covariation in leaf and root traits for native and non-native grasses along an altitudinal gradient in New Zealand. Oecologia 134:471–478

    Google Scholar 

  • Craine JM, Froehle J, Tilman DG, Wedin DA, Chapin III FS (2001) The relationships among root and leaf traits of 76 grassland species and relative abundance along fertility and disturbance gradients. Oikos 93:274–285

    Google Scholar 

  • Craine JM, Tilman D, Wedin D, Reich PB, Tjoelker MG, Knops J (2002) Functional traits, productivity and effects on nitrogen cycling in 33 grassland species. Functional Ecology 16:585–595

    Google Scholar 

  • Craine JM, Wedin DA, Chapin FSI, Reich PB (2003) Relationship between the structure of root systems and resource use for 11 North American grassland plants. Plant Ecology 165:85–100

    Google Scholar 

  • Craine JM, Lee WG, Bond WJ, Williams RJ, Johnson LC (2005) Environmental constraints on a global relationship among leaf and root traits of grasses. Ecology 86:12–19

    Google Scholar 

  • Cramer W, Bondeau A, Woodward FI, Prentice IC, Betts RA, Brovkin V, Cox PM, Fisher V, Foley J, Friend AD, Kucharik C, Lomas MR, Ramankutty N, Sitch S, Smith B, White A, Young-Molling C (2001) Dynamic responses of global terrestrial ecosystems to changes in CO2 and climate. Global. Change Biology 7:357–374

    Google Scholar 

  • Crawley MJ (ed) (1992) Natural Enemies. Blackwell Scientific Publications, Oxford

    Google Scholar 

  • Cruz P, Duru M, Therond O, Theau JP, Ducourtieux C, Jouany C, Al Haj Khaled R, Ansquer P (2002) Une nouvelle approche pour caractériser la valeur d’usage des prairies naturelles et seminaturelles. Fourrages 172:335–354

    Google Scholar 

  • Cunningham SA, Summerhayes B, Westoby M (1999) Evolutionary divergences of leaf structure and chemistry, comparing rainfall and soil nutrient gradients. Ecological Monographs 69:569–588

    Google Scholar 

  • D’Antonio CM (2000) Fire, plant invasions, and global changes. In: Mooney HA, Hobbs RJ (eds) Invasive species in a changing world. Island Press, Covela, pp 65–94

    Google Scholar 

  • D’Antonio CM, Corbin JD (2003) Effects of plant invaders on nutrient cycling — Exploring the link between invasion and development of species effects. In: Canham C, Cole JJ, Lauenroth WK (eds) Models in Ecosystem Ecology. Princeton University Press, Princeton, pp 363–384

    Google Scholar 

  • D’Antonio CM, Vitousek PM (1992) Biological invasions by exotic grasses, the grass/fire cycle, and global change. Annual Review of Ecology and Systematics 23:63–87

    Google Scholar 

  • Dale VH, Joyce LA, McNulty S, Neilson RP, Ayres MP, Flannigan MD, Hanson PJ, Irland LC, Lugo AE, Peterson CJ, Simberloff D, Swanson FJ, Stocks BJ, Wotton BM (2001) Climate change and forest disturbances. Bioscience 51:723–734

    Google Scholar 

  • Danell K, Bergström R (2002) Mammalian herbivory in terrestrial environments. In: Herrera CMP, O. (ed) Plant-animal interactions. Blackwell Publishing, Oxford, pp 107–131

    Google Scholar 

  • Dawson TE, Chapin III FS (1993) Grouping plants by their form — Function characteristics as an avenue for simplification in scaling between leaves and landscapes. In: Field CB, Ehleringer JR (eds) Scaling physiological processes from the leaf to the globe. Academic Press, pp 313–319

    Google Scholar 

  • Díaz S, Cabido M (1997) Plant functional types and ecosystem function in relation to global change. Journal of Vegetation Science 8:463–474

    Google Scholar 

  • Díaz S, Cabido M, Casanoves F (1999) Functional implications of trait-environment linkages in plant communities. In: Weiher E, Keddy P (eds) Ecological assembly rules — Perspectives, advances, retreats. Cambridge University Press, Cambridge, pp 338–362

    Google Scholar 

  • Díaz S, Noy-Meir I, Cabido M (2001) Can grazing response of herbaceous plants be predicted from simple vegetative traits? Journal of Applied Ecology 38:497–508

    Google Scholar 

  • Díaz S, Briske D, McIntyre S (2002a) Range management and plant functional types. In: Hodkingson K, Grice AC (eds) Global Rangelands: Progress and Prospects. CAB International, Wallingford, pp 81–100

    Google Scholar 

  • Díaz S, McIntyre S, Lavorel S, Pausas J (2002b) Does hairiness matter in Harare? — Global comparisons of plant trait responses to disturbance. New Phytologist 154:7–9

    Google Scholar 

  • Díaz S, Hodgson JG, Thompson K, Cabido M, Cornelissen JHC, Jalili A, Montserrat-Martí G, Grime JP, Zarrinkamar F, Asri Y, Band SR, Basconcelo S, Castro-Diez P, Funes G, Hamzehee B, Khoshnevi M, Pérez-Harguindeguy N, Pérez-Rontomé MC, Shirvany FA, Vendramini F, Yazdani S, Abbas-Azimi R, Bogaard A, Boustani S, Charles M, Dehghan M, De Torres-Espuny L, Falczuk V, Guerrero-Campo J, Hynd A, Jones G, Kowsary E, Kazemi-Saeed F, Maestro-Martínez M, Romo-Díez A, Shaw S, Siavash B, Villar-Salvador P, Zak MR (2004) The plant traits that drive ecosystems: Evidence from three continents. Journal of Vegetation Science 15:295–304

    Google Scholar 

  • Díaz S, Lavorel S, Chapin III FS, Tecco PA, Gurvich DE, Grigulis K (2007) Functional diversity — at the crossroads between ecosystem functioning and environmental filters. In: Canadell J, Pitelka LF, Pataki D (eds) Terrestrial Ecosystems in a Changing World. Springer-Verlag, this volume

    Google Scholar 

  • Díaz S, Lavorel S, McIntyre S, Falczuk V, Casanoves F, Milchunas D, Skarpe C, Rusch G, Sternberg M, Noy-Meir I, Landsberg J, Zangh W, Clark H, Campbell BD (in press) Grazing and plant traits — A global synthesis. Global Change Biology

    Google Scholar 

  • Dodd MB, Lauenroth WK, Burke IC, Chapman PR (2002) Associations between vegetation patterns and soil texture in the shortgrass steppe. Plant Ecology 158:127–137

    Google Scholar 

  • Duru M, Cruz P, Magda D (2004) Using plant traits to compare sward structure and composition of grass species across environmental gradients. Applied Vegetation Science 7:11–18

    Google Scholar 

  • Dyer AR, Goldberg DE, Turkington R, Sayre C (2001) Effects of growing conditions and source habitat on plant traits and functional group definition. Functional Ecology 15:85–95

    Google Scholar 

  • Eissenstat DM (1991) The ecology of root lifespan. Advances in Ecological Research 27:1–60

    Google Scholar 

  • Eissenstat DM, Wells CE, Yanai RD, Whitbeck JL (2000) Building roots in a changing environment: implications for root longevity. New Phytologist 147:33–42

    Google Scholar 

  • Eriksson O, Ehrlén J (2001) Landscape fragmentation and the viability of plant populations. In: Silvertown J, Antonovics J (eds) Integrating ecology and evolution in a spatial context. Blackwell Science, Oxford, pp 157–175

    Google Scholar 

  • Eviner VT, Chapin III FS (2003) Functional matrix: a conceptual framework for predicting multiple plant effects on ecosystem processes. Annual Review of Ecology and Systematics 34: 455–485

    Google Scholar 

  • Fitter A, Stickland TR (1991) Architectural analysis of plant root systems. 2. Influence of nutrient supply on architecture in contrasting plant species. New Phytologist 118:383–389

    Google Scholar 

  • Foley JA, Prentice IC, Ramankutty S, Levis S, Pollard D, Sitch S, Haxeltine A (1996) An integrated biosphere model of land surface processes, terrestrial carbon balance and vegetation dynamics. Global Biogeo-chemical Cycles 10:603–628

    Google Scholar 

  • Friend AD, Stevens AK, Knox RG, Cannell MGR (1997) A process-based, terrestrial biosphere model of ecosystem dynamics (Hybrid v3.0). Ecological Modelling 95:249–287

    Google Scholar 

  • Garnier E, Aronson J (1998) Nitrogen-use efficiency from leaf to stand level: clarifying the concept. In: Lambers H, Poorter H, Van Vuuren MMI (eds) Inherent variation in plant growth. Physiological mechanisms and ecological consequences. Backhuys Publishers, Leiden, The Netherlands, pp 515–538

    Google Scholar 

  • Garnier E, Cortez J, Billès G, Navas M-L, Roumet C, Debussche M, Laurent G, Blanchard A, Aubry D, Bellmann A, Neill C, Toussaint J-P (2004) Plant functional markers capture ecosystem properties during secondary succession. Ecology 85: 2630–2637

    Google Scholar 

  • Garnier E, Laurent G, Bellmann A, Debain S, Berthelier P, Ducout B, Roumet C, Navas M-L (2001) Consistency of species ranking based on functional leaf traits. New Phytologist 152:69–83

    Google Scholar 

  • Gerten D, Schaphoff S, Haberlandt U, Lucht W, Sitch S (2004) Terrestrial vegetation and water balance: hydrological evaluation of a dynamic global vegetation model. Journal of Hydrology 286:249–270

    Google Scholar 

  • Gitay H, Noble IR (1997) What are functional types and how should we seek them? In: Smith TM, Shugart HH, Woodward FI (eds) Plant Functional Types. Their Relavance to Ecosystem Properties and Global Change. Cambridge University Press, Cambridge, pp 3–19

    Google Scholar 

  • Goldberg DE (1991) Competitive effect and response: hierarchies and correlated traits in the early stages of competition. Journal of Ecology 79:1013–1030

    Google Scholar 

  • Goldberg DE, Novoplansky A (1997) On the relative importance of competition in unproductive environments. Journal of Ecology 85:409–418

    Google Scholar 

  • Grassl H (2000) Status and improvements of coupled general circulation models. Science 288:1991–1997

    Google Scholar 

  • Grigulis K, Lavorel S, Davies ID, Dossantos A, Lloret F, Vilà M (2005) Landscape-scale positive feedbacks between fire and expansion of the large tussock grass, Ampelodesmos mauritanica, in Catalan shrublands. Global Change Biology 11:1042–1053

    Google Scholar 

  • Grime JP (1977) Evidence for the existence of three primary strategies in plants and its relevance to ecological and evolutionary theory. The American Naturalist 111:1169–1194

    Google Scholar 

  • Grime JP (1979) Plant strategies and vegetation processes. John Wiley and Sons, Chichester

    Google Scholar 

  • Grime JP (2001) Plant strategies, vegetation processes and ecosystem properties, 2nd edn. John Wiley and Sons, Chichester

    Google Scholar 

  • Grime JP, Corneliessen HJC, Thompson K, Hodgson JG (1996) Evidence of a causal connection between anti-herbivore defence and the decomposition rate of leaves. Oikos 77:489–494

    Google Scholar 

  • Grime JP, Thompson K, Hunt R, Hodgons JG, Cornelissen JHC, Rorison IH, Hendry GAF, Ashenden TW, Askew AP, Band SR, Booth RE, Bossard CC, Campbell BD, Cooper JEL, Davison AW, Gupta PL, Hall W, Hand DW, Hannah MA, Hillier SH, Hodkinson DJ, Jalili A, Liu Z, Mackey JML, Matthews N, Mowforth MA, Neal AM, Reader RJ, Reiling K, Ross-Fraser W, Spencer RE, Sutton F, Tasker DE, Thorpe PC, Whitehouse J (1997) Integrated screening validates primary axis of specialisation in plants. Oikos 79:259–281

    Google Scholar 

  • Hanley M, Lamont B (2002) Relationships between physical and chemical attributes of congeneric seedlings: how important is seedling defence? FUNCTIONAL ECOLOGY 16:216–222

    Google Scholar 

  • Harrison SP, Foley JA (1995) General circulation models, climate change and ecological impact studies. In: Pernetta J, Leemans R, Elder D, Humphrey S (eds) The Impact of Climate Change on Ecosystems and Species: Environmental Context. IUCN, Gland, Switzerland, pp 9–26

    Google Scholar 

  • Harrison SP, Prentice IC (2003) Climate and CO2 controls on global vegetation distribution at the last glacial maximum: analysis based on palaeovegetation data, biome modelling and palaeoclimate simulations. Global Change Biology 9:983–1004

    Google Scholar 

  • Harrison SP, Yu G, Takahara H, Prentice IC (2001) Plant diversity and palaeovegetation in East Asia. Nature 413:129–130

    Google Scholar 

  • Hartley SE, Jones CG (1997) Plant chemistry and herbivory, or why the world is green. In: Crawley JM (ed) Plant ecology. Blackwell Science Ltd., Oxford, pp 284–335

    Google Scholar 

  • Hättenschwiller S, Vitousek PM (2000) The role of polyphenols in terrestrial ecosystem nutrient cycling. Trends in Ecology and Evolution 15:238–243

    Google Scholar 

  • Herms DA, Mattson WJ (1992) The dilemma of plants: to grow or defend. Quaterly Review of Biology 67:293–335

    Google Scholar 

  • Hickler T, Smith B, Sykes MT, Davis MB, Sugita S, Walker K (2004) Using a general vegetation model to simulate vegetation dynamics in northeastern U.S.A. Ecology 85:519–530

    Google Scholar 

  • Hodgson JG, Wilson PJ, Hunt R, Grime JP, Thompson K (1999) Allocating C-S-R plant functional types: a soft approach to a hard problem. Oikos 85:282–294

    Google Scholar 

  • Hooper DU, Ewel JJ, Hector A, Inchausti P, Lavorel S, Lodge D, Loreau M, Naeem S, Schmid B, Setälä H, Symstad AJ, Vandermeer J, Wardle DA (2005) Effects of biodiversity on ecosystem functioning: a consensus of current knowledge and needs for future research. Ecological Monographs 75:3–35

    Google Scholar 

  • Hughes L, Dunlop M, French K, Leishman MR, Rice B, Rodgerson L, Westoby M (1994) Predicting dispersal spectra: a minimal set of hypotheses based on plant attributes. Journal of Ecology 82:933–950

    Google Scholar 

  • Jackson ST, Williams JW (2004) Modern analogs in Quaternary paleoecology: here today, gone yesterday, gone tomorrow? Annual Review of Planetary Science 32:495–530

    Google Scholar 

  • Jackson RB, Canadell J, Ehleringer JR, Mooney HA, Sala OE, Schulze ED (1996) A global analysis of root distribution for terrestrial biomes. Oecologia 108:389–411

    Google Scholar 

  • Joussaume S, Taylor KE (2000) The Paleoclimate Modeling Intercom-parison Project. In: Braconnot P (ed) Paleoclimate Modelling Intercomparison Project (PMIP). Proceedings of the third PMIP workshop, vol. WCRP-111; WMO/TD-No. 1007, La Huardière, Canada, pp 9–24

    Google Scholar 

  • Keane RE, Cary GJ, Davies ID, Flannigan MD, Gardner RH, Lavorel S, Lenihan JM, Li C, Rupp TS (2007) Understanding global fire dynamics by classifying and comparing spatial models of vegetation and fire dynamics. In: Canadell J, Pitelka LF, Pataki D (eds) Terrestrial Ecosystems in a Changing World. Springer-Verlag, this volume

    Google Scholar 

  • Keddy PA (1992) Assembly and response rules: two goals for predictive community ecology. Journal of Vegetation Science 3:157–164

    Google Scholar 

  • Keddy PA, Fraser LH, Wisheu IC (1998) A comparative approach to examine competitive response of 48 wetland plant species. Journal of Vegetation Science 9:777–786

    Google Scholar 

  • Keddy P, Gaudet C, Fraser LH (2000) Effects of low and high nutrients on the competitive hierarchy of 26 shoreline plants. Journal of Ecology 88:413–423

    Google Scholar 

  • Kleyer M (1999) Distribution of plant functional types along gradients of disturbance intensity and resource supply in an agricultural landscape. Journal of Vegetation Science 10:697–708

    Google Scholar 

  • Klironomos JN (2003) Variation in plant response to native and exotic arbuscular mycorrhizal fungi. Ecology 84:2292–2301

    Google Scholar 

  • Klironomos JN, McCune J, Hart MM, Neville J (2000) The influence of arbuscular mycorrhizae on the relationship between plan biodiversity and productivity. Ecology Letters 3:137–141

    Google Scholar 

  • Kohfeld KE, Harrison SP (2000) How well can we simulate past climates? Evaluating the models using global palaeoenvironmental datasets. Quaternary Science Review 19:321–346

    Google Scholar 

  • Landsberg J, O’Connor T, Freudenberger D (1999) The impacts of livestock grazing on biodiversity in natural ecosystems. In: Jung HG, Fahey GC (eds) Nutritional Ecology of Herbivores. Proc. Vth International Symposium on the Nutrition of Herbivores. American Soc. Anim. Sci., Savoy, Illinois, pp 752–777

    Google Scholar 

  • Langley JA, Hungate B (2003) Mycorrhizal controls on belowground litter quality. Ecology 84:2302–2312

    Google Scholar 

  • Lavorel S, Cramer W (eds) (1999) Plant functional response to land use and natural disturbance

    Google Scholar 

  • Lavorel S, Garnier E (2002) Predicting the effects of environmental changes on plant community composition and ecosystem functioning: revisiting the Holy Grail. Functional Ecology 16:545–556

    Google Scholar 

  • Lavorel S, McIntyre S (1999c) Plant functional types: is the real world too complex? In: Proceedings of the VIth International Rangelands Congress, Townsville, Australia, pp 905–911

    Google Scholar 

  • Lavorel S, McIntyre S, Landsberg J, Forbes D (1997) Plant functional classifications: from general groups to specific groups based on response to disturbance. Trends in Ecology and Evolution 12:474–478

    Google Scholar 

  • Lavorel S, Touzard B, Lebreton J-D, Clément B (1998) Identifying functional groups for response to disturbance in an abandoned pasture. Acta Oecologica 19:227–240

    Google Scholar 

  • Lavorel S, McIntyre S, Grigulis K (1999a) Plant response to disturbance in a Mediterranean grassland: how many functional groups? Journal of Vegetation Science 10:661–672

    Google Scholar 

  • Lavorel S, Rochette C, Lebreton J-D (1999b) Functional groups for response to disturbance in Mediterranean old fields. Oikos 84:480–498

    Google Scholar 

  • Leishman MR, Westoby M (1992) Classifying plants into groups on the basis of associations of individual traits — evidence from Australian semi-arid woodlands. Journal of Ecology 80:417–424

    Google Scholar 

  • Leishman MR, Westoby M (1994) The role of seed size in seedling establishment in dry soil conditions-experimental evidence from semi-arid species. Journal of Ecology 82:249–258

    Google Scholar 

  • Liancourt P, Callaway RM, Michalet R (2005) Stress tolerance and competitive response ability determine the outcome of biotic interactions. Ecology 86:1611–1618

    Google Scholar 

  • Marañon T, Grubb PJ (1993) Physiological basis and ecological significance of the seed size and relative growth rate relationship in Mediterranean annuals. Functional Ecology 7:591–599

    Google Scholar 

  • McGillivray CW (1995) Testing predictions of the resistance and resilience of vegetation subjected to extreme events. Functional Ecology 9:640–649

    Google Scholar 

  • McIntyre S, Lavorel S (2001) Livestock grazing in sub-tropical pastures: steps in the analysis of attribute response and plant functional types. Journal of Ecology 89:209–226

    Google Scholar 

  • McIntyre S, Martin TG (2001) Biophysical and human influences on plant species richness in grasslands — comparing variegated landscapes in sub-tropical and temperate regions. Austral Ecology 26:233–245

    Google Scholar 

  • McIntyre S, Martin TG (2002) Managing intensive and extensive land uses to conserve grassland plants in sub-tropical eucalypt woodlands. Biological Conservation 107:241–252

    Google Scholar 

  • McIntyre S, Lavorel S, Landsberg J, Forbes TDA (1999) Disturbance response in vegetation — towards a global perspective on functional traits. Journal of Vegetation Science 10:621–630

    Google Scholar 

  • McIntyre S, Heard KM, Martin TG (2002) How grassland plants are distributed over five human-created habitats typical of eucalypt woodlands in a variegated landscape. Pacific Conservation Biology 7:274–285

    Google Scholar 

  • McIntyre S, Heard KM, Martin TG (2003) The relative importance of cattle grazing in sub-tropical grasslands — does it reduce or enhance plant diversity? Journal of Applied Ecology 40:445–457

    Google Scholar 

  • McKey D, Waterman PG, Gartlan JS, Struhsacker TT (1978) Phenolic content of vegetation in two African rainforests: ecological implications. Science 202:61–64

    Google Scholar 

  • Michalet R (2001) Facteurs abiotiques et traits biologiques déterminant les interactions biotiques, la répartition des populations dominantes et la structuration des communautés terrestres: Application à quelques écosystèmes de l’Arc Alpin. In. Université J. Fourier, Grenoble

    Google Scholar 

  • Michelsen A, Schmidt IK, Dighton J, Jones HE, Callaghan TV (1995) Inhibition of growth and effects on nutrient uptake of arctic graminoids by leaf extracts — allelopathy or resource competition between plants and microbes. Oecologia 103:407–418

    Google Scholar 

  • Midgley GF, Thuiller W, Higgins SI (2007) Plant species migration as a key uncertainty in predicting future impacts of climate change on ecosystems: progress and challenges. In: Canadell J, Pitelka LF, Pataki D (eds) Terrestrial Ecosystems in a Changing World. Springer-Verlag, this volume

    Google Scholar 

  • Moore AD, Noble IR (1990) An individualistic model of vegetation stand dynamics. Environmental Management 31:61–81

    Google Scholar 

  • Naeem S, Wright JP (2003) Disentangling biodiversity effects on ecosystem functioning: deriving solutions to a seemingly insurmountable problem. Ecology Letters 6:567–579

    Google Scholar 

  • Neilson RP, King GA, DeVelice RL, Lenihan JM (1992) Regional and local vegetation patterns: the responses of vegetation diversity to subcontinental air masses. In: Hansen AJ, di Castri F (eds) Landscape Boundaries. Springer-Verlag, pp 129–149

    Google Scholar 

  • Nicotra AB, Babicka N, Westoby M (2002) Seedling root anatomy and morphology: an examination of ecological differentiation with rainfall using phyllogenetically independent contrasts. Oecologia 130:136–145

    Google Scholar 

  • Niinemets Ü (2001) Global-scale climatic controls of leaf dry mass per area, density, and thickness in trees and shrubs. Ecology 82:453–469

    Google Scholar 

  • Noble IR, Gitay H (1996) A functional classification for predicting the dynamics of landscapes. J Vegetat Sci 7:329–336

    Google Scholar 

  • Noble IR, Slatyer RO (1980) The use of vital attributes to predict successional changes in plant communities subject to recurrent disturbances. Vegetatio 43:5–21

    Google Scholar 

  • Norby RJ, Rustad LE, Dukes JS, Ojima DS, Parton WJ, Del Grosso SJ, McMurtrie RE, Pepper DA (2007) Multiple factor interactions on ecosystem function. In: Canadell J, Pitelka LF, Pataki D (eds) Terrestrial Ecosystems in a Changing World. Springer-Verlag, this volume

    Google Scholar 

  • Nygaard B, Erjnaes R (2004) A shortcut around the fourth corner — a new approach to functional interpretation of vegetation data. Journal of Vegetation Science 15:49–56

    Google Scholar 

  • Overpeck J, Whitlock C, Huntley B (2003) Terrestrial biosphere dynamics in the climate system: past and future. In: Alverson KD, Bradley RS, Pedersen T (eds) Paleoclimate, Global Change and the Future. Springer-Verlag, Berlin-Heidelberg-New York, pp 81–103

    Google Scholar 

  • Pausas JG (1999) Response of plant functional types to changes in the fire regime in Mediterranean ecosystems: a simulation approach. Journal of Vegetation Science 10:717–722

    Google Scholar 

  • Pausas JG (2003) The effect of landscape pattern on Mediterranean vegetation dynamics: A modelling approach using functional types. Journal of Vegetation Science 14:365–374

    Google Scholar 

  • Pausas J, Lavorel S (2003) A hierarchical deductive approach for functional types in disturbed ecosystems. Journal of Vegetation Science 14:409–416

    Google Scholar 

  • Pausas JG, Ramos JI (2005) Landscape Analysis and Simulation Shell (LASS). Environmental Modelling and Software in press

    Google Scholar 

  • Pausas JG, Verdú M (2005) Plant persistence traits in fire-prone ecosystems of the Mediterranean Basin: A phylogenetic approach. Oikos 109:196–202

    Google Scholar 

  • Pausas JG, Rusch GM, Leps J (eds) (2003) Plant Functional Types in relation to disturbance and land use

    Google Scholar 

  • Pausas JG, Bradstock RA, Keith DA, Keeley JE, Network tGF (2004) Plant functional traits in relation to fire in crown-fire ecosystems. Ecology 85:1085–1100

    Google Scholar 

  • Pavón N, Hernández-Trejo H, Rico-Gray V (2000) Distribution of plant life forms along an altitude gradient in the semi-arid valley of Zapoltitlán, Mexico. Journal of Vegetation Science 11: 39–42

    Google Scholar 

  • Pellissier F (1998) The role of soil community in plant population dynamics: is allelopathy a key component? Trends in Ecology and Evolution 13:407–407

    Google Scholar 

  • Pellissier F, Souto XC (1999) Allelopathy in northern temperate and boreal semi-natural woodland. Critical Reviews in Plant Sciences 18:637–652

    Google Scholar 

  • Pérez-Harguindeguy N, DÍaz S, Cornelissen JHC, Vendramini F, Cabido M, Castellanos A (2000) Chemistry and toughness predict leaf litter decomposition rates over a wide spectrum of functional types and taxa in central Argentina. Plant and Soil 218:21–3

    Google Scholar 

  • Pérez-Harguindeguy N, Díaz S, Vendramini F, Cornelissen JHC, Gurvich DE, Cabido M (2003) Leaf traits and herbivore selection in the field and in cafeteria experiments. Austral Ecol 28:642–65

    Google Scholar 

  • Pickett EJ, Harrison SP, Hope G, Harle K, Dodson JR, Kershaw AP, Prentice IC, Backhouse J, Colhoun EA, D’Costa D, Flenley J, Grindrod J, Haberle S, Hassell C, Kenyon C, Macphail M, Martin H, Martin AH, McKenzie M, Newsome JC, Penny D, Powell J, Raine JI, Southern W, Stevenson J, Sutra JP, Thomas I, van der Kaars S, Ward J (2004) Pollen-based reconstructions of biome distributions for Australia, Southeast Asia and the Pacific (SEAPAC region) at 0, 6000 and 18000 14C yr B.P. Journal of Biogeography 31:1–65

    Google Scholar 

  • Pillar VD, Sosinsky EJ (2003) An improved method for searching plant functional types by numerical analysis. Journal of Vegetation Science 14:323–332

    Google Scholar 

  • Poorter L (1999) Growth responses of 15 rain-forest tree species to a light gradient: the relative importance of morphological and physiological traits. Functional Ecology 13:396–410

    Google Scholar 

  • Poorter H, Garnier E (1999) Ecological significance of inherent variation in relative growth rate and its components. In: Pugnaire FI, Valladares F (eds) Handbook of Functional Plant Ecology. Marcel Dekker INC., New-York, pp 81–120

    Google Scholar 

  • Poorter H, Roumet C, Campbell BD (1996) Interspecific variation in the growth response of plants to elevated CO2: a search for functional types. In: Körner C, Bazzaz FA (eds) Carbon dioxyde, populations, and communities. Academic Press, San Diego, California, pp 375–412

    Google Scholar 

  • Potter CS, Klooster SA (1999) Dynamic global vegetation modelling for prediction of plant functional types and biogenic trace gas fluxes. Global Ecology and Biogeography 8:473–488

    Google Scholar 

  • Prach K (1997) Changes in species traits during succession: a search for pattern. Oikos 79:201–205

    Google Scholar 

  • Prentice IC, Cramer W, Harrison SP, Leemans R, Monserud RA, Solomon AM (1992) A global biome model based on plant physiology and dominance, soil properties and climate. Journal of Biogeography 19:117–134

    Google Scholar 

  • Prentice IC, Jolly D, participants B (1998) Mid-Holocene and glacial-maximum vegetation geography of the northern continents and Africa. Journal of Biogeography 25:997–1005

    Google Scholar 

  • Prentice IC, Heimann M, Sitch S (2000) The carbon balance of the terrestrial biosphere: Ecosystem models and atmospheric observations. Ecological Applications 10:1553–1573

    Google Scholar 

  • Prentice IC, Bondeau A, Cramer W, Harrison SP, Hickler T, Lucht W, Sitch S, Smith B, Sykes M (2007) Dynamic global vegetation models: tools to understand the biosphere. In: Canadell J, Pitelka LF, Pataki D (eds) Terrestrial Ecosystems in a Changing World. Springer-Verlag, this volume

    Google Scholar 

  • Raunkiaer C (1934) The life forms of plants and statistical plant geography. Oxford University Press, Oxford

    Google Scholar 

  • Read DJ (1991) Mycorrhizas in ecosystems. Experientia 47:376–391

    Google Scholar 

  • Read DJ, Leake JR, Perez-Moreno J (2004) Mycorrhizal fungi as drivers of ecosystem processes in heathland and boreal forest biomes. Canadian Journal of Botany 82:1243–1263

    Google Scholar 

  • Reich PB, Walters MB, Ellsworth DS (1992) Leaf lifespan in relation to leaf, plant and stand characteristics among diverse ecosystems. Ecological Monographs 62:356–392

    Google Scholar 

  • Reich PB, Walters MB, Ellsworth DS (1997) From tropics to tundra: a global convergence in plant functioning. Proceedings of the National Academy of Sciences, USA 94:13730–13734

    Google Scholar 

  • Reich PB, Tjoelker MG, Walters MB, Vanderklein DW, Buschena C (1998a) Close association of RGR, leaf and root morphology, seed mass and shade tolerance in seedlings of nine boreal tree species grown in high and low light. Functional Ecology 12:337–338

    Google Scholar 

  • Reich PB, Walters MB, Tjoelker MG, Vanderklein DW, Buschena C (1998b) Photosynthesis and respiration rates depend on leaf and root morphology and nitrogen concentration in nine boreal species differing in relative growth rate. Functional Ecology 12:337–338

    Google Scholar 

  • Reich PB, Wright IJ, Cavender-Bares J, Craine JM, Oleksyn J, Westoby M, Walters MB (2003) The evolution of plant functional variation: traits, spectra, and strategies. International Journal of Plant Sciences 164:143–164

    Google Scholar 

  • Richardson SJ, Peltzer DA, Allen RB, McGlone MS (2005) Resorption proficiency along a chronosequence: Responses among communities and within species. Ecology 86:20–25

    Google Scholar 

  • Rillig MC (2004) Arbuscular mycorrhizae and terrestrial ecosystem processes. Ecology Letters 7:740–754

    Google Scholar 

  • Roberts DW, Betz DW (1997) Simulating landscape vegetation dynamics of Bryce Canyon National Park with the vital attributes/fuzzy systems model VAFS/LANDSIM. In: Mladenoff DJ, Baker WL (eds) Spatial modeling of forest landscape change: approaches and applications. Cambridge University Press, Cambridge, pp 99–124

    Google Scholar 

  • Robinson D, Rorison IH (1988) Plasticity in grass species in relation to nitrogen supply. Functional Ecology 2:249–257

    Google Scholar 

  • Ryser P (1996) The importance of tissue density for growth and life span of leaves and roots: a comparison of five ecologically contrasting grasses. Functional Ecology 10:717–723

    Google Scholar 

  • Ryser P (1998) Intra-and interspecific variation in root length, root turnover and the underlying parameters. In: Lambers H, Poorter H, Van Vuuren MMI (eds) Inherent variation in plant growth. Physiological mechanisms and ecological consequences. Backhuys Publishers, Leiden, The Netherlands, pp 441–465

    Google Scholar 

  • Schenk HJ, Jackson RB (2002) Rooting depths, lateral root spreads and below-ground / above-ground allometries of plants in water-limited ecosystems. Journal of Ecology 90:480–494

    Google Scholar 

  • Schenk HJ, Jackson RB (2005) Mapping the global distribution of deep roots in relation to climate and soil characteristics. Geoderma 126:129–140

    Google Scholar 

  • Schwilk DW, Ackerly DD (2001) Flammability and serotiny as strategies: correlated evolution in pines. Oikos 94:326–336

    Google Scholar 

  • Shipley B, Almeida-Cortez J (2003) Interspecific consistency and intraspecific variability of specific leaf area with respect to irradiance and nutrient availability. Ecoscience 10:74–79

    Google Scholar 

  • Shipley B, Keddy PA, Moore DRJ, Lemky K (1989) Regeneration and establishment strategies of emergent macrophytes. Journal of Ecology 77:1093–1110

    Google Scholar 

  • Silvertown J, Franco M, Pisanty I, Mendoza A (1993) Comparative plant demography — relative importance of life-cycle components to the finite rate of increase in woody and herbaceous perennials. Journal of Ecology 81:465–476

    Google Scholar 

  • Sitch S, Smith B, Prentice IC, Arneth A, Bondeau A, Cramer W, Kaplan JO, Levis S, Lucht W, Sykes MT, Thonicke K, Venevsky S (2003) Evaluation of ecosystem dynamics, plant geography and terrestrial carbon cycling in the LPJ dynamic global vegetation model. Global Change Biology 9:161–185

    Google Scholar 

  • Smith T, Huston M (1989) A theory of the spatial and temporal dynamics of plant communities. Vegetatio 83:49–69

    Google Scholar 

  • Smith TM, Shugart HH, Woodward FI (eds) (1997) Plant functional types, their relevance to ecosystem properties and global change. Cambridge University Press, Cambridge

    Google Scholar 

  • Solbrig OT (1993) Plant traits and adaptative strategies: their role in ecosystem function. In: Schulze ED, Mooney HA (eds) Biodiversity and ecosystem function, vol 99. Springer-Verlag, Berlin, pp 97–116

    Google Scholar 

  • Stanton ML, Roy BA, Thiede DA (2000) Evolution in stressful environments. I. Phenotypic variability, phenotypic selection, and response to selection in five environmental stresses. Evolution 54:93–111

    Google Scholar 

  • Strand JA, Weisner SEB (2004) Phenotypic plasticity — contrasting species-specific traits induced by identical environmental constraints. New Phytologist 163:449–451

    Google Scholar 

  • Suding KN, Goldberg DE (2001) Do disturbances alter competitive hierarchies? Mechanisms of change following gap creation. Ecology 82:2133–2149

    Google Scholar 

  • Suding KN, Goldberg DE, Hartman KM (2003) Relationships among species traits: separating levels of response and identifying linkages to abundance. Ecology 84:1–16

    Google Scholar 

  • Thompson K, Band SR, Hodgson G (1993) Seed size and shape predict persistence in soil. Functional Ecology 7:236–241

    Google Scholar 

  • Thompson K, Hillier SH, Grime JP, Bossard CC, Band SR (1996) A functional analysis of a limestone grassland community. Journal of Vegetation Science 7:371–380

    Google Scholar 

  • Tilman D (1988) Plant strategies and the dynamics and structure of plant communities. Princeton University Press, Princeton

    Google Scholar 

  • Urcelay C, Díaz S (2003) The mycorrhizal dependence of subordinates determines the effect of arbuscular mycorrhizal fungi on plant diversity. Ecology Letters 6:388–391

    Google Scholar 

  • van der Heijden MGA, Boller T, Wiemken A, Sanders IR (1998a) Different arbuscular mycorrhizal fungal species are potential determinants of plant community structure. Ecology 79: 2082–2091

    Google Scholar 

  • van der Heijden MGA, Klironomos JN, Ursic M, Mouroglis P, Striwolf-Engel R, Boller T, Wiemken A, Sanders I (1998b) Mycorrhizal fungal diversity determines plant biodiversity, ecosystem variability and productivity. Nature 396:69–72

    Google Scholar 

  • Venable DL, Brown JS (1988) The selective interaction of dispersal, dormancy, and seed size as adaptations for reducing risk in variable environments. American Naturalist 131:361–384

    Google Scholar 

  • Walker B, Kinzig A, Langridge J (1999) Plant attribute diversity, resilience and ecosystem function: the nature and significance of dominant and minor species. Ecosystems 2:95–113

    Google Scholar 

  • Wardle DA (2002) Communities and ecosystems. Linking the aboveground and belowground components. Princeton University Press, Princeton

    Google Scholar 

  • Wardle DA, Barker GM, Bonner KI, Nicholson KS (1998) Can comparative approaches based on plant ecophysiological traits predict the nature of biotic interactions and individual plant species effects in ecosystems? J Ecology 86:405–420

    Google Scholar 

  • Wardle DA, Baker GM, Yeattes GW, Bonner KI, Ghani A (2001) Impacts of introduced browsing mammals in New Zealand forest on decomposer communities, soil biodiversity and ecosystem properties. Ecological Monographs 71:587–614

    Google Scholar 

  • Wardle DA, Bardgett RD, Klironomos JN, Setäl linkages between aboveground and belowground biota. Science 304:1629–1633

    Google Scholar 

  • Weiher E, Keddy P (eds) (1999) Ecological assembly rules — Perspectives, advances, retreats. Cambridge University Press, Cambridge

    Google Scholar 

  • Weiher E, van der Werf A, Thompson K, Roderick M, Garnier E, Eriksson O (1999) Challenging Theophrastus: A common core list of plant traits for functional ecology. Journal of Vegetation Science 10:609–620

    Google Scholar 

  • Westoby M (1998) A leaf-height-seed (LHS) plant ecology strategy scheme. Plant and Soil 199:213–227

    Google Scholar 

  • Westoby M, Rice B, Howell J (1990) Seed size and plant growth form as factors in dispersal spectra. Ecology 71:1307–1315

    Google Scholar 

  • Westoby M, Falster DS, Moles AT, Vesk PA, Wright IJ (2002) Plant ecological strategies: come leading dimensions of variation between species. Annual Review of Ecology and Systematics 33: 125–159

    Google Scholar 

  • Woodward FI, Cramer W (1996) Plant functional types and climatic changes: introduction. Journal of Vegetation Science 7:306–308

    Google Scholar 

  • Woodward FI, Lomas MR, Betts AK (1998) Vegetation-climate feedbacks in a greenhouse world. Philisophical Transactions of the Royal Society of London, Series B 353:29–38

    Google Scholar 

  • Wright IJ, Westoby M (1999) Differences in seedling growth behaviour among species: trait correlations across species, and trait shifts along nutrient compared to rainfall gradients. Journal of Ecology 87:85–97

    Google Scholar 

  • Wright IJ, Reich PB, Westoby M, Ackerly DD, Baruch Z, Bongers F, Cavender-Bares J, Chapin FSI, Cornelissen JHC, Diemer M, Flexas J, Garnier E, Groom PK, Gulias J, Hikosaka K, Lamont BB, Lee T, Lee W, Lusk C, Midgley JJ, Navas M-L, Niinemets Ü, Oleksyn J, Osada N, Poorter H, Poot P, Prior L, Pyankov VI, Roumet C, Thomas SC, Tjoelker MG, Veneklaas E, Villar R (2004) The worldwide leaf economics spectrum. Nature 428:821–827

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Lavorel, S. et al. (2007). Plant Functional Types: Are We Getting Any Closer to the Holy Grail?. In: Canadell, J.G., Pataki, D.E., Pitelka, L.F. (eds) Terrestrial Ecosystems in a Changing World. Global Change — The IGBP Series. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-32730-1_13

Download citation

Publish with us

Policies and ethics