Skip to main content

Advertisement

Log in

Root structure and biomass partitioning in tilted plants from twisted- and straight-stemmed populations of Pinus pinaster Ait

  • Original Paper
  • Published:
Trees Aims and scope Submit manuscript

Abstract

Key message

Straight-stemmed populations of Pinus pinaster under mechanical stress allocate more biomass to the stem relative to the branches and show greater variability in the roots than twisted-stemmed populations.

Abstract

Pinus pinaster Ait. has a tendency to exhibit stem flexuosity that negatively affects the quality of its wood and its productivity. There is a wide geographical variability in this trait, and there is evidence of genetic control. We hypothesized that root structure and biomass allocation adjustments in response to a given mechanical stress might differ among populations of P. pinaster and might be related to the typical straightness of the stems of a given population. We analyzed root structure and biomass allocation in a provenance test in which plants were artificially tilted at 45° and naturally exposed to wind. Ten provenances were tested: five with typically straight-stemmed plants and five with twisted-stemmed plants. The wind affected the taper and the development of thickenings in the windward second-order roots, although the winds experienced were generally light. The straight-stemmed populations exhibited greater variability in the studied traits than the twisted-stemmed populations. This variability may reflect higher root responsiveness as well as various strategies to address mechanical stresses. Three possible additional distinguishing characteristics of various straight-stemmed populations are proposed: (a) greater allocation of biomass to the stem compared with the branches, (b) development of a thick, cylindrical taproot and tapered lateral roots and (c) strengthening of second-order roots with local thickening in the sectors of the root under tension.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  • Alía R, Gil L, Pardos JA (1995) Performance of 43 Pinus pinaster provenances on 5 locations in Central Spain. Silvae Gen 44:75–81

    Google Scholar 

  • Alía R, Moro J, Denis JB (1997) Performance of Pinus pinaster provenances in Spain: interpretation of the genotype by environment interaction. Can J For Res 27(10):1548–1559

    Article  Google Scholar 

  • Aranda I, Alía R, Ortega U, Dantas ÂK, Majada J (2010) Intra-specific variability in biomass partitioning and carbon isotopic discrimination under moderate drought stress in seedlings from four Pinus pinaster populations. Tree Genet Genomes 6(2):169–178

    Article  Google Scholar 

  • Atger C, Edelin C (1994) Premières données sur l’architecture comparée des systèmes racinaires et caulinaires. Can J Bot 72(7):963–975

    Article  Google Scholar 

  • Auberlinder V (1982) De l’instabilité du pin maritime. Rapport annuel-AFOCEL-Association forest-cellulose

  • Balneaves JM, De la Mare PJ (1989) Root patterns of Pinus radiata on five ripping treatments in Canterbury Forest. N Z J For Sci 19(1):29–40

    Google Scholar 

  • Bowen GD (1985) Roots as a component of tree productivity. In: Cannell MGR, Jackson JE (eds) Attributes of trees as crop plants. Institute of Terrestrial Ecology. Natural Environment Research Council. Abbots Ripton, England

    Google Scholar 

  • Burdett AN, Martin PAF, Coates H, Eremko R (1986) Toppling in British Columbia’s lodgepole pine plantations: significance, cause and prevention. For Chronicle 62(5):433–439

    Article  Google Scholar 

  • Cannell M, Coutts M (1988) Growing in the wind. New Sci 117(1596):42–46

    Google Scholar 

  • Chambel MR, Climent J, Alia R (2007) Divergence among species and populations of Mediterranean pines in biomass allocation of seedlings grown under two watering regimes. Ann For Sci 64:87–97

    Article  Google Scholar 

  • Corcuera L, Gil-Pelegrín E, Notivol E (2012) Differences in hydraulic architecture between mesic and xeric Pinus pinaster populations at the seedling stage. Tree Physiol 32(12):1442–1457

    Article  PubMed  Google Scholar 

  • Coterill PP, Dean CA, Van Wyk G (1987) Additive and dominance genetic effects in Pinus pinaster, P. radiata and P. elliottii and some implications for breeding strategy. Silvae Genet 36:221–232

    Google Scholar 

  • Coutand C, Dupraz C, Jaouen G, Ploquin S, Adam B (2008) Mechanical stimuli regulate the allocation of biomass in trees: demonstration with young Prunus avium trees. Ann Bot 101(9):1421–1432

    Article  PubMed Central  PubMed  Google Scholar 

  • Crémière L (2003) Expertise collective sur les tempêtes, la sensibilité des forêts, et sur leur reconstitution. INRA Cemagref, IDF ONF

    Google Scholar 

  • Crook MJ, Ennos AR (1998) The increase in anchorage with tree size of the tropical tap rooted tree Mallotus wrayi, King (Euphorbiaceae). Ann Bot 82:291–296

    Article  Google Scholar 

  • Crook MJ, Ennos AR, Banks JR (1997) The function of buttress roots: a comparative study of the anchorage systems of buttressed (Aglaia and Nephelium ramboutan species) and non-buttressed (Mallotus wrayi) tropical trees. J Exp Bot 48:1703–1716

    Article  CAS  Google Scholar 

  • Cucchi V, Meredieu C, Stokes A, Berthier S, Bert D, Najar M, Lastennet R (2004) Root anchorage of inner and edge trees in stands of Maritime pine (Pinus pinaster Ait.) growing in different podzolic soil conditions. Trees 18(4):460–466

    Article  Google Scholar 

  • Danjon F, Bert D, Godin C, Trichet P (1999) Structural root architecture of 5-year-old Pinus pinaster measured by 3D digitising and analysed with AMAPmod. Plant Soil 217:49–63

    Article  Google Scholar 

  • Danjon F, Fourcaud T, Bert D (2005) Root architecture and wind firmness of mature Pinus pinaster (Ait.). New Phytol 168:387–400

    Article  PubMed  Google Scholar 

  • Danjon F, Khuder H, Stokes A (2013) Deep phenotyping of coarse root architecture in R. pseudoacacia reveals that tree root system plasticity is confined within its architectural model. PLoS ONE 8(12):e83548

    Article  PubMed Central  PubMed  Google Scholar 

  • Ennos AR (2000) The mechanics of root anchorage. Adv Bot Res 33:133–157

    Article  Google Scholar 

  • Fourcaud T, Ji JN, Zhang ZQ, Stokes A (2008) Understanding the impact of root morphology on overturning mechanisms: a modelling approach. Ann Bot 101(8):1267–1280

    Article  PubMed Central  PubMed  Google Scholar 

  • Fournier M, Baillerres H, Chanson B (1994) Tree biomechanics: growth, cumulative prestresses and reorientations. Biomimetics 2(3):229–252

    Google Scholar 

  • González-Martínez SC, Gil L, Alia R (2005) Genetic diversity estimates of Pinus pinaster in the Iberian Peninsula: a comparison of allozymes and quantitative traits. Investigacion Agraria, Sistemas y Recursos Forestales 14(1):3–12

    Article  Google Scholar 

  • Gryc V, Horáček P (2007) Variability in density of spruce (Picea abies [L.] Karst.) wood with the presence of reaction wood. J For Sci 53(3):129–137

    Google Scholar 

  • Henderson R, Ford ED, Renshaw E, Deans JD (1983) Morphology of the structural root system of Sitka spruce 1. Anal Quant Description For 56(2):121–135

    Google Scholar 

  • Jourdan C, Michaux-Ferriere N, Perbal G (2000) Root system architecture and gravitropism in the oil palm. Ann Bot 85(6):861–868

    Article  CAS  PubMed  Google Scholar 

  • Khuder H, Stokes A, Danjon F et al (2007) Is it possible to manipulate root anchorage in young trees? Plant Soil 294(1–2):87–102

    Article  CAS  Google Scholar 

  • Korndörfer CL, Mósena M, Dillenburg LR (2008) Initial growth of Brazilian pine (Araucaria angustifolia) under equal soil volumes but contrasting rooting depths. Trees 22(6):835–841

    Article  Google Scholar 

  • Lario FJ, Ocaña L (2004) Base mecánica de la inestabilidad de Pinus pinaster Ait. en plantaciones juveniles de climas atlánticos. Cuadernos de la Sociedad Española de Ciencias Forestales 17:175–180

    Google Scholar 

  • Loup C, Fournier M, Chanson B, Moulia B (1991) Redressements, contraintes de croissance et bois de réaction dans le bois d’un jeune Pinus pinaster Ait. artificiellement incliné. In: Thibaut B (ed) Proceedings of the third Seminar “Architecture, Structure, Mécanique de l’Arbre”. Montpellier LMGC Université Montpellier II, Montpellier

  • Macdonald E, Gardiner B, Mason W (2009) The effects of transformation of even-aged stands to continuous cover forestry on conifer log quality and wood properties in the UK. Forestry. doi:10.1093/forestry/cpp023

  • Magini E (1969) The heritability of stem form in Pinus pinaster. FAO-FTB 3/8

  • Mäkelä A (1999) Acclimation in dynamic models based on structural relationships. Funct Ecol 13(2):145–156

    Article  Google Scholar 

  • Moreira X, Zas R, Sampedro L (2012) Genetic variation and phenotypic plasticity of nutrient reallocation and increased fine root production as putative tolerance mechanisms inducible by methyl jasmonate in pine trees. J Ecol 100(3):810–820

    Article  CAS  Google Scholar 

  • Moulia B, Coutand C, Lenne C (2006) Posture control and skeletal mechanical acclimation in terrestrial plants: implications for mechanical modeling of plant architecture. Am J Bot 93(10):1477–1489

    Article  PubMed  Google Scholar 

  • Moulia B, Der Loughian C, Bastien R et al (2011) Integrative mechanobiology of growth and architectural development in changing mechanical environments. In: Wojtaszek P (ed) Mechanical integration of plant cells and plants., Signaling and Communication in PlantsSpringer-Verlag, Berlin, pp 269–302

    Chapter  Google Scholar 

  • Nguyen A, Lamant A (1989) Variation in growth and osmotic regulation of roots of water-stressed maritime pine (Pinus pinaster Ait.) provenances. Tree Physiol 5(1):123–133

    Article  PubMed  Google Scholar 

  • Nicoll BC, Dunn AJ (2000) The effects of wind speed and direction on radial growth of structural roots. Dev Plant Soil Sci 87:219–226

    Google Scholar 

  • Nicoll BC, Ray D (1996) Adaptive growth of tree root systems in response to wind action and site conditions. Tree Physiol 16:891–898

    Article  PubMed  Google Scholar 

  • Ocaña L, Santos MI, Gómez JA, Renilla I, Cuenca B (2001) Comparación de siete modelos de contenedores y raíz desnuda en repoblaciones de Pinus pinaster en Galicia. III Congreso forestal español. Junta de Andalucía–grupo TRAGSA. SCEF, Granada

  • Pavlis J, Jeník J (2000) Roots of pioneer trees in the Amazonian rain forest. Trees 14(8):442–455

    Article  Google Scholar 

  • Peltola HM (2006) Mechanical stability of trees under static loads. Am J Bot 93(10):1501–1511

    Article  PubMed  Google Scholar 

  • Reis GG, Reis MGF, Maestri M, Xavier A, Oliveira LD (1989) Crescimento de Eucalyptus camaldulensis, E. grandis e E. cloeziana sob diferentes níveis de restrição radicular. Revista Árvore 13(1):1–18

    Google Scholar 

  • Richter GL, Monshausen GB, Krol A, Gilroy S (2009) Mechanical stimuli modulate lateral root organogenesis. Plant Physiol 151(4):1855–1866

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Salvador L, Alía R, Agúndez D, Gil L (2000) Genetic variation and migration pathways of maritime pine (Pinus pinaster Ait.) in the Iberian Peninsula. Theor and Appl Genetics 100(1):89–95

    Article  Google Scholar 

  • Sierra-de-Grado R, Díez-Barra R, Alía R (1999) Evaluación de la rectitud del fuste en 6 procedencias de Pinus pinaster Ait. Investigación Agraria. Serie Recursos Forestales 8(2):263–278

    Google Scholar 

  • Sierra-de-Grado R, Pando V, Martínez-Zurimendi P, Peñalvo A, Báscones E, Moulia B (2008) Biomechanical differences in the stem straightening process among Pinus pinaster provenances. A new approach for early selection of stem straightness. Tree Physiol 28(6):835–846

    Article  PubMed  Google Scholar 

  • South DB, Shelton J, Enebak SA (2001) Geotropic lateral roots of container-grown longleaf pine seedlings. Nat Plants J 2(2):126–130

    Google Scholar 

  • Stokes A, Mattheck C (1996) Variation of wood strength in tree roots. J Exp Bot 47(5):693–699

    Article  CAS  Google Scholar 

  • Stokes A, Berthier S, Sacriste S, Martin F (1998) Variations in maturation strains and root shape in root systems of Maritime pine (Pinus pinaster Ait.). Trees 12(6):334–339

    Google Scholar 

  • Tapias R, Climent J, Pardos JÁ, Gil L (2004) Life histories of Mediterranean pines. Plant Ecol 171(1/2):53–68

    Article  Google Scholar 

  • Toral M, Bown HE, Mañon A, Alvarez J, Navarro-Cerrillo R (2011) Wind-induced leaning (toppling) in young Pinus radiata plantations in Chile. Ciencia e Investigación Agraria 38(3):405–414

    Article  Google Scholar 

  • Townend J, Dickinson AL (1995) A comparison of rooting environments in containers of different sizes. Plant Soil 175(1):139–146

    Article  CAS  Google Scholar 

Download references

Author contribution statement

Fermín Garrido: performed field and lab work, analysis and discussion of the results in collaboration with the other authors. Roberto San Martín: performed the statistical analysis and collaborated in the discussion of the results. Francisco José Lario: collaborated in establishing hypotheses, designing the structures of the trials, took over the plants in the experiment and assisted in the field work. Rosario Sierra-de-Grado: conceived the research project, obtained the funding, collaborated in analysis and discussion of the results and wrote the paper.

Acknowledgments

We are grateful to TRAGSA-Maceda, where the experiment was carried out, and to Ainhoa Calleja, Arancha Otaño, Feli López and Evelio Alonso from the University of Valladolid for their help with measurements and devices. We thank F. Danjon for sharing his expertise with us at the beginning of the work. This study was supported by the Project AGL2007-62335 DEREPIN (Spanish Ministry of Science and Innovation and FEDER).

Conflict of interest

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rosario Sierra-de-Grado.

Additional information

Communicated by Y. Sano.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Garrido, F., San Martín, R., Lario, F.J. et al. Root structure and biomass partitioning in tilted plants from twisted- and straight-stemmed populations of Pinus pinaster Ait. Trees 29, 759–774 (2015). https://doi.org/10.1007/s00468-015-1154-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00468-015-1154-y

Keywords

Navigation