Skip to main content

Advertisement

Log in

Seedling response of Nothofagus species to N and P: linking plant architecture to N/P ratio and resorption proficiency

  • Original Paper
  • Published:
Trees Aims and scope Submit manuscript

Abstract

Key message

As in mature forests, seedlings responded positively to N supply in terms of mass and architecture, especially N. obliqua . P became a secondary-limiting nutrient for N. nervosa with increased N addition.

Abstract

Previous studies on mature forests of NW Argentinean Patagonia indicated that N is the main growth-limiting nutrient in most dominant tree species, while P limitation is uncommon, despite the soils’ volcanic origin. This pattern was inferred from leaf N/P ratios and resorption proficiencies, but has not been experimentally tested. We conducted a greenhouse trial with seedlings of two deciduous species of high timber quality, Nothofagus nervosa and N. obliqua, and soils characteristic of each species. Seedlings were fertilized with three levels of N (100, 200 and 400 mg kg−1 soil) with or without the concurrent application of a single P dose (60 mg kg−1 soil) during their second growing season. Response variables were morphological descriptors of shoot and root growth, N and P concentrations in green and senescent leaves and ectomycorrhizal infection. Both species were primarily limited by N: the addition of N resulted in higher shoot and root masses, an increased number of nodes, taller stems and greater basal and root diameters, while no effect of P was found. N/P ratios in green leaves and N and P resorption proficiencies indicate that with increased N availability P can become a secondary-limiting nutrient for N. nervosa. This was accompanied by the maintenance of ectomycorrhizal infection and mass allocation to roots in this species. The steep growth response of N. obliqua to N addition may signal a strong competitive capacity of this species when growing in soils of high N availability.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Aber JD, McDowell W, Nadelhoffer K, Magill A, Berntson G, Kamakea M, McNulty S, Currie W, Rustad L, Fernandez I (1998) Nitrogen saturation in temperate forest ecosystems: hypotheses revisited. Bioscience 48:921–934

    Article  Google Scholar 

  • Aerts R, Chapin FS III (2000) The mineral nutrition of wild plants revisited: a re-evaluation of processes and patterns. Adv Ecol Res 30:1–68

    Article  CAS  Google Scholar 

  • Barthélémy D, Caraglio Y (2007) Plant architecture: a dynamic, multilevel and comprehensive approach to plant form, structure and ontogeny. Ann Bot 99:375–407

    Article  PubMed Central  PubMed  Google Scholar 

  • Barthélémy D, Puntieri J, Brion C, Raffaele E, Marino J, Martinez P (1999) Características morfológicas y arquitecturales de las especies de Nothofagus Blume (Fagaceae) del norte de la Patagonia argentina. Bol Soc Argent Bot 34:29–38

    Google Scholar 

  • Basil G, Leanza M, Mazzarino MJ, Roselli L, Lugano L, Tejera L (2002) Nutrición de plantines de coníferas en viveros del noroeste de la Patagonia Argentina. Informaciones Agronómicas del Cono Sur (INPOFOS) 15:12–15

    Google Scholar 

  • Bertiller MB, Mazzarino MJ, Carrera AL, Diehl P, Satti P, Gobbi M, Sain CL (2006) Leaf strategies and soil N across a regional humidity gradient in Patagonia. Oecologia 148:612–624

    Article  PubMed  Google Scholar 

  • Bloom AJ, Chapin FS III, Mooney HA (1985) Resource limitation in plants–an economic analogy. Annu Rev Ecol Syst 16:363–392

    Google Scholar 

  • Broquen P, Lobartini JC, Candan F, Falbo G (2005) Allophane, aluminum, and organic matter accumulation across a bioclimatic sequence of volcanic ash soils of Argentina. Geoderma 169(3–4):167–177

    Article  Google Scholar 

  • Brundrett M, Bougher N, Dell B, Grove T, Malajczuk N (1996) Working with mycorrhizas in forestry and agriculture. Aust Cent Int Agric Res Monograph 32, Canberra

  • Diehl P, Mazzarino MJ, Funes F, Fontenla S, Gobbi M, Ferrari J (2003) Nutrient conservation strategies in native Andean-Patagonian forests. J Veg Sci 14:63–70

    Article  Google Scholar 

  • Diehl P, Mazzarino MJ, Fontenla S (2008) Plant limiting nutrients in Andean-Patagonian woody species: effects of interannual rainfall variation, soil fertility and mycorrhizal infection. For Ecol Manag 255:2973–2980

    Article  Google Scholar 

  • Dijkstra FA, Pendall E, Morgan JA, Blumenthal DM, Carillo Y, LeCain DR, Follett RF, Williams DG (2012) Climate change alters stoichiometry of phosphorus and nitrogen in semiarid grassland. New Phytol 196:807–815

    Article  CAS  PubMed  Google Scholar 

  • Donoso C (2006) Plasticidad y genecología. Hibridación e introgresión. In: Donoso C, Premoli A, Gallo L, Ipinza R (eds) Variación intraespecífica en las especies arbóreas de los bosques templados de Chile y Argentina. Editorial Universitaria, Universidad Austral de Chile, Santiago de Chile, pp 39–66

    Google Scholar 

  • Donoso C, Gallo L, Donoso P, Azpilicueta MM (2006) Variación en Nothofagus obliqua (Mirb.) Oerst. (Roble, Coyán, Hualle o Pellín). In: Donoso C, Premoli A, Gallo L, Ipinza R (eds) Variación intraespecífica en las especies arbóreas de los bosques templados de Chile y Argentina. Editorial Universitaria, Universidad Austral de Chile, Santiago de Chile, pp 79–113

    Google Scholar 

  • Drenovsky RE, Richards JH (2004) Critical N: P values: predicting nutrient deficiencies in desert shrublands. Plant Soil 259:59–69

    Article  CAS  Google Scholar 

  • Du Y, Pan G, Li L, Hu Z, Wang X (2011) Leaf N/P ratio and nutrient reuse between dominant species and stands: predicting phosphorus deficiencies in Karst ecosystems, southwestern China. Environ Earth Sci 64:299–309

    Article  CAS  Google Scholar 

  • Ericsson T (1995) Growth and shoot: root ratio of seedlings in relation to nutrient availability. Plant Soil 168(169):205–214

    Article  Google Scholar 

  • Fisher RF, Binkley D (2000) Ecology and management of forest soils. John Wiley & Sons Inc, New York

    Google Scholar 

  • Flykt E, Timonen S, Pennanen T (2008) Variation of ectomycorrhizal colonisation in Norway spruce seedlings in Finnish forest nurseries. Silva Fenn 42:571–585

    Article  Google Scholar 

  • Gallardo MB, Pérez C, Núñez-Ávila M, Armesto JJ (2012) Desacoplamiento del desarrollo del suelo y la sucesión vegetal a lo largo de una cronosecuencia de 60 mil años en el volcán Llaima, Chile. Rev Chil Hist Nat 85:291–306

    Article  Google Scholar 

  • Gallo L, Marchelli P, Chauchard L, Gonzales Peñalba M (2009) Knowing and doing: research leading to action in the conservation of forest genetic diversity of Patagonian temperate forests. Conserv Biol 23:895–898

    Article  PubMed  Google Scholar 

  • Godoy R, Paulino L, Valenzuela E, Oyarzún C, Huygens D, Boeckx P (2009) Temperate ecosystems of Chile: characteristic biogeochemical cycles and disturbance regimes. In: Verhoest N, Boeckx P, Oyarzún C, Godoy R (eds) Ecological advances on Chilean temperate rainforests. Academia Press, Belgium, pp 31–40

    Google Scholar 

  • Guédon Y, Puntieri J, Sabatier S, Barthélémy D (2006) Relative extends of preformation and neoformation in tree shoots: analysis by a deconvolution method. Ann Bot 98:835–844

    Article  PubMed Central  PubMed  Google Scholar 

  • Güssewell S (2004) N: P ratios in terrestrial plants: variation and functional significance. New Phytol 164:243–266

    Article  Google Scholar 

  • Hevia F, Minoletti OML, Decker KLM, Boerner REJ (1999) Foliar nitrogen and phosphorus dynamics of three Chilean Nothofagus (Fagaceae) species in relation to leaf lifespan. Am J Bot 86:447–455

    Article  CAS  PubMed  Google Scholar 

  • Jones JJB Jr, Case VW (1990) Sampling, handling, and analyzing plant tissue samples. In: Westerman RL (ed) Soil testing and plant analysis, 3rd edn. SSSA Book Series N.2, Madison, pp 389–427

    Google Scholar 

  • Killingbeck KT (1996) Nutrients in senesced leaves: keys to the search for potential resorption and resorption proficiency. Ecology 77:1716–1727

    Article  Google Scholar 

  • King DA (1990) The adaptive significance of tree height. Am Nat 135:809–828

    Article  Google Scholar 

  • Knecht MF, Göransson A (2004) Terrestrial plants require nutrients in similar proportions. Tree Physiol 24:447–460

    Article  CAS  PubMed  Google Scholar 

  • Koerselman W, Meuleman AFM (1996) The vegetation N: P ratio: a new tool to detect the nature of nutrient limitation. J Appl Ecol 33:1441–1450

    Article  Google Scholar 

  • Marschner H (1995) Mineral nutrition in higher plants. Academic Press, London

    Google Scholar 

  • McAlister JA, Timmer VR (1998) Nutrient enrichment of white spruce seedlings during nursery culture and initial plantation establishment. Tree Physiol 18:195–202

    Article  PubMed  Google Scholar 

  • Millard P, Grelet G (2010) Nitrogen storage and remobilization by trees: ecophysiological relevance in a changing world. Tree Physiol 30:1083–1095

    Article  CAS  PubMed  Google Scholar 

  • Olde Venterink H, Wassen MJ, Verkroost AWM, De Ruiter PC (2003) Species richness-productivity patterns differ between N-, P-, and K-limited wetlands. Ecology 84:2191–2199

    Article  Google Scholar 

  • Oliveira RS, Franco AR, Vosátka M, Castro PML (2010) Management of nursery practices for efficient ectomycorrhizal fungi application in the production of Quercus ilex. Symbiosis 52:125–131

    Article  Google Scholar 

  • Perakis SS, Hedin LO (2002) Nitrogen loss from unpolluted South American forests mainly via dissolved organic compounds. Nature 415:416–419

    Article  PubMed  Google Scholar 

  • Pérez CA, Hedin LO, Armesto JJ (1998) Nitrogen mineralization in two unpolluted old-growth forests of contrasting biodiversity and dynamics. Ecosystems 1:361–373

    Article  Google Scholar 

  • Pérez CA, Armesto JJ, Torrealba C, Carmona MR (2003) Litterfall dynamics and nitrogen use efficiency in two evergreen temperate rainforests of southern Chile. Aust Ecol 28:591–600

    Article  Google Scholar 

  • Plassard C, Dell B (2010) Phosphorus nutrition of mycorrhizal trees. Tree Physiol 30:1129–1139

    Article  CAS  PubMed  Google Scholar 

  • Puntieri JG, Stecconi M, Barthélémy D (2002) Preformation and neoformation in shoots of Nothofagus antarctica (G. Forster) Oerst. (Nothofagaceae) shrubs from northern Patagonia. Ann Bot 89:665–673

    Article  Google Scholar 

  • Puntieri J, Grosfeld J, Stecconi M, Brion C, Barthélémy D (2007a) Bud and growth-unit structure in seedlings and saplings of Nothofagus alpina (Nothofagaceae). Am J Bot 94:1382–1390

    Article  PubMed  Google Scholar 

  • Puntieri J, Grosfeld J, Stecconi M, Azpilicueta MM, Gallo L, Brion C, Barthélémy D (2007b) Shoot development and dieback in progenies of Nothofagus obliqua. Ann For Sci 64:839–844

    Article  Google Scholar 

  • Raffaele E, Puntieri J, Martinez P, Marino J, Brion C, Barthélémy D (1998) Comparative morphology of annual shoots in seedlings of five Nothofagus species from Argentinian Patagonia. C R Acad Sci III Vie 321:305–311

    Article  Google Scholar 

  • Rennenberg H, Herschbach C (2013) Phosphorus nutrition of woody plants: many questions—few answers. Plant Biol 15:785–788

    Article  CAS  PubMed  Google Scholar 

  • Reynolds HL, D’Antonio C (1996) The ecological significance of plasticity in root weight ratio in response to nitrogen: opinion. Plant Soil 185:75–97

    Article  CAS  Google Scholar 

  • Richardson SJ, Peltzer DA, Allen RB, McGlone MS, Parfitt RL (2004) Rapid development of phosphorus limitation in temperate rainforest along the Franz Josef soil chronosequence. Oecologia 139:267–276

    Article  PubMed  Google Scholar 

  • Richardson SJ, Peltzer DA, Allen RB, McGlone MS (2005) Resorption proficiency along a chronosequence: responses among communities and within species. Ecology 86:20–25

    Article  Google Scholar 

  • Richardson SJ, Allen RB, Doherty EJ (2008) Shifts in leaf N: P ratio during resorption reflect soil P in temperate rainforest. Funct Ecol 22:738–745

    Article  Google Scholar 

  • Rustad LE, Campbell JL, Marion GM, Norby RJ, Mitchell MJ, Hartley AE, Cornelissen JHC, Gurevitch J (2001) A meta-analysis of the response of soil respiration, net nitrogen mineralization, and aboveground plant growth to experimental ecosystem warming. Oecologia 126:543–556

    Article  Google Scholar 

  • Satti P, Mazzarino MJ, Roselli L, Crego P (2007) Factors affecting soil P dynamics in temperate volcanic soils of southern Argentina. Geoderma 139:229–240

    Article  CAS  Google Scholar 

  • Smith SE, Read DJ (1997) Mycorrhizal symbiosis. Academic Press, Cambridge

    Google Scholar 

  • Sokal RR, Rohlf FJ (1995) Biometry, 3rd edn. WH Freeman, New York

    Google Scholar 

  • Soudzilovskaia NA, Onipchenko VG, Cornelissen JHC, Aerts R (2005) Biomass production, N: P ratio and nutrient limitation in a Caucasian alpine tundra plant community. J Veg Sci 16:399–406

    Article  Google Scholar 

  • Subedi SC, Ross MC, Scinto LJ (2012) Nutrient limitation in two Everglades tree species planted on constructed tree islands. Wetlands 32:1163–1173

    Article  Google Scholar 

  • Tessier JT, Raynal DJ (2003) Use of nitrogen to phosphorus ratios in plant tissue as an indicator of nutrient limitation and nitrogen saturation. J Appl Ecol 40:523–534

    Article  CAS  Google Scholar 

  • Treseder KK (2004) A meta-analysis of mycorrhizal responses to nitrogen, phosphorus, and atmospheric CO2 in field studies. New Phytol 164:347–355

    Article  Google Scholar 

  • Varela SA, Gyenge JE, Fernández ME, Schlichter TM (2010) Seedling drought stress susceptibility in two deciduous Nothofagus species of NW Patagonia. Trees 24:443–453

    Article  Google Scholar 

  • Veblen TT, Donoso C, Kitzberger T, Rebertus AJ (1996) Ecology of southern Chilean and Argentinean Nothofagus forests. In: Veblen TT, Hill RS, Read J (eds) The ecology and biogeography of Nothofagus forests. Yale University Press, New Haven, pp 293–353

    Google Scholar 

  • Villarosa G, Outes V, Hajduk A, Crivelli Montero E, Sellés D, Fernández M, Crivelli E (2006) Explosive volcanism during the Holocene in the Upper Limay River Basin: the effects of ashfalls on human societies, Northern Patagonia, Argentina. Quat Int 158:44–57

    Article  Google Scholar 

  • Vitousek PM (1982) Nutrient cycling and nutrient use efficiency. Am Nat 119:553–572

    Article  Google Scholar 

  • Weand MP, Arthur MA, Lovett GM, Sikora F, Weathers KC (2010) The phosphorus status of northern hardwoods differs by species but is unaffected by nitrogen fertilization. Biogeochemistry 97:159–181

    Article  CAS  Google Scholar 

  • Wilson JB (1988) A review of evidence on the control of shoot: root ratio, in relation to models. Ann Bot 61:433–449

    Google Scholar 

  • Yuan ZY, Li LH, Han XG, Huang JH, Jiang GM, Wan SQ, Zhang WH, Chen QS (2005) Nitrogen reuse from senescing leaves in 28 plant species in a semi-arid region of northern China. J Arid Environ 63:191–202

    Article  Google Scholar 

Download references

Author contribution statement

MLA, as part of her PhD thesis, performed research, analyzed data and wrote the paper. JP, as MLA co-director of thesis, contributed with plant architecture analyses, data interpretation and wrote the paper. MJM, as MLA director of thesis, contributed with nutrient cycling expertise and wrote the paper. JG contributed with plant architecture analyses. CB contributed with mycorrhizae analyses.

Acknowledgments

This research was funded by the Agencia Nacional de Promoción de Ciencia y Tecnología (Picto Forestal 2006 N° 36862) and the Universidad Nacional del Comahue (B142/08). M. Agüero was supported by a fellowship for graduate students of ANPCyT and CONICET. We also thank Campo Forestal Gral. San Martín and INTA EEA Bariloche for providing the plant nursery and species seeds. We gratefully acknowledge G. Basil and P. Satti for technical help and comments, and P. Grogan and J.J. Ewel for comments and English correction.

Conflict of interest

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mariana Laura Agüero.

Additional information

Communicated by P. E. Courty.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Agüero, M.L., Puntieri, J., Mazzarino, M.J. et al. Seedling response of Nothofagus species to N and P: linking plant architecture to N/P ratio and resorption proficiency. Trees 28, 1185–1195 (2014). https://doi.org/10.1007/s00468-014-1029-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00468-014-1029-7

Keywords

Navigation