Skip to main content

Advertisement

Log in

Acute kidney injury in children undergoing cardiac surgery: predictive value of kidney arterial Doppler-based variables

  • Original Article
  • Published:
Pediatric Nephrology Aims and scope Submit manuscript

Abstract

Background

Acute kidney injury (AKI) is a common condition in critically ill children and is associated with increased morbidity and mortality. This study aimed to assess the performance of point-of-care ultrasonography to predict AKI in children undergoing cardiac surgery.

Methods

In this prospective study, consecutive children underwent kidney Doppler ultrasound examination within 24 h following cardiac surgery, and an experienced operator obtained both renal resistive index (RRI) and renal pulsatility index (RPI). AKI was defined by the Kidney Disease Improving Global Outcome (KDIGO) criteria. The primary outcome was the diagnosis of severe AKI (KDIGO stage 2 or 3) on day 3.

Results

A total of 58 patients were included. Median age and weight were 12.9 months (IQR 6.0–37.9) and 7.36 kg (IQR 5.19–11.40), respectively. On day 3, 13 patients were classified as having AKI, of which 11 were severe. RRI could effectively predict AKI (area under the ROC curve [AUC] 0.83, 95% CI 0.71–0.92; p < 0.001) as well as RPI (AUC 0.81, 95% CI 0.69–0.90; p < 0.001). The optimal cutoff value for RRI was 0.85 (sensitivity, 73%; specificity, 83%; positive predictive value [PPV], 50%; and negative predictive value [NPV], 93%), while for RPI was 1.95 (sensitivity, 73%; specificity, 78%; PPV, 44%; and NPV, 92%). Similar results were found in the analysis for prediction on day 5. Significant correlations were found between Doppler-based variables and estimated GFR and furosemide dose on day 3.

Conclusions

Kidney Doppler ultrasound may be a promising tool for predicting AKI in children undergoing cardiac surgery.

Graphical Abstract

A higher resolution version of the Graphical abstract is available as Supplementary information

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Data availability

The data that support the findings of this study are available from the corresponding author, upon reasonable request.

Code availability

Not applicable.

References

  1. Sharma A, Chakraborty R, Sharma K et al (2020) Development of acute kidney injury following pediatric cardiac surgery. Kidney Res Clin Pract 39:259–268. https://doi.org/10.23876/j.krcp.20.053

    Article  PubMed  PubMed Central  Google Scholar 

  2. Li S, Krawczeski CD, Zappitelli M et al (2011) Incidence, risk factors, and outcomes of acute kidney injury after pediatric cardiac surgery: a prospective multicenter study. Crit Care Med 39:1493–1499. https://doi.org/10.1097/CCM.0B013E31821201D3

    Article  PubMed  PubMed Central  Google Scholar 

  3. Kourelis G, Kanakis M, Samanidis G et al (2022) Acute kidney injury predictors and outcomes after cardiac surgery in children with congenital heart disease: an observational cohort study. Diagnostics (Basel) 12:2397. https://doi.org/10.3390/diagnostics12102397

    Article  PubMed  Google Scholar 

  4. Pande CK, Smith MB, Soranno DE et al (2022) The neglected price of pediatric acute kidney injury: non-renal implications. Front Pediatr 10:893993. https://doi.org/10.3389/fped.2022.893993

    Article  PubMed  PubMed Central  Google Scholar 

  5. Romagnoli S, Ricci Z, Ronco C (2018) Perioperative acute kidney injury: prevention, early recognition, and supportive measures. Nephron 140:105–110. https://doi.org/10.1159/000490500

    Article  CAS  PubMed  Google Scholar 

  6. Webb TN, Goldstein SL (2017) Congenital heart surgery and acute kidney injury. Curr Opin Anesthesiol 30:105–112. https://doi.org/10.1097/ACO.0000000000000406

    Article  CAS  Google Scholar 

  7. Kellum JA, Lameire N, Aspelin P et al (2011) (2012) Kidney disease: improving global outcomes (KDIGO) acute kidney injury work group. KDIGO clinical practice guideline for acute kidney injury. Kidney Int Suppl 2:1–138. https://doi.org/10.1038/kisup.2012.1

    Article  Google Scholar 

  8. Selewski DT, Charlton JR, Jetton JG et al (2015) Neonatal acute kidney injury. Pediatrics 136:e463–e473. https://doi.org/10.1542/PEDS.2014-3819

    Article  PubMed  Google Scholar 

  9. Toda Y, Sugimoto K (2017) AKI after pediatric cardiac surgery for congenital heart diseases–recent developments in diagnostic criteria and early diagnosis by biomarkers. J Intensive Care 5:49. https://doi.org/10.1186/s40560-017-0242-z

    Article  PubMed  PubMed Central  Google Scholar 

  10. de Carvalho AV, de Ferraz IS, de Souza FM et al (2023) Acute kidney injury in critically ill children: predictive value of renal arterial Doppler assessment. Pediatr Res 93:1694–1700. https://doi.org/10.1038/s41390-022-02296-1

    Article  PubMed  Google Scholar 

  11. Shen H, Na W, Li Y, Qu D (2023) The clinical significance of renal resistance index (RRI) and renal oxygen saturation (RrSO2) in critically ill children with AKI: a prospective cohort study. BMC Pediatr 23:224. https://doi.org/10.1186/s12887-023-03941-2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Qian X, Zhen J, Meng Q et al (2022) Intrarenal Doppler approaches in hemodynamics: a major application in critical care. Front Physiol 13:951307. https://doi.org/10.3389/fphys.2022.951307

    Article  PubMed  PubMed Central  Google Scholar 

  13. Advanced Life Support Group (2016) Advanced paediatric life support: a practical approach to emergencies, 6th edn. Wiley-Blackwell, Manchester UK

    Google Scholar 

  14. Van den Eynde J, Delpire B, Jacquemyn X et al (2022) Risk factors for acute kidney injury after pediatric cardiac surgery: a meta-analysis. Pediatr Nephrol 37:509–519. https://doi.org/10.1007/s00467-021-05297-0

    Article  PubMed  Google Scholar 

  15. Gottlieb RH, Luhmann K 4th, Oates RP (1989) Duplex ultrasound evaluation of normal native kidneys and native kidneys with urinary tract obstruction. J Ultrasound Med 8:609–611. https://doi.org/10.7863/jum.1989.8.11.609

    Article  CAS  PubMed  Google Scholar 

  16. Warshauer DM, Taylor KJ, Bia MJ et al (1988) Unusual causes of increased vascular impedance in renal transplants: duplex Doppler evaluation. Radiology 169:367–370. https://doi.org/10.1148/radiology.169.2.3051113

    Article  CAS  PubMed  Google Scholar 

  17. O’Neill WC (2000) Sonographic evaluation of renal failure. Am J Kidney Dis 35:1021–1038. https://doi.org/10.1016/S0272-6386(00)70036-9

    Article  PubMed  Google Scholar 

  18. Boddi M, Natucci F, Ciani E (2015) The internist and the renal resistive index: truths and doubts. Intern Emerg Med 10:893–905. https://doi.org/10.1007/s11739-015-1289-2

    Article  PubMed  Google Scholar 

  19. Sethi SK, Raina R, Koratala A et al (2023) Point-of-care ultrasound in pediatric nephrology. Pediatr Nephrol 38:1733–1751. https://doi.org/10.1007/s00467-022-05729-5

    Article  PubMed  Google Scholar 

  20. Darabont R, Mihalcea D, Vinereanu D (2023) Current insights into the significance of the renal resistive index in kidney and cardiovascular disease. Diagnostics (Basel) 13:1687. https://doi.org/10.3390/diagnostics13101687

    Article  PubMed  Google Scholar 

  21. Le Dorze M, Bouglé A, Deruddre S, Duranteau J (2012) Renal Doppler ultrasound: a new tool to assess renal perfusion in critical illness. Shock 37:360–365. https://doi.org/10.1097/SHK.0b013e3182467156

    Article  PubMed  Google Scholar 

  22. Neunhoeffer F, Wiest M, Sandner K et al (2016) Non-invasive measurement of renal perfusion and oxygen metabolism to predict postoperative acute kidney injury in neonates and infants after cardiopulmonary bypass surgery. Br J Anaesth 117:623–634. https://doi.org/10.1093/bja/aew307

    Article  CAS  PubMed  Google Scholar 

  23. Hertzberg D, Ceder SL, Sartipy U et al (2017) Preoperative renal resistive index predicts risk of acute kidney injury in patients undergoing cardiac surgery. J Cardiothorac Vasc Anesth 31:847–852. https://doi.org/10.1053/j.jvca.2016.10.006

    Article  PubMed  Google Scholar 

  24. Wiersema R, Kaufmann T, van der Veen HN et al (2020) Diagnostic accuracy of arterial and venous renal Doppler assessment for acute kidney injury in critically ill patients: a prospective study. J Crit Care 59:57–62. https://doi.org/10.1016/j.jcrc.2020.05.012

    Article  PubMed  Google Scholar 

  25. Kararmaz A, Arslantas MK, Aksu U et al (2021) Evaluation of acute kidney injury with oxidative stress biomarkers and renal resistive index after cardiac surgery. Acta Chir Belg 121:189–197. https://doi.org/10.1080/00015458.2019.1702371

    Article  PubMed  Google Scholar 

  26. Bellos I, Pergialiotis V, Kontzoglou K (2019) Renal resistive index as predictor of acute kidney injury after major surgery: a systematic review and meta-analysis. J Crit Care 50:36–43. https://doi.org/10.1016/J.JCRC.2018.11.001

    Article  PubMed  Google Scholar 

  27. Wu H, Liu K, Darko IN et al (2020) Predictive value of renal resistive index for the onset of acute kidney injury and its non-recovery: a systematic review and meta-analysis. Clin Nephrol 93:172–186. https://doi.org/10.5414/CN109979

    Article  PubMed  Google Scholar 

  28. Cvitković Kuzmić A, Brkljačić B, Ivanković D, Galešić K (2000) Doppler sonographic renal resistance index in healthy children. Eur Radiol 10:1644–1648. https://doi.org/10.1007/s003300000466

    Article  Google Scholar 

  29. Murat A, Akarsu S, Ozdemir H et al (2005) Renal resistive index in healthy children. Eur J Radiol 53:67–71. https://doi.org/10.1016/j.ejrad.2004.05.005

    Article  PubMed  Google Scholar 

  30. Kelly LK, Seri I (2008) Renal developmental physiology relevance to clinical care. NeoReviews 9:e150–e161. https://doi.org/10.1542/NEO.9-4-E150

    Article  Google Scholar 

  31. Fiselier T, Derkx F, Monnens L et al (1984) The basal levels of active and inactive plasma renin concentration in infancy and childhood. Clin Sci 67:383–387. https://doi.org/10.1042/CS0670383

    Article  CAS  Google Scholar 

  32. Zubarev AV (2001) Ultrasound of renal vessels. Eur Radiol 11:1902–1915. https://doi.org/10.1007/S003300101012

    Article  CAS  PubMed  Google Scholar 

  33. Eibenberger K, Schima H, Trubel W et al (1995) Intrarenal Doppler ultrasonography: which vessel should be investigated? J Ultrasound Med 14:451–455. https://doi.org/10.7863/jum.1995.14.6.451

    Article  CAS  PubMed  Google Scholar 

  34. Saif A, Soliman N, Abdelhamid A (2014) Doppler assessment of renal hemodynamic alterations in homozygous sickle cell disease and sickle beta-thalassemia. Ultrason Imaging 37:258–264. https://doi.org/10.1177/0161734614553831

    Article  PubMed  Google Scholar 

  35. Gaies MG, Gurney JG, Yen AH et al (2010) Vasoactive–inotropic score as a predictor of morbidity and mortality in infants after cardiopulmonary bypass*. Pediatr Crit Care Med 11:234–238. https://doi.org/10.1097/PCC.0b013e3181b806fc

    Article  PubMed  Google Scholar 

  36. Ninmer EK, Charlton JR, Spaeder MC (2022) Risk factors for sepsis-associated acute kidney injury in the PICU: a retrospective cohort study. Pediatr Crit Care Med 23:e366–e370. https://doi.org/10.1097/PCC.0000000000002957

    Article  PubMed  Google Scholar 

  37. Deruddre S, Cheisson G, Mazoit J-X et al (2007) Renal arterial resistance in septic shock: effects of increasing mean arterial pressure with norepinephrine on the renal resistive index assessed with Doppler ultrasonography. Intensive Care Med 33:1557–1562. https://doi.org/10.1007/s00134-007-0665-4

    Article  PubMed  Google Scholar 

  38. Lex DJ, Tóth R, Cserép Z et al (2014) A comparison of the systems for the identification of postoperative acute kidney injury in pediatric cardiac patients. Ann Thorac Surg 97:202–210. https://doi.org/10.1016/j.athoracsur.2013.09.014

    Article  PubMed  Google Scholar 

  39. Gao P, He W, Jin Y et al (2023) Acute kidney injury after infant cardiac surgery: a comparison of pRIFLE, KDIGO, and pROCK definitions. BMC Nephrol 24:1–9. https://doi.org/10.1186/s12882-023-03306-y

    Article  CAS  Google Scholar 

  40. Xu X, Nie S, Zhang A et al (2018) A new criterion for pediatric AKI based on the reference change value of serum creatinine. J Am Soc Nephrol 29:2432–2442. https://doi.org/10.1681/ASN.2018010090

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Lee YJ, Park YS, Park SJ, Jhang WK (2022) Estimating baseline creatinine values to define acute kidney injury in critically ill pediatric patients. Kidney Res Clin Pract 41:322–331. https://doi.org/10.23876/j.krcp.21.120

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

Thank you to Carolina Grotta Ramos Telio for her review of the manuscript. We also thank the legal guardians of the participants, attending physicians, pediatric critical care residents, and the nursing staff.

Author information

Authors and Affiliations

Authors

Contributions

Conception and design: THdS; acquisition of data: FMdS; AVdC, IdSF, THdS; analysis and interpretation of data: FMdS, IdSF, THdS; drafting the article: FMdS, IdSF, THdS; revising the article critically for important intellectual content: RJNN, MBB, and APD; all of the authors read and approved the manuscript.

Corresponding author

Correspondence to Tiago H. De Souza.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Graphical abstract (PPTX 876 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

De Souza, F.M., De Carvalho, A.V., Ferraz, I.S. et al. Acute kidney injury in children undergoing cardiac surgery: predictive value of kidney arterial Doppler-based variables. Pediatr Nephrol (2024). https://doi.org/10.1007/s00467-024-06319-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00467-024-06319-3

Keywords

Navigation