Skip to main content

Advertisement

Log in

CARPEDIEM® for continuous kidney replacement therapy in neonates and small infants: a French multicenter retrospective study

  • Original Article
  • Published:
Pediatric Nephrology Aims and scope Submit manuscript

Abstract

Background

The Cardio-Renal Pediatric Dialysis Emergency Machine (CA.R.P.E.D.I.E.M.®) device is a continuous kidney replacement therapy (CKRT) equipment dedicated to neonates and small infants. This study aimed to assess the effectiveness, feasibility, outcomes, and technical considerations relating to CARPEDIEM® use.

Methods

This retrospective multicenter study included 19 newborns and six infants receiving CARPEDIEM® in five French pediatric and neonatal intensive care units. Laboratory parameters were collected at the initiation and end of the first CARPEDIEM® session. Results are presented as median [IQR] (range).

Results

At initiation, age was 4 days [2–13] (1–1134) with a body weight of 3.3 kg [2.5–4] (1.3–11.1). Overall, 131 sessions and 2125 h of treatment were performed. Treatment duration per patient was 42 h [24–91] (8–557). Continuous veno-venous hemofiltration (CVVH) was performed in 20 children. Blood flow rate was 8 mL/kg/min [6–9] (3–16). The effluent flow rate for CVVH was 74 mL/kg/h [43–99] (28–125) and net ultrafiltration (UF) 6 mL/kg/h [2–8] (1–12). In the five children treated by hemodialysis, the blood and dialysate flow rates were 6 mL/kg/min [5–7] (4–7) and 600 mL/h [300–600] (120–600), respectively, while session duration was 8 h [6–12] (2–24). Most infants required a catheter between 4.5 and 6.5 French. Hemodynamic instability with a need for volume replacement occurred in 31 sessions (23%). Thrombocytopenia was observed in 29 sessions (22%). No hemorrhage occurred; all the patients survived the sessions, but only eight patients (32%) were alive at hospital discharge.

Conclusions

These data confirm that the use of CARPEDIEM® is safe and effective in critically ill neonates and infants.

Graphical abstract

A higher resolution version of the Graphical abstract is available as Supplementary information

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Data availability

The data is available if requested from the corresponding author.

References

  1. Sutherland SM, Ji J, Sheikhi FH, Ling XB et al (2013) AKI in hospitalized children: epidemiology and clinical associations in a national cohort. Clin J Am Soc Nephrol 8:1661–1669. https://doi.org/10.2215/CJN.00270113

    Article  PubMed  PubMed Central  Google Scholar 

  2. Jetton JG, Boohaker LJ, Sethi SK, Askenazi DJ et al (2017) Incidence and outcomes of neonatal acute kidney injury (AWAKEN): a multicentre, multinational, observational cohort study. Lancet Child Adolesc Health 1:184–194. https://doi.org/10.1016/S2352-4642(17)30069-X

    Article  PubMed  PubMed Central  Google Scholar 

  3. de Galasso L, Picca S, Guzzo I (2020) Dialysis modalities for the management of pediatric acute kidney injury. Pediatr Nephrol 35:753–765. https://doi.org/10.1007/s00467-019-04213-x

    Article  PubMed  Google Scholar 

  4. Ronco C, Brendolan A, Bragantini L, La Greca G et al (1986) Treatment of acute renal failure in newborns by continuous arterio-venous hemofiltration. Kidney Int 29:908–915. https://doi.org/10.1038/ki.1986.85

    Article  CAS  PubMed  Google Scholar 

  5. Ronco C, Garzotto F, Brendolan A, Goldstein SL et al (2014) Continuous renal replacement therapy in neonates and small infants: development and first-in-human use of a miniaturised machine (CARPEDIEM). Lancet 383:1807–1813. https://doi.org/10.1016/S0140-6736(14)60799-6

    Article  PubMed  Google Scholar 

  6. Ronco C, Garzotto F, Ricci Z (2012) CA.R.PE.DI.E.M. (cardio-renal pediatric dialysis emergency machine): evolution of continuous renal replacement therapies in infants A personal journey. Pediatr Nephrol 27:1203–1211. https://doi.org/10.1007/s00467-012-2179-8

    Article  PubMed  Google Scholar 

  7. Lorenzin A, Garzotto F, Alghisi A, Ronco C et al (2016) CVVHD treatment with CARPEDIEM: small solute clearance at different blood and dialysate flows with three different surface area filter configurations. Pediatr Nephrol 31:1659–1665. https://doi.org/10.1007/s00467-016-3397-2

    Article  PubMed  Google Scholar 

  8. Vidal E, Cocchi E, Paglialonga F, Ronco C et al (2019) Continuous veno-venous hemodialysis using the Cardio-Renal Pediatric Dialysis Emergency MachineTM: first clinical experiences. BPU 47:149–155. https://doi.org/10.1159/000494437

    Article  Google Scholar 

  9. Garzotto F, Vidal E, Ricci Z, Ronco C et al (2020) Continuous kidney replacement therapy in critically ill neonates and infants: a retrospective analysis of clinical results with a dedicated device. Pediatr Nephrol 35:1699–1705. https://doi.org/10.1007/s00467-020-04562-y

    Article  PubMed  Google Scholar 

  10. Schwartz GJ, Work DF (2009) Measurement and estimation of GFR in children and adolescents. Clin J Am Soc Nephrol 4:1832–1843. https://doi.org/10.2215/CJN.01640309

    Article  PubMed  Google Scholar 

  11. Goldstein SL, Vidal E, Ricci Z, Ronco C et al (2022) Survival of infants treated with CKRT: comparing adapted adult platforms with the CarpediemTM. Pediatr Nephrol 37:667–675. https://doi.org/10.1007/s00467-021-05180-y

    Article  PubMed  Google Scholar 

  12. Sethi SK, Raina R, Rana A, Wazir S et al (2022) Validation of the STARZ neonatal acute kidney injury risk stratification score. Pediatr Nephrol 37:1923–1932. https://doi.org/10.1007/s00467-021-05369-1

    Article  PubMed  Google Scholar 

  13. Gorga SM, Sahay RD, Askenazi DJ, Selewski DT et al (2020) Fluid overload and fluid removal in pediatric patients on extracorporeal membrane oxygenation requiring continuous renal replacement therapy: a multicenter retrospective cohort study. Pediatr Nephrol 35:871–882. https://doi.org/10.1007/s00467-019-04468-4

    Article  PubMed  PubMed Central  Google Scholar 

  14. Selewski DT, Cornell TT, Lombel RM, Heung M et al (2011) Weight-based determination of fluid overload status and mortality in pediatric intensive care unit patients requiring continuous renal replacement therapy. Intensive Care Med 37:1166–1173. https://doi.org/10.1007/s00134-011-2231-3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Alobaidi R, Morgan C, Basu RK, Bagshaw SM et al (2018) Association between fluid balance and outcomes in critically ill children: a systematic review and meta-analysis. JAMA Pediatr 172:257–268. https://doi.org/10.1001/jamapediatrics.2017.4540

    Article  PubMed  PubMed Central  Google Scholar 

  16. Fayad AI, Buamscha DG, Ciapponi A (2016) Intensity of continuous renal replacement therapy for acute kidney injury. Cochrane Database Syst Rev 10:CD010613. https://doi.org/10.1002/14651858.CD010613.pub2

    Article  PubMed  Google Scholar 

  17. Naorungroj T, Neto AS, Zwakman-Hessels L, Bellomo R et al (2021) Early net ultrafiltration rate and mortality in critically ill patients receiving continuous renal replacement therapy. Nephrol Dial Transplant 36:1112–1119. https://doi.org/10.1093/ndt/gfaa032

    Article  PubMed  Google Scholar 

  18. Murugan R, Kerti SJ, Chang C-CH, Bellomo R et al (2019) Association of net ultrafiltration rate with mortality among critically ill adults with acute kidney injury receiving continuous venovenous hemodiafiltration: a Secondary Analysis of the Randomized Evaluation of Normal vs Augmented Level (RENAL) of Renal Replacement Therapy Trial. JAMA Netw Open 2:e195418. https://doi.org/10.1001/jamanetworkopen.2019.5418

    Article  PubMed  PubMed Central  Google Scholar 

  19. Khwaja A (2012) KDIGO clinical practice guidelines for acute kidney injury. NEC 120:c179–c184. https://doi.org/10.1159/000339789

    Article  Google Scholar 

  20. Vinsonneau C, Allain-Launay E, Blavau C, Vong LV (2015) Épuration extrarénale en réanimation adulte et pédiatrique - La SFAR. Société Française d’Anesthésie et de Réanimation. https://sfar.org/epuration-extrarenale-en-reanimation-adulte-et-pediatrique/. Accessed 4 May 2022

  21. Werner HA, Herbertson MJ, Seear MD (1994) Functional characteristics of pediatric veno-venous hemofiltration. Crit Care Med 22:320–325. https://doi.org/10.1097/00003246-199402000-00025

    Article  CAS  PubMed  Google Scholar 

  22. Kaempfen S, Dutta-Kukreja P, Mok Q (2017) Continuous venovenous hemofiltration in children less than or equal to 10 kg: a single-center experience. Pediatr Crit Care Med 18:e70–e76. https://doi.org/10.1097/PCC.0000000000001030

    Article  PubMed  Google Scholar 

  23. Hackbarth R, Bunchman TE, Chua AN, Goldstein SL et al (2007) The effect of vascular access location and size on circuit survival in pediatric continuous renal replacement therapy: a report from the PPCRRT registry. Int J Artif Organs 30:1116–1121. https://doi.org/10.1177/039139880703001212

    Article  CAS  PubMed  Google Scholar 

  24. Garzotto F, Zaccaria M, Vidal E, Ronco C et al (2019) Choice of catheter size for infants in continuous renal replacement therapy: bigger is not always better. Pediatr Crit Care Med 20:e170–e179. https://doi.org/10.1097/PCC.0000000000001825

    Article  PubMed  Google Scholar 

  25. Coulthard MG, Crosier J, Griffiths C, Lambert HJ et al (2014) Haemodialysing babies weighing <8 kg with the Newcastle infant dialysis and ultrafiltration system (Nidus): comparison with peritoneal and conventional haemodialysis. Pediatr Nephrol 29:1873–1881. https://doi.org/10.1007/s00467-014-2923-3

    Article  PubMed  PubMed Central  Google Scholar 

  26. Askenazi D, Ingram D, White S, Fathallah-Shaykh S et al (2016) Smaller circuits for smaller patients: improving renal support therapy with AquadexTM. Pediatr Nephrol 31:853–860. https://doi.org/10.1007/s00467-015-3259-3

    Article  PubMed  Google Scholar 

  27. Raina R, Bedoyan JK, Lichter-Konecki U, Warady BA et al (2020) Consensus guidelines for management of hyperammonaemia in paediatric patients receiving continuous kidney replacement therapy. Nat Rev Nephrol 16:471–482. https://doi.org/10.1038/s41581-020-0267-8

    Article  PubMed  PubMed Central  Google Scholar 

  28. Arbeiter AK, Kranz B, Wingen A-M, Büscher R et al (2010) Continuous venovenous haemodialysis (CVVHD) and continuous peritoneal dialysis (CPD) in the acute management of 21 children with inborn errors of metabolism. Nephrol Dial Transplant 25:1257–1265. https://doi.org/10.1093/ndt/gfp595

    Article  PubMed  Google Scholar 

  29. Celik M, Akdeniz O, Ozgun N, Ozbek MN et al (2019) Short-term results of continuous venovenous haemodiafiltration versus peritoneal dialysis in 40 neonates with inborn errors of metabolism. Eur J Pediatr 178:829–836. https://doi.org/10.1007/s00431-019-03361-4

    Article  CAS  PubMed  Google Scholar 

  30. Snauwaert E, Van Biesen W, Raes A, Vande Walle J et al (2017) Accumulation of uraemic toxins is reflected only partially by estimated GFR in paediatric patients with chronic kidney disease. Pediatr Nephrol 33:315–323. https://doi.org/10.1007/s00467-017-3802-5

    Article  PubMed  Google Scholar 

  31. Nishimi S, Sugawara H, Onodera C, Oyama K et al (2019) Complications during continuous renal replacement therapy in critically ill neonates. Blood Purif 47(Suppl 2):74–80. https://doi.org/10.1159/000496654

    Article  PubMed  Google Scholar 

  32. Jiritano F, Serraino GF, ten Cate H, Lorusso R et al (2020) Platelets and extra-corporeal membrane oxygenation in adult patients: a systematic review and meta-analysis. Intensive Care Med 46:1154–1169. https://doi.org/10.1007/s00134-020-06031-4

    Article  PubMed  PubMed Central  Google Scholar 

  33. Thachil J, Warkentin TE (2017) How do we approach thrombocytopenia in critically ill patients? Br J Haematol 177:27–38. https://doi.org/10.1111/bjh.14482

    Article  PubMed  Google Scholar 

  34. Mulder J, Tan HK, Bellomo R, Silvester W (2003) Platelet loss across the hemofilter during continuous hemofiltration. Int J Artif Organs 26:906–912. https://doi.org/10.1177/039139880302601006

    Article  CAS  PubMed  Google Scholar 

  35. Griffin BR, Jovanovich A, You Z, Lorusso R et al (2019) Effects of baseline thrombocytopenia and platelet decrease following renal replacement therapy initiation in patients with severe acute kidney injury. Crit Care Med 47:e325–e331. https://doi.org/10.1097/CCM.0000000000003598

    Article  PubMed  PubMed Central  Google Scholar 

  36. Griffin BR, Ten Eyck P, Faubel S, Bellomo R et al (2022) Platelet decreases following continuous renal replacement therapy initiation as a novel risk factor for renal nonrecovery. Blood Purif 51:559–566. https://doi.org/10.1159/000517232

    Article  CAS  PubMed  Google Scholar 

  37. Griffin BR, Wu C, O’Horo JC, Kashani K et al (2021) The association of platelet decrease following continuous renal replacement therapy initiation and increased rates of secondary infections. Crit Care Med 49:e130–e139. https://doi.org/10.1097/CCM.0000000000004763

    Article  PubMed  PubMed Central  Google Scholar 

  38. Ranchin B, Plaisant F, Demède D, Bacchetta J et al (2021) Review: Neonatal dialysis is technically feasible but ethical and global issues need to be addressed. Acta Paediatr 110:781–788. https://doi.org/10.1111/apa.15539

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

The authors would like to thank the physicians involved in this clinical study aiming at improving our management practices with the use of CARPEDIEM®. The authors would also like to thank Véréna Landel (Direction de la Recherche en Santé, HCL) for help in manuscript preparation.

Funding

D. De Luca has received research assistance and speaker fees from MEDTRONIC Inc., outside of the present work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Julie Bernardor.

Ethics declarations

Ethics

The study was approved by an ethics committee (Comité d’Ethique des Recherches non Interventionelles Université Côte d’Azur, session 23 September 2020, approval N°2020–68) and respected all local and European relevant regulations. This study was performed with the appropriate participants’ informed consent in compliance with the Helsinki Declaration.

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Below is the link to the electronic supplementary material.

Graphical Abstract (PPTX 44 KB)

Supplementary file2 (DOCX 29 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Battista, J., De Luca, D., Eleni Dit Trolli, S. et al. CARPEDIEM® for continuous kidney replacement therapy in neonates and small infants: a French multicenter retrospective study. Pediatr Nephrol 38, 2827–2837 (2023). https://doi.org/10.1007/s00467-022-05871-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00467-022-05871-0

Keywords

Navigation