Skip to main content

Advertisement

Log in

Association of circulating fibroblast growth factor-2 with progression of HIV-chronic kidney diseases in children

  • Original Article
  • Published:
Pediatric Nephrology Aims and scope Submit manuscript

Abstract

Background

Children living with HIV frequently show high plasma levels of fibroblast growth factor-2 (FGF-2/bFGF). FGF-2 accelerates the progression of several experimental kidney diseases; however, the role of circulating FGF-2 in childhood HIV-chronic kidney diseases (HIV-CKDs) is unknown. We carried out this study to determine whether high plasma FGF-2 levels were associated with the development of HIV-CKDs in children.

Methods

The plasma and urine FGF-2 levels were measured in 84 children (< 12 years of age) living with HIV during the pre-modern antiretroviral era, and followed for at least 3 years to determine the prevalence of proteinuria and HIV-CKDs. We also assessed the distribution of the kidney FGF-2 binding sites by autoradiography and Alcian blue staining, and explored potential mechanisms by which circulating FGF-2 may precipitate HIV-CKDs in cultured kidney epithelial and mononuclear cells derived from children with HIV-CKDs.

Results

High plasma FGF-2 levels were associated with a high viral load. Thirteen children (~ 15%) developed HIV-CKDs and showed a large reservoir of FGF-2 low-affinity binding sites in the kidney, which can facilitate the recruitment of circulating FGF-2. Children with high plasma and urine FGF-2 levels had 73-fold increased odds (95% CI 9–791) of having HIV-CKDs relative to those with normal FGF-2 values. FGF-2 induced the proliferation and decreased the expression of APOL-1 mRNA in podocytes, and increased the attachment and survival of infected mononuclear cells cultured from children with HIV-CKDs.

Conclusions

High plasma FGF-2 levels appear to be an additional risk factor for developing progressive childhood HIV-CKDs.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data availability

All data generated or analyzed during this study are included in this published article and its Supplementary information files.

References

  1. Ray PE, Rakusan T, Loechelt BJ, Selby DM, Liu XH, Chandra RS (1998) Human immunodeficiency virus (HIV)-associated nephropathy in children from the Washington, D.C. area: 12 years’ experience. Semin Nephrol 18:396–405

    CAS  PubMed  Google Scholar 

  2. McCulloch MI, Ray PE (2008) Kidney disease in HIV-positive children. Semin Nephrol 28:585–594

    Article  PubMed  PubMed Central  Google Scholar 

  3. Beng H, Rakhmanina N, Moudgil A, Tuchman S, Ahn SY, Griffith C, Mims MM, Ray PE (2020) HIV-associated CKDs in children and adolescents. Kidney Int Rep 5:2292–2300

    Article  PubMed  PubMed Central  Google Scholar 

  4. Genovese G, Friedman DJ, Ross MD, Lecordier L, Uzureau P, Freedman BI, Bowden DW, Langefeld CD, Oleksyk TK, Uscinski Knob AL, Bernhardy AJ, Hicks PJ, Nelson GW, Vanhollebeke B, Winkler CA, Kopp JB, Pays E, Pollak MR (2010) Association of trypanolytic ApoL1 variants with kidney disease in African Americans. Science 329:841–845

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Ekulu PM, Nkoy AB, Betukumesu DK, Aloni MN, Makulo JRR, Sumaili EK, Mafuta EM, Elmonem MA, Arcolino FO, Kitetele FN, Lepira FB, van den Heuvel LP, Levtchenko EN (2019) APOL1 risk genotypes are associated with early kidney damage in children in Sub-Saharan Africa. Kidney Int Rep 4:930–938

    Article  PubMed  PubMed Central  Google Scholar 

  6. Purswani MU, Patel K, Winkler CA, Spector SA, Hazra R, Seage GR 3rd, Mofenson L, Karalius B, Scott GB, Van Dyke RB, Kopp JB, Pediatric HIVAIDS Cohort Study (2016) Brief report: APOL1 renal risk variants are associated with chronic kidney disease in children and youth with perinatal HIV infection. J Acquir Immune Defic Syndr 73:63–68

    Article  PubMed  PubMed Central  Google Scholar 

  7. Kopp JB, Nelson GW, Sampath K, Johnson RC, Genovese G, An P, Friedman D, Briggs W, Dart R, Korbet S, Mokrzycki MH, Kimmel PL, Limou S, Ahuja TS, Berns JS, Fryc J, Simon EE, Smith MC, Trachtman H, Michel DM, Schelling JR, Vlahov D, Pollak M, Winkler CA (2011) APOL1 genetic variants in focal segmental glomerulosclerosis and HIV-associated nephropathy. J Am Soc Nephrol 22:2129–2137

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Chaparro AI, Mitchell CD, Abitbol CL, Wilkinson JD, Baldarrago G, Lopez E, Zilleruelo G (2008) Proteinuria in children infected with the human immunodeficiency virus. J Pediatr 152:844–849

    Article  CAS  PubMed  Google Scholar 

  9. Ray PE, Liu XH, Xu L, Rakusan T (1999) Basic fibroblast growth factor in HIV-associated hemolytic uremic syndrome. Pediatr Nephrol 13:586–593

    Article  CAS  PubMed  Google Scholar 

  10. Ascherl G, Sgadari C, Bugarini R, Bogner J, Schatz O, Ensoli B, Sturzl M (2001) Serum concentrations of fibroblast growth factor 2 are increased in HIV type 1-infected patients and inversely related to survival probability. AIDS Res Hum Retrovir 17:1035–1039

    Article  CAS  PubMed  Google Scholar 

  11. Kriz W, Hahnel B, Rosener S, Elger M (1995) Long-term treatment of rats with FGF-2 results in focal segmental glomerulosclerosis. Kidney Int 48:1435–1450

    Article  CAS  PubMed  Google Scholar 

  12. Mazue G, Newman AJ, Scampini G, Della Torre P, Hard GC, Iatropoulos MJ, Williams GM, Bagnasco SM (1993) The histopathology of kidney changes in rats and monkeys following intravenous administration of massive doses of FCE 26184, human basic fibroblast growth factor. Toxicol Pathol 21:490–501

    Article  CAS  PubMed  Google Scholar 

  13. Li Z, Jerebtsova M, Liu XH, Tang P, Ray PE (2006) Novel cystogenic role of basic fibroblast growth factor in developing rodent kidneys. Am J Physiol Ren Physiol 291:F289–F296

    Article  CAS  Google Scholar 

  14. Floege J, Kriz W, Schulze M, Susani M, Kerjaschki D, Mooney A, Couser WG, Koch KM (1995) Basic fibroblast growth factor augments podocyte injury and induces glomerulosclerosis in rats with experimental membranous nephropathy. J Clin Invest 96:2809–2819

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Ray PE, Bruggeman LA, Weeks BS, Kopp JB, Bryant JL, Owens JW, Notkins AL, Klotman PE (1994) bFGF and its low affinity receptors in the pathogenesis of HIV-associated nephropathy in transgenic mice. Kidney Int 46:759–772

    Article  CAS  PubMed  Google Scholar 

  16. Thiebaut R, Morlat P, Jacqmin-Gadda H, Neau D, Mercie P, Dabis F, Chene G (2000) Clinical progression of HIV-1 infection according to the viral response during the first year of antiretroviral treatment. Groupe d'Epidemiologie du SIDA en Aquitaine (GECSA). AIDS 14:971–978

    Article  CAS  PubMed  Google Scholar 

  17. Bozic M, Betriu A, Bermudez-Lopez M, Ortiz A, Fernandez E, Valdivielso JM, NEFRONA investigators (2018) Association of FGF-2 concentrations with atheroma progression in chronic kidney disease patients. Clin J Am Soc Nephrol 13:577–584

  18. Ray PE, Castren E, Ruley EJ, Saavedra JM (1990) Different effects of sodium or chloride depletion on angiotensin II receptors in rats. Am J Phys 258:R1008–R1015

    CAS  Google Scholar 

  19. Liu XH, Aigner A, Wellstein A, Ray PE (2001) Up-regulation of a fibroblast growth factor binding protein in children with renal diseases. Kidney Int 59:1717–1728

    Article  CAS  PubMed  Google Scholar 

  20. Gonzalez AM, Hill DJ, Logan A, Maher PA, Baird A (1996) Distribution of fibroblast growth factor (FGF)-2 and FGF receptor-1 messenger RNA expression and protein presence in the mid-trimester human fetus. Pediatr Res 39:375–385

    Article  CAS  PubMed  Google Scholar 

  21. Pourghasem M, Nasiri E, Sum S, Shafi H (2013) The assessment of early glycosaminoglycan concentration changes in the kidney of diabetic rats by critical electrolyte concentration staining. Int J Mol Cell Med 2:58–63

    PubMed  PubMed Central  Google Scholar 

  22. Kanwar YS, Caulin-Glaser T, Gallo GR, Lamm ME (1986) Interaction of immune complexes with glomerular heparan sulfate-proteoglycans. Kidney Int 30:842–851

    Article  CAS  PubMed  Google Scholar 

  23. Xie X, Colberg-Poley AM, Das JR, Li J, Zhang A, Tang P, Jerebtsova M, Gutkind JS, Ray PE (2014) The basic domain of HIV-tat transactivating protein is essential for its targeting to lipid rafts and regulating fibroblast growth factor-2 signaling in podocytes isolated from children with HIV-1-associated nephropathy. J Am Soc Nephrol 25:1800–1813

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Li J, Das JR, Tang P, Han Z, Jaiswal JK, Ray PE (2017) Transmembrane TNF-alpha facilitates HIV-1 infection of podocytes cultured from children with HIV-associated nephropathy. J Am Soc Nephrol 28:862–875

    Article  PubMed  Google Scholar 

  25. Ray PE, Liu XH, Henry D, Dye L 3rd, Xu L, Orenstein JM, Schuztbank TE (1998) Infection of human primary renal epithelial cells with HIV-1 from children with HIV-associated nephropathy. Kidney Int 53:1217–1229

    Article  CAS  PubMed  Google Scholar 

  26. Tang P, Das JR, Li J, Yu J, Ray PE (2020) An HIV-Tat inducible mouse model system of childhood HIV-associated nephropathy. Dis Model Mech:13

  27. Bashkin P, Doctrow S, Klagsbrun M, Svahn CM, Folkman J, Vlodavsky I (1989) Basic fibroblast growth factor binds to subendothelial extracellular matrix and is released by heparitinase and heparin-like molecules. Biochemistry 28:1737–1743

    Article  CAS  PubMed  Google Scholar 

  28. D’Amore PA (1990) Modes of FGF release in vivo and in vitro. Cancer Metastasis Rev 9:227–238

    Article  PubMed  Google Scholar 

  29. Samaniego F, Markham PD, Gallo RC, Ensoli B (1995) Inflammatory cytokines induce AIDS-Kaposi’s sarcoma-derived spindle cells to produce and release basic fibroblast growth factor and enhance Kaposi’s sarcoma-like lesion formation in nude mice. J Immunol 154:3582–3592

    Article  CAS  PubMed  Google Scholar 

  30. Bates CM (2011) Role of fibroblast growth factor receptor signaling in kidney development. Am J Physiol Ren Physiol 301:F245–F251

    Article  CAS  Google Scholar 

  31. Villanueva S, Cespedes C, Gonzalez AA, Roessler E, Vio CP (2008) Inhibition of bFGF-receptor type 2 increases kidney damage and suppresses nephrogenic protein expression after ischemic acute renal failure. Am J Phys Regul Integr Comp Phys 294:R819–R828

    CAS  Google Scholar 

  32. Tan XH, Zheng XM, Yu LX, He J, Zhu HM, Ge XP, Ren XL, Ye FQ, Bellusci S, Xiao J, Li XK, Zhang JS (2017) Fibroblast growth factor 2 protects against renal ischaemia/reperfusion injury by attenuating mitochondrial damage and proinflammatory signalling. J Cell Mol Med 21:2909–2925

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Cuevas P, Carceller F, Ortega S, Zazo M, Nieto I, Gimenez-Gallego G (1991) Hypotensive activity of fibroblast growth factor. Science 254:1208–1210

    Article  CAS  PubMed  Google Scholar 

  34. Zhou M, Sutliff RL, Paul RJ, Lorenz JN, Hoying JB, Haudenschild CC, Yin M, Coffin JD, Kong L, Kranias EG, Luo W, Boivin GP, Duffy JJ, Pawlowski SA, Doetschman T (1998) Fibroblast growth factor 2 control of vascular tone. Nat Med 4:201–207

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Tassi E, Lai EY, Li L, Solis G, Chen Y, Kietzman WE, Ray PE, Riegel AT, Welch WJ, Wilcox CS, Wellstein A (2018) Blood pressure control by a secreted FGFBP1 (fibroblast growth factor-binding protein). Hypertension 71:160–167

    Article  CAS  PubMed  Google Scholar 

  36. Ray PE, Tassi E, Liu XH, Wellstein A (2006) Role of fibroblast growth factor-binding protein in the pathogenesis of HIV-associated hemolytic uremic syndrome. Am J Phys Regul Integr Comp Phys 290:R105–R113

    CAS  Google Scholar 

  37. Morita H, Shinzato T, David G, Mizutani A, Habuchi H, Fujita Y, Ito M, Asai J, Maeda K, Kimata K (1994) Basic fibroblast growth factor-binding domain of heparan sulfate in the human glomerulosclerosis and renal tubulointerstitial fibrosis. Lab Investig 71:528–535

    CAS  PubMed  Google Scholar 

  38. Kobayashi H, Miyakita H, Yamataka A, Koga H, Lane GJ, Miyano T (2004) Serum basic fibroblast growth factor as a marker of reflux nephropathy. J Pediatr Surg 39:1853–1855

    Article  PubMed  Google Scholar 

  39. Gupta GK, Milner L, Linshaw MA, McCauley RG, Connors S, Folkman J, Bianchi DW (2000) Urinary basic fibroblast growth factor: a noninvasive marker of progressive cystic renal disease in a child. Am J Med Genet 93:132–135

    Article  CAS  PubMed  Google Scholar 

  40. Ray P, Acheson D, Chitrakar R, Cnaan A, Gibbs K, Hirschman GH, Christen E, Trachtman H, Investigators of the Hemolytic Uremic Syndrome-Synsorb PK Multicenter Clinical Trial (2002) Basic fibroblast growth factor among children with diarrhea-associated hemolytic uremic syndrome. J Am Soc Nephrol 13:699–707

    Article  CAS  PubMed  Google Scholar 

  41. Wai K, Soler-Garcia AA, Perazzo S, Mattison P, Ray PE (2013) A pilot study of urinary fibroblast growth factor-2 and epithelial growth factor as potential biomarkers of acute kidney injury in critically ill children. Pediatr Nephrol 28:2189–2198

    Article  PubMed  PubMed Central  Google Scholar 

  42. Whalen GF, Shing Y, Folkman J (1989) The fate of intravenously administered bFGF and the effect of heparin. Growth Factors 1:157–164

    Article  CAS  PubMed  Google Scholar 

  43. Sasaki T, Hatta H, Osawa G (1999) Cytokines and podocyte injury: the mechanism of fibroblast growth factor 2-induced podocyte injury. Nephrol Dial Transplant 14(Suppl 1):33–34

    Article  CAS  PubMed  Google Scholar 

  44. Das JR, Gutkind JS, Ray PE (2016) Circulating fibroblast growth factor-2, HIV-Tat, and vascular endothelial cell growth factor-A in HIV-infected children with renal disease activate Rho-A and Src in cultured renal endothelial cells. PLoS One 11:e0153837

    Article  PubMed  PubMed Central  Google Scholar 

  45. Chua CC, Rahimi N, Forsten-Williams K, Nugent MA (2004) Heparan sulfate proteoglycans function as receptors for fibroblast growth factor-2 activation of extracellular signal-regulated kinases 1 and 2. Circ Res 94:316–323

    Article  CAS  PubMed  Google Scholar 

  46. Iozzo RV, San Antonio JD (2001) Heparan sulfate proteoglycans: heavy hitters in the angiogenesis arena. J Clin Invest 108:349–355

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Okamoto K, Tokunaga K, Doi K, Fujita T, Suzuki H, Katoh T, Watanabe T, Nishida N, Mabuchi A, Takahashi A, Kubo M, Maeda S, Nakamura Y, Noiri E (2011) Common variation in GPC5 is associated with acquired nephrotic syndrome. Nat Genet 43:459–463

    Article  CAS  PubMed  Google Scholar 

  48. Okamoto K, Honda K, Doi K, Ishizu T, Katagiri D, Wada T, Tomita K, Ohtake T, Kaneko T, Kobayashi S, Nangaku M, Tokunaga K, Noiri E (2015) Glypican-5 increases susceptibility to nephrotic damage in diabetic kidney. Am J Pathol 185:1889–1898

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Zittermann SI, Issekutz AC (2006) Basic fibroblast growth factor (bFGF, FGF-2) potentiates leukocyte recruitment to inflammation by enhancing endothelial adhesion molecule expression. Am J Pathol 168:835–846

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Peoples GE, Blotnick S, Takahashi K, Freeman MR, Klagsbrun M, Eberlein TJ (1995) T lymphocytes that infiltrate tumors and atherosclerotic plaques produce heparin-binding epidermal growth factor-like growth factor and basic fibroblast growth factor: a potential pathologic role. Proc Natl Acad Sci U S A 92:6547–6551

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Celie JW, Reijmers RM, Slot EM, Beelen RH, Spaargaren M, Ter Wee PM, Florquin S, van den Born J (2008) Tubulointerstitial heparan sulfate proteoglycan changes in human renal diseases correlate with leukocyte influx and proteinuria. Am J Physiol Ren Physiol 294:F253–F263

    Article  CAS  Google Scholar 

  52. Chun J, Zhang JY, Wilkins MS, Subramanian B, Riella C, Magraner JM, Alper SL, Friedman DJ, Pollak MR (2019) Recruitment of APOL1 kidney disease risk variants to lipid droplets attenuates cell toxicity. Proc Natl Acad Sci U S A 116:3712–3721

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Hughes K, Akturk G, Gnjatic S, Chen B, Klotman M, Blasi M (2020) Proliferation of HIV-infected renal epithelial cells following virus acquisition from infected macrophages. AIDS 34:1581–1591

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This study was supported by the National Institutes of Health awards R01 DK-103564; R01 DK-108368; R01 DK-115968; and R01 DK-04941.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Patricio E. Ray.

Ethics declarations

Competing interests

All authors declare they have no competing interest, conflict of interest, or disclosures including financial, consultant, institutional, and other relationships that might lead to bias or conflict of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

A previous non-peer-reviewed version of this article was posted as a preprint in medRXiv. doi: https://doi.org/10.1101/2020.12.08.20246280.

Supplementary Information

ESM 1

(DOCX 1816 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ray, P.E., Li, J., Das, J. et al. Association of circulating fibroblast growth factor-2 with progression of HIV-chronic kidney diseases in children. Pediatr Nephrol 36, 3933–3944 (2021). https://doi.org/10.1007/s00467-021-05075-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00467-021-05075-y

Keywords

Navigation