Skip to main content

Advertisement

Log in

Anticoagulation in patients with acute kidney injury undergoing kidney replacement therapy

  • Educational Review
  • Published:
Pediatric Nephrology Aims and scope Submit manuscript

Abstract

Kidney replacement therapy (KRT) is used to provide supportive therapy for critically ill patients with severe acute kidney injury and various other non-renal indications. Modalities of KRT include continuous KRT (CKRT), intermittent hemodialysis (HD), and sustained low efficiency daily dialysis (SLED). However, circuit clotting is a major complication that has been investigated extensively. Extracorporeal circuit clotting can cause reduction in solute clearances and can cause blood loss, leading to an upsurge in treatment costs and a rise in workload intensity. In this educational review, we discuss the pathophysiology of the clotting cascade within an extracorporeal circuit and the use of various types of anticoagulant methods in various pediatric KRT modalities.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Brandenburger T, Dimski T, Slowinski T, Kindgen-Milles D (2017) Renal replacement therapy and anticoagulation. Best Pract Res Clin Anaesthesiol 31:387–401. https://doi.org/10.1016/j.bpa.2017.08.00

    Article  PubMed  Google Scholar 

  2. Cardigan RA, McGloin H, Mackie IJ, Machin SJ, Singer M (1999) Activation of the tissue factor pathway occurs during continuous venovenous hemofiltration. Kidney Int 55:1568–1574

  3. Ricci Z, Romagnoli S, Ronco C (2016) Renal Replacement Therapy. F1000Res 5:F1000 Faculty Rev-103. https://doi.org/10.12688/f1000research.435.1

  4. Davenport A (2012) Alternatives to standard unfractionated heparin for pediatric hemodialysis treatments. Pediatr Nephrol 27:1869–1879. https://doi.org/10.1007/s00467-012-2129-5

    Article  PubMed  PubMed Central  Google Scholar 

  5. Salmon J, Cardigan R, Mackie I, Cohen SL, Machin S, Singer M (1997) Continuous venovenous haemofiltration using polyacrylonitrile filters does not activate contact system and intrinsic coagulation pathways. Intensive Care Med 23:38–43

    Article  CAS  PubMed  Google Scholar 

  6. Frank RD, Weber J, Dresbach H, Thelen H, Weiss C, Floege J (2001) Role of contact system activation in hemodialyzer-induced thrombogenicity. Kidney Int 60:1972–1981. https://doi.org/10.1046/j.1523-1755.2001.00009.x

    Article  CAS  PubMed  Google Scholar 

  7. Uchino S, Fealy N, Baldwin I, Morimatsu H, Bellomo R. Pre-dilution vs. post-dilution during continuous veno-venous hemofiltration: impact on filter life and azotemic control. Nephron Clin Pract. 2003;94(4):c94-8. https://doi.org/10.1159/000072492.

  8. du Cheyron D, Bouchet B, Bruel C, Daubin C, Ramakers M, Charbonneau P. Antithrombin supplementation for anticoagulation during continuous hemofiltration in critically ill patients with septic shock: a case-control study. Crit Care. 2006;10(2):R45. https://doi.org/10.1186/cc4853

  9. Joannidis M, Oudemans-van Straaten HM (2007) Clinical review: patency of the circuit in continuous renal replacement therapy. Crit Care 11:218

    Article  PubMed  PubMed Central  Google Scholar 

  10. Davenport A, Tolwani A (2009) Citrate anticoagulation for continuous renal replacement therapy (CRRT) in patients with acute kidney injury admitted to the intensive care unit. NDT Plus 2:439–447. https://doi.org/10.1093/ndtplus/sfp136

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Benz MR, Schaefer F (2012) Technical Aspects of Hemodialysis in Children. In: Warady B, Schaefer F, Alexander S (eds) Pediatric Dialysis. Springer, Boston, pp 287–311. https://doi.org/10.1007/978-1-4614-0721-8_17

    Chapter  Google Scholar 

  12. Grudzinski L, Quinan P, Kwok S, Pierratos A (2007) Sodium citrate 4% locking solution for central venous dialysis catheters—an effective, more cost-efficient alternative to heparin. Nephrol Dial Transplant 22:471–476

    Article  CAS  PubMed  Google Scholar 

  13. Mehta RL, McDonald BR, Aguilar MM, Ward DM (1990) Regional citrate anticoagulation for continuous arteriovenous haemodialysis in critically ill patients. Kidney Int 38:976–981

    Article  CAS  PubMed  Google Scholar 

  14. Davenport A, Will EJ, Davison AM (1990) Paradoxical increase in arterial hydrogen ion concentration in patients with hepatorenal failure given lactate-based fluids. Nephrol Dial Transplant 5:432–436

    Article  Google Scholar 

  15. Kindgen-Milles D, Amman J, Kleinekofort W, Morgera S (2008) Treatment of metabolic alkalosis during continuous renal replacement therapy with regional citrate anticoagulation. Int J Artif Organs 31:363–366

    Article  CAS  PubMed  Google Scholar 

  16. Oduah EI, Linhardt RJ, Sharfstein ST (2016) Heparin: Past, Present, and Future. Pharmaceuticals (Basel) 9:38. https://doi.org/10.3390/ph9030038

    Article  CAS  Google Scholar 

  17. Davenport A (2003) Anticoagulation options for pediatric hemodialysis. Hemodial Int 7:168–176. https://doi.org/10.1046/j.1492-7535.2003.00022.x

    Article  PubMed  Google Scholar 

  18. Van der Voort PH, Gerritsen RT, Kuiper MA, Egbers PH, Kingma WP, Boerma EC (2005) Filter run time in CVVH: Pre versus post dilution and nadroparin versus regional heparin-protamine anticoagulation. Blood Purif 23:175–180

    Article  PubMed  CAS  Google Scholar 

  19. de Pont AC, Oudemans-van Straaten HM, Roozendaal KJ, Zandstra DF (2000) Nadroparin versus dalteparin anticoagulation in high-volume, continuous venovenous hemofiltration: a double-blind, randomized, crossover study. Crit Care Med 28:421–425. https://doi.org/10.1097/00003246-200002000-00022

    Article  PubMed  Google Scholar 

  20. Cook D, Meade M, Guyatt G, Guyatt G, Walter S, Heels-Ansdell D, Warkentin T, Zytaruk N, Crowther M, Geerts W, Cooper DJ, Vallance S, Qushmaq I, Rocha M, Berwanger O, Vlahakis N (2011) Dalteparin versus unfractionated heparin in critically ill patients. N Engl J Med 364:1305–1314

    Article  CAS  PubMed  Google Scholar 

  21. Merli GJ, Groce JB (2010) Pharmacological and clinical differences between low-molecular-weight heparins: implications for prescribing practice and therapeutic interchange. P T 35:95–105

    PubMed  PubMed Central  Google Scholar 

  22. Kandrotas RJ, Gal P, Douglas JB, Deterding J (1990) Pharmacokinetics and pharmacodynamics of heparin during hemodialysis: interpatient and intrapatient variability. Pharmacotherapy 10:349–355

    CAS  PubMed  Google Scholar 

  23. Farrell PC, Ward RA, Schindhelm K, Gotch FA (1978) Precise anticoagulation for routine hemodialysis. J Lab Clin Med 92:164–176

    CAS  PubMed  Google Scholar 

  24. Linhardt RJ, Liu J (2012) Synthetic heparin. Curr Opin Pharmacol 12:217–219

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Woodcock J (2014) Proposal to Encourage the Reintroduction of Bovine Heparin to the US Market. Background Information for the FDA Science Board Meeting June 4, 2014. United States Food and Drug Administration Science Board to the Food and Drug Administration. https://wayback.archive-it.org/7993/20170113210351/http://www.fda.gov/AdvisoryCommittees/CommitteesMeetingMaterials/ScienceBoardtotheFoodandDrugAdministration/ucm399395.htm

  26. Wang W, Yang B, Zhang Z, Ly M, Takieddin M, Mousa S, Liu J, Dordick JS, Linhardt RJ (2011) Control of the heparosan N-deacetylation leads to an improved bioengineered heparin. Appl Microbiol Biotechnol 91:91–99

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Dhondt A, Pauwels R, Devreese K, Eloot S, Glorieux G, Vanholder R (2015) Where and When To Inject Low Molecular Weight Heparin in Hemodiafiltration? A Cross Over Randomised Trial. PLoS One 10:e0128634. https://doi.org/10.1371/journal.pone.0128634

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Liu Z, Ji S, Sheng J, Wang F (2014) Pharmacological effects and clinical applications of ultra low molecular weight heparins. Drug Discov Ther 8:1–10. https://doi.org/10.5582/ddt.8.1

    Article  CAS  PubMed  Google Scholar 

  29. Chandarajoti K, Liu J, Pawlinski R (2016) The design and synthesis of new synthetic low-molecular-weight heparins. J Thromb Haemost 14:1135–1145. https://doi.org/10.1111/jth.13312

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Piazza G, Ridker PM (2015) Is venous thromboembolism a chronic inflammatory disease? Clin Chem 61:313–316

    Article  CAS  PubMed  Google Scholar 

  31. Wells PS, Forgie MA, Rodger MA (2014) Treatment of venous thromboembolism. JAMA 311:717–728

    Article  CAS  PubMed  Google Scholar 

  32. Hirsh J, Warkentin TE, Shaughnessy SG, Anand SS, Halperin JL, Raschke R, Granger C, Ohman EM, Dalen JE (2001) Heparin and low-molecular-weight heparin: mechanisms of action, pharmacokinetics, dosing, monitoring, efficacy, and safety. Chest 119:64S–94S

    Article  CAS  PubMed  Google Scholar 

  33. Anastassiades E, Ireland H, Flynn A, Lane DA, Curtis JR (1990) A low-molecular-weight heparin (Kabi 2165, 'Fragmin') in repeated use for haemodialysis: prevention of clotting and prolongation of the venous compression time in comparison with commercial unfractioned heparin. Nephrol Dial Transplant 5:135–140

    Article  CAS  PubMed  Google Scholar 

  34. Schrader J, Valentin R, Tonnis HJ, Hildebrand U, Stibbe W, Armstrong VW, Kandt M, Kostering H, Quellhorst E (1985) Low molecular weight heparin in hemodialysis and hemofiltration patients. Kidney Int 28:823–829

    Article  CAS  PubMed  Google Scholar 

  35. Ahmed I, Majeed A, Powell R (2007) Heparin induced thrombocytopenia: diagnosis and management update. Postgrad Med J 83:575–582. https://doi.org/10.1136/pgmj.2007.059188

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Moncada S, Gryglewski R, Bunting S, Vane JR (1976) An enzyme isolated from arteries transforms prostaglandin endoperoxides to an unstable substance that inhibits platelet aggregation. Nature 263:663–665

    Article  CAS  PubMed  Google Scholar 

  37. Cawello W, Schweer H, Müller R, Bonn R, Seyberth HW (1994) Metabolism and pharmacokinetics of prostaglandin E1 administered by intravenous infusion in human subjects. Eur J Clin Pharmacol 46:275–277

    Article  CAS  PubMed  Google Scholar 

  38. Kozek-Langenecker SA, Spiss CK, Michalek-Sauberer A, Felfernig M, Zimpfer M (2003) Effect of prostacyclin on platelets, polymorphonuclear cells, and heterotypic cell aggregation during hemofiltration. Crit Care Med 31:864–868

    Article  CAS  PubMed  Google Scholar 

  39. Deep A, Zoha M, Kukreja PD (2017) Prostacyclin as an Anticoagulant for Continuous Renal Replacement Therapy in Children. Blood Purif 43:279–289. https://doi.org/10.1159/000452754

    Article  CAS  PubMed  Google Scholar 

  40. Gainza FJ, Quintanilla N, Pijoan JI, Delgado S, Urbizu JM, Lampreabe I (2006) Role of prostacyclin (epoprostenol) as anticoagulant in continuous renal replacement therapies: efficacy, security and cost analysis. J Nephrol 19:648–655

    CAS  PubMed  Google Scholar 

  41. Davenport A, Will EJ, Davison AM (1994) Comparison of the use of standard heparin and prostacyclin anticoagulation in spontaneous and pump-driven extracorporeal circuits in patients with combined acute renal and hepatic failure. Nephron 66:431–437

    Article  CAS  PubMed  Google Scholar 

  42. Davenport A (2004) Anticoagulation for continuous renal replacement therapy. Contrib Nephrol 144:228–238

    Article  PubMed  Google Scholar 

  43. Bai K, Liu C, Zhou F, Xu F, Dang H (2019) Regional Citrate Anticoagulation with a Substitute Containing Calcium for Continuous Hemofiltration in Children. Medicine 98:e17421. https://doi.org/10.1097/MD.0000000000017421

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Kreuzer M, Bonzel KE, Buscher R, Offner G, Ehrich JHH, Pape L (2010) Regional Citrate Anticoagulation Is Safe in Intermittent High-Flux Haemodialysis Treatment of Children and Adolescents with an Increased Risk of Bleeding. Nephrol Dial Transplant 25:3337–3342. https://doi.org/10.1093/ndt/gfq225

    Article  CAS  PubMed  Google Scholar 

  45. Zaoral T, Hladík M, Zapletalová J, Trávníček B, Gelnarová E (2016) Circuit Lifetime With Citrate Versus Heparin in Pediatric Continuous Venovenous Hemodialysis. Pediatr Crit Care Med 17:e399–e405. https://doi.org/10.1097/PCC.0000000000000860

    Article  PubMed  Google Scholar 

  46. Rico MP, Sarmiento JF, Velasquez AMR, Chaparro LSG, Amaya RG, Hoyos HM, Tibaduiza D, Gómez AMQ (2017) Regional Citrate Anticoagulation for Continuous Renal Replacement Therapy in Children. Pediatr Nephrol 32:703–711. https://doi.org/10.1007/s00467-016-3544-9

    Article  PubMed  Google Scholar 

  47. Fabra C, Infante S, Miras I, Pretus S, Santiago MJ, Fernández SN, López-Herce J (2018) Hematologic Disorders in Children with Continuous Renal Replacement Therapies. ASAIO J 64:375–381. https://doi.org/10.1097/MAT.0000000000000637

    Article  PubMed  Google Scholar 

  48. Kakajiwala A, Jemielita T, Hughes JZ, Windt K, Denburg M, Goldstein ST, Laskin B (2017) Membrane Pressures Predict Clotting of Pediatric Continuous Renal Replacement Therapy Circuits. Pediatr Nephrol 32:1251–1261. https://doi.org/10.1007/s00467-017-3601-z

    Article  PubMed  PubMed Central  Google Scholar 

  49. Soltysiak M, Warzywoda A, Kociński B, Ostalska-Nowicka D, Benedyk A, Silska-Dittmar M, Zachwieja J (2014) Citrate Anticoagulation for Continuous Renal Replacement Therapy in Small Children. Pediatr Nephrol 29:469–475. https://doi.org/10.1007/s00467-013-2690-6

    Article  PubMed  Google Scholar 

  50. Miklaszewska M, Korohoda P, Zachwieja K, Kobylarz K, Stefanidis CJ, Sobczak A, Drożdż D (2017) Filter Size Not the Anticoagulation Method Is the Decisive Factor in Continuous Renal Replacement Therapy Circuit Survival. Kidney Blood Press Res 42:327–337. https://doi.org/10.1159/000477609

    Article  CAS  PubMed  Google Scholar 

  51. Brophy PD, Somers MJG, Baum MA, Symons JM, McAfee N, Fortenberry JD, Rogers K, Barnett J, Blowey D, Baker C, Bunchman TE, Goldstein SL et al (2005) Multi-Centre Evaluation of Anticoagulation in Patients Receiving Continuous Renal Replacement Therapy (CRRT). Nephrol Dial Transplant 20:1416–1421. https://doi.org/10.1093/ndt/gfh817

    Article  PubMed  Google Scholar 

  52. Chadha V, Garg U, Warady BA, Alon US (2002) Citrate Clearance in Children Receiving Continuous Venovenous Renal Replacement Therapy. Pediatr Nephrol 17:819–824. https://doi.org/10.1007/s00467-002-0963-6

    Article  PubMed  Google Scholar 

  53. Fernández SN, Santiago MJ, López-Herce J, García M, Castillo JD, Alcaraz AJ, Bellón JM (2014) Citrate Anticoagulation for CRRT in Children: Comparison with Heparin. Biomed Res Int 2014:786301. https://doi.org/10.1155/2014/786301

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Rodriguez K, Srivaths PR, Tal L, Watson MN, Riley AA, Himes RW, Desai MS, Braun MC, Arikan AA (2017) Regional Citrate Anticoagulation for Continuous Renal Replacement Therapy in Pediatric Patients with Liver Failure. PLoS One 12:e0182134. https://doi.org/10.1371/journal.pone.0182134

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Raymakers-Janssen PAMA, Lilien M, van Kessel IA, Veldhoen ES, Wösten-van Asperen RM, van Gestel JPJ (2017) Citrate versus Heparin Anticoagulation in Continuous Renal Replacement Therapy in Small Children. Pediatr Nephrol 32:1971–1978. https://doi.org/10.1007/s00467-017-3694-4

    Article  PubMed  PubMed Central  Google Scholar 

  56. Musielak A, Warzywoda A, Wojtalik M, Kociński B, Kroll P, Ostalska-Nowicka D, Zachwieja J (2016) Outcomes of Continuous Renal Replacement Therapy With Regional Citrate Anticoagulation in Small Children After Cardiac Surgery: Experience and Protocol From a Single Center. Ther Apher Dial 20:639–644. https://doi.org/10.1111/1744-9987.12456

    Article  PubMed  Google Scholar 

  57. Liet JM, Allain-Launay E, Gaillard-LeRoux B, Barrière F, Chenouard A, Dejode JM, Joram N (2014) Regional Citrate Anticoagulation for Pediatric CRRT Using Integrated Citrate Software and Physiological Sodium Concentration Solutions. Pediatr Nephrol 29:1625–1631. https://doi.org/10.1007/s00467-014-2770-2

    Article  PubMed  Google Scholar 

  58. Bunchman TE, Maxvold NJ, Barnett J, Hutchings A, . Benfield MR (2002) Pediatric Hemofiltration: Normocarb Dialysate Solution with Citrate Anticoagulation. Pediatr Nephrol 17:150–154. https://doi.org/10.1007/s00467-001-0791-0

    Article  PubMed  Google Scholar 

  59. Bunchman TE, Maxvold NJ, Brophy PD (2003) Pediatric Convective Hemofiltration: Normocarb Replacement Fluid and Citrate Anticoagulation. Am J Kidney Dis 42:1248–1252. https://doi.org/10.1053/j.ajkd.2003.08.026

    Article  PubMed  Google Scholar 

  60. Elhanan N, Skippen P, Nuthall G, Krahn G, Seear M (2004) Citrate Anticoagulation in Pediatric Continuous Venovenous Hemofiltration. Pediatr Nephrol 19:208–212. https://doi.org/10.1007/s00467-003-1328-5

    Article  PubMed  Google Scholar 

  61. Raina R, Agrawal N, Kusumi K, Pandey A, Tibrewal A, Botsch A (2021) A Meta-Analysis of Extracorporeal Anticoagulants in Pediatric Continuous Kidney Replacement Therapy. https://doi.org/10.1177/0885066621992751

  62. Harrill AH, Roach J, Fier I, Eaddy JS, Kurtz CL, Antoine DJ, Spencer DM, Kishimoto TK, Pisetsky DS, Park BK, Watkins PB (2012) The effects of heparins on the liver: application of mechanistic serum biomarkers in a randomized study in healthy volunteers. Clin Pharmacol Ther 92:214–220. https://doi.org/10.1038/clpt.2012.40

    Article  CAS  PubMed  Google Scholar 

  63. van Hinsbergh VW (2012) Endothelium--role in regulation of coagulation and inflammation. Semin Immunopathol 34:93–106. https://doi.org/10.1007/s00281-011-0285-5

    Article  CAS  PubMed  Google Scholar 

  64. Ponikvar R, Kandus A, Urbancic A, Kornhauser AG, Primozic J, Ponikvar JB (2002) Continuous Renal Replacement Therapy and Plasma Exchange in Newborns and Infants. Artif Organs 26:163–168. https://doi.org/10.1046/j.1525-1594.2002.06838.x

    Article  PubMed  Google Scholar 

  65. Zobel G, Trop M, Muntean W, Ring E, Gleispach H (1988) Anticoagulation for continuous arteriovenous hemofiltration in children. Blood Purif 6:90–95

    Article  CAS  PubMed  Google Scholar 

  66. Rödl S, Marschitz I, Mache CJ, Koestenberger M, Madler G, Zobel G (2011) Continuous Renal Replacement Therapy with Prismaflex HF20 Disposable Set in Children from 4 to 15 Kg. ASAIO J 57:451–455. https://doi.org/10.1097/MAT.0b013e31822d2132

    Article  PubMed  Google Scholar 

  67. Vidal E, Cocchi E, Paglialonga F, Ricci Z, Garzotto F, Peruzzi L, Murer L, Ronco C (2019) Continuous Veno-Venous Hemodialysis Using the Cardio-Renal Pediatric Dialysis Emergency MachineTM: First Clinical Experiences. Blood Purif 47:149–155. https://doi.org/10.1159/000494437

    Article  PubMed  Google Scholar 

  68. Symons JM, Chua AN, Somers MJG, Baum MA, Bunchman TE, Benfield MR, Brophy PD, Blowey D, Fortenberry JD, Chand D, Flores FX, Hackbarth R, Alexander SR, Mahan J, McBryde KD, Goldstein SL (2007) Demographic Characteristics of Pediatric Continuous Renal Replacement Therapy: A Report of the Prospective Pediatric Continuous Renal Replacement Therapy Registry. Clin J Am Soc Nephrol 2:732–738. https://doi.org/10.2215/CJN.03200906

    Article  PubMed  Google Scholar 

  69. Castillo JD, López-Herce J, Cidoncha E, Urbano J, Mencía S, Santiago MJ, Bellón JM (2008) Circuit Life Span in Critically Ill Children on Continuous Renal Replacement Treatment: A Prospective Observational Evaluation Study. Crit Care 12:R93. https://doi.org/10.1186/cc6965

    Article  PubMed  PubMed Central  Google Scholar 

  70. Davenport A, Will EJ, Davison AM (1991) The effect of prostacyclin on intracranial pressure in patients with acute hepatic and renal failure. Clin Nephrol 35:151–157

    CAS  PubMed  Google Scholar 

  71. Goonasekera CD, Wang J, Bunchman TE, Deep A (2015) Factors affecting circuit life during continuous renal replacement therapy in children with liver failure. Ther Apher Dial 19:16–22

    Article  PubMed  Google Scholar 

  72. Zobel G, Ring E, Müller W (1989) Continuous arteriovenous hemofiltration in premature infants. Crit Care Med 17:534–536

    Article  CAS  PubMed  Google Scholar 

  73. Dhondt A, Vanholder R, Tielemans C, Glorieux G, Waterloos MA, De Smet R, Lameire N (2000) Effect of regional citrate anticoagulation on leukopenia, complement activation, and expression of leukocyte surface molecules during hemodialysis with unmodified cellulose membranes. Nephron 85:334–342

    Article  CAS  PubMed  Google Scholar 

  74. Apsner R, Buchmayer H, Lang T, Unver B, Speiser W, Sunder-Plassmann G, Horl WH (2001) Simplified citrate anticoagulation for high flux hemodialysis. Am J Kidney Dis 38:979–987

    Article  CAS  PubMed  Google Scholar 

  75. Fajardo C, Sanchez CP, Cutler D, Sahney S, Sheth R (2016) Inpatient Citrate-Based Hemodialysis in Pediatric Patients. Pediatr Nephrol 31:1667–1672. https://doi.org/10.1007/s00467-016-3403-8

    Article  PubMed  Google Scholar 

  76. Hanevold C, Lu S, Yonekawa K (2010) Utility of Citrate Dialysate in Management of Acute Kidney Injury in Children. Hemodial Int 14(Suppl 1):S2–S6. https://doi.org/10.1111/j.1542-4758.2010.00483.x

    Article  PubMed  Google Scholar 

  77. Pratt RD, Grimberg S, Zaritsky JJ, Warady BA (2018) Pharmacokinetics of Ferric Pyrophosphate Citrate Administered via Dialysate and Intravenously to Pediatric Patients on Chronic Hemodialysis. Pediatr Nephrol 33:2151–2159. https://doi.org/10.1007/s00467-018-4014-3

    Article  PubMed  PubMed Central  Google Scholar 

  78. Hanudel MR, Laster M, Ramos G, Gales B, Salusky IB (2018) Clinical Experience with the Use of Ferric Citrate as a Phosphate Binder in Pediatric Dialysis Patients. Pediatr Nephrol 33:2137–2142. https://doi.org/10.1007/s00467-018-3999-y

    Article  PubMed  PubMed Central  Google Scholar 

  79. Stiekema JC, Van Griensven JM, VanDinther TG, Cohen AF (1993) A cross over comparison of the anti–clotting effects of three low molecular weight heparins and glycosaminoglycuronan. Brit J Clin Pharmacol 36:51–56

    Article  CAS  Google Scholar 

  80. Shroff R, Wright E, Ledermann S, Hutchinson C, Rees L (2003) Chronic Hemodialysis in Infants and Children under 2 Years of Age. Pediatr Nephrol 18:378–383. https://doi.org/10.1007/s00467-003-1070-z

    Article  PubMed  Google Scholar 

  81. Geary DF, Gajaria M, Fryer-Keene S, Willumsen J (1991) Low-Dose and Heparin-Free Hemodialysis in Children. Pediatr Nephrol 5:220–224. https://doi.org/10.1007/BF01095957

    Article  CAS  PubMed  Google Scholar 

  82. Lutkin M, Stronach L, Yadav P, Hothi DK (2018) Dalteparin Anticoagulation in Paediatric Home Haemodialysis. Pediatr Nephrol 33:2337–2341. https://doi.org/10.1007/s00467-018-4032-1

    Article  PubMed  Google Scholar 

  83. Quinlan C, Bates M, Cotter M, Riordan M, Waldron M, Awan A (2012) Tinzaparin Is Safe and Effective in the Management of Hemodialysis Catheter Thrombosis. ASAIO J 58:288–290. https://doi.org/10.1097/MAT.0b013e31824c38c8

    Article  CAS  PubMed  Google Scholar 

  84. Moritz ML, Vats A, Ellis E (2003) Systemic Anticoagulation and Bleeding in Children with Hemodialysis Catheters. Pediatr Nephrol 18:68–70. https://doi.org/10.1007/s00467-002-0983-2

    Article  PubMed  Google Scholar 

  85. Davenport A (1998) Management of heparin–induced thrombocytopenia during continuous renal replacement therapy. Am J Kidney Dis 32:E3

    Article  CAS  PubMed  Google Scholar 

  86. Davenport A (1998) Anticoagulation in patients with acute renal failure treated with continuous renal replacement therapies. Home Hemodial Int 2:41–59

    Article  Google Scholar 

  87. Eichler P, Friesen HJ, Lubenow N, Jaeger B, Greinacher A (2000) Antihirudin antibodies in patients with heparin induced thrombocytopenia treated with lepirudin: Incidence, effects on aPTT, and clinical relevance. Blood 96:2373–2378

    Article  CAS  PubMed  Google Scholar 

  88. Kern H, Ziemer S, Kox WJ (1999) Bleeding after intermittent or continuous r-hirudin during CVVH. Intensive Care Med 25:1311–1314

    Article  CAS  PubMed  Google Scholar 

  89. Reddy BV, Nahlik L, Trevino S, Murray PT (2002) Argatroban anticoagulation during renal replacement therapy. Blood Purif 20:313–314

    Google Scholar 

  90. Yang JW, Han BG, Kim BR, Lee YH, Kim YS, Yu JM, Choi SO (2009) Superior outcome of nafamostat mesilate as an anticoagulant in patients undergoing maintenance hemodialysis with intracerebral hemorrhage. Ren Fail 31:668–675

    Article  CAS  PubMed  Google Scholar 

  91. Akizawa T (1990) Beneficial characteristics of protease inhibitor as an anticoagulant for extracorporeal circulation. Rinsho Ketsueki 31:782–786

    CAS  PubMed  Google Scholar 

  92. Matsuo T, Kario K, Nakao K, Yamada T, Matsuo M (1993) Anticoagulation with nafamostat mesilate, a synthetic protease inhibitor, in hemodialysis patients with a bleeding risk. Haemostatasis 23:135–141

    CAS  Google Scholar 

  93. Lee CY, Yeh HC, Lin CY (2012) Treatment of critically ill children with kidney injury by sustained low-efficiency daily diafiltration. Pediatr Nephrol 27:2301–2239

    Article  PubMed  PubMed Central  Google Scholar 

  94. Sethi SK, Mittal A, Nair N, Bagga A, Iyenger A, Ali U, Sinha R, Agarwal I, de Sousa TM, Abeyagunawardena A, Hanif M, Shreshtha D, Moorani K, Asim S, Kher V, Alhasan K, Mourani C, Al Riyami M, Bunchman TE, McCulloch M, Raina R (2020) Pediatric Continuous Renal Replacement Therapy (PCRRT) expert committee recommendation on prescribing prolonged intermittent renal replacement therapy (PIRRT) in critically ill children. Hemodial Int 24:237–251

    Article  PubMed  Google Scholar 

  95. Sethi SK, Bansal SB, Khare A, Dhaliwal M, Raghunathan V, Wadhwani N, Nandwani A, Yadav DK, Mahapatra AK, Raina R (2018) Heparin free dialysis in critically sick children using sustained low efficiency dialysis (SLEDD-f): A new hybrid therapy for dialysis in developing world. PLoS One 13:e0195536

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  96. Sethi SK, Sinha R, Jha P, Wadhwani N et al (2018) Feasibility of sustained low efficiency dialysis in critically sick pediatric patients: A multicentric retrospective study. Hemodial Int 22:228–234

  97. Marshall MR, Ma T, Galler D, Rankin APN, Williams AB (2004) Sustained low-efficiency daily diafiltration (SLEDD-f) for critically ill patients requiring renal replacement therapy: towards an adequate therapy. Nephrol Dial Transplant 19:877–884

    Article  PubMed  Google Scholar 

  98. Albino BB, Balbi AL, Abrao JMG, Ponce D (2015) Dialysis complications in acute kidney injury patients treated with prolonged intermittent renal replacement therapy sessions lasting 10 versus 6 hours: results of a randomized clinical trial. Artif Organs 39:423–431

    Article  CAS  PubMed  Google Scholar 

  99. Berbece AN, Richardson RMA (2006) Sustained low-efficiency dialysis in the ICU: cost, anticoagulation, and solute removal. Kidney Int 70:963–968

    Article  CAS  PubMed  Google Scholar 

  100. Lahmer T, Messer M, Rasch S, Beitz A, Schnappauf C, Schmid RM, Huber W (2015) Sustained low-efficiency dialysis with regional citrate anticoagulation in medical intensive care unit patients with liver failure: a prospective study. J Crit Care 30:1096–1100

    Article  PubMed  Google Scholar 

  101. Clark JA, Schulman G, Golper TA (2008) Safety and efficacy of regional citrate anticoagulation during 8-hour sustained low-efficiency dialysis. Clin J Am Soc Nephrol 3:736–742

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Fiaccadori E, Regolisti G, Cademartiri C, Cabassi A, Picetti E, Barbagallo M, Gherli T, Castellano G, Morabito S, Maggiore U (2013) Efficacy and safety of a citrate-based protocol for sustained low-efficiency dialysis in AKI using standard dialysis equipment. Clin J Am Soc Nephrol 8:1670–1678

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Kitchlu A, Adhikari N, Burns KEA, Friedrich JO, Garg AX, Klein D, Richardson RM, Wald R (2015) Outcomes of sustained low efficiency dialysis versus continuous renal replacement therapy in critically ill adults with acute kidney injury: a cohort study. BMC Nephrol 16:127

    Article  PubMed  PubMed Central  Google Scholar 

  104. Fiaccadori E, Maggiore U, Parenti E, Giacosa R, Picetti E, Rotelli C, Tagliavini D, Cabassi A (2007) Sustained Low-Efficiency Dialysis (SLED) With Prostacyclin in Critically Ill Patients With Acute Renal Failure. Nephrol Dial Transplant 22:529–537

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rupesh Raina.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Answers 1. a, c, e. In this peripheral neuropathy, deep tendon reflexes are usually reduced; 2. a, b, e; 3. b, c, e.

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Raina, R., Chakraborty, R., Davenport, A. et al. Anticoagulation in patients with acute kidney injury undergoing kidney replacement therapy. Pediatr Nephrol 37, 2303–2330 (2022). https://doi.org/10.1007/s00467-021-05020-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00467-021-05020-z

Keywords

Navigation