Skip to main content
Log in

Left ventricular mass and systolic function in children with chronic kidney disease—comparing echocardiography with cardiac magnetic resonance imaging

  • Original Article
  • Published:
Pediatric Nephrology Aims and scope Submit manuscript

Abstract

Background

Increased left ventricular mass (LVM) is an important risk marker of uremic cardiovascular disease. Calculation of LVM by echocardiography (Echo) relies on geometric assumptions and in adults on hemodialysis overestimates LVM compared to cardiac magnetic resonance (CMR). We compare both techniques in children with chronic kidney disease (CKD).

Methods

Concurrent Echo and CMR was performed in 25 children with CKD (14 after kidney transplantation) aged 8–17 years.

Results

Compared to normal children, CMR-LVM was increased (standard deviation score (SDS) 0.39 ± 0.8 (p = 0.03)), stroke volume and cardiac output decreased (SDS −1.76 ± 1.1, p = 0.002 and −1.11 ± 2.0, p = 0.001). CMR-LVM index but not Echo-LVMI correlated to future glomerular filtration rate (GFR) decline (r = −0.52, p = 0.01). Mean Echo-LVM was higher than CMR-LVM (117 ± 40 vs. 89 ± 29 g, p < 0.0001), with wide limits of agreement (−6.2 to 62.8 g). The Echo-CMR LVM difference increased with higher Echo-LVMI (r = 0.77, p < 0.0001). Agreement of classifying left ventricular hypertrophy was poor with Cohen’s kappa of 0.08. Mean Echo and CMR-ejection fraction differed by 1.42 % with wide limits of agreement (−12.6 to 15.4 %).

Conclusions

Echo overestimates LVM compared to CMR, especially at higher LVM. Despite this, CMR confirms increased LVM in children with CKD. Only CMR-LVMI but not Echo-LVMI correlated to future GFR decline.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Mitsnefes MM, Kimball TR, Witt SA, Glascock BJ, Khoury PR, Daniels SR (2003) Left ventricular mass and systolic performance in pediatric patients with chronic renal failure. Circulation 107:864–868

    Article  PubMed  Google Scholar 

  2. Matteucci MC, Wühl E, Picca S, Mastrostefano A, Rinelli G, Romano C, Rizzoni G, Mehls O, de Simone G, Schaefer F, ESCAPE Trial Group (2006) Left ventricular geometry in children with mild to moderate chronic renal insufficiency. J Am Soc Nephrol 17:218–226

    Article  PubMed  Google Scholar 

  3. Chinali M, de Simone G, Matteucci MC, Picca S, Mastrostefano A, Anarat A, Caliskan S, Jeck N, Neuhaus TJ, Peco-Antic A, Peruzzi L, Testa S, Mehls O, Wühl E, Schaefer F (2007) Reduced systolic myocardial function in children with chronic renal insufficiency. J Am Soc Nephrol 18:593–598

    Article  PubMed  Google Scholar 

  4. Mitsnefes MM, Kimball TR, Border WL, Witt SA, Glascock BJ, Khoury PR, Daniels SR (2004) Impaired left ventricular diastolic function in children with chronic renal failure. Kidney Int 65:1461–1466

    Article  PubMed  Google Scholar 

  5. Ten Harkel ADJ, Cransberg K, Van Osch-Gevers M, Nauta J (2009) Diastolic dysfunction in paediatric patients on peritoneal dialysis and after renal transplantation. Nephrol Dial Transplant 24:1987–1991

    Article  PubMed  Google Scholar 

  6. Litwin M, Wühl E, Jourdan C, Trelewicz J, Niemirska A, Fahr K, Jobs K, Grenda R, Wawer ZT, Rajszys P, Tröger J, Mehls O, Schaefer F (2005) Altered morphologic properties of large arteries in children with chronic renal failure and after renal transplantation. J Am Soc Nephrol 16:1494–1500

    Article  PubMed  Google Scholar 

  7. Bilginer Y, Ozaltin F, Basaran C, Aki TF, Karabulut E, Duzova A, Besbas N, Topaloglu R, Ozen S, Bakkaloglu M, Bakkaloglu A (2007) Carotid intima-media thickness in children and young adults with renal transplant: internal carotid artery vs. common carotid artery. Pediatr Transplant 11:888–894

    Article  PubMed  CAS  Google Scholar 

  8. Doyon A, Kracht D, Bayazit AK, Deveci M, Duzova A, Krmar RT, Litwin M, Niemirska A, Oguz B, Schmidt BMW, Sözeri B, Querfeld U, Melk A, Schaefer F, Wühl E, 4C Study Consortium (2013) Carotid artery intima-media thickness and distensibility in children and adolescents: reference values and role of body dimensions. Hypertension 62:550–556

    Article  PubMed  CAS  Google Scholar 

  9. Devereux RB, Alonso DR, Lutas EM, Gottlieb GJ, Campo E, Sachs I, Reichek N (1986) Echocardiographic assessment of left ventricular hypertrophy: comparison to necropsy findings. Am J Cardiol 57:450–458

    Article  PubMed  CAS  Google Scholar 

  10. De Simone G, Devereux RB, Daniels SR, Koren MJ, Meyer RA, Laragh JH (1995) Effect of growth on variability of left ventricular mass: assessment of allometric signals in adults and children and their capacity to predict cardiovascular risk. J Am Coll Cardiol 25:1056–1062

    Article  PubMed  Google Scholar 

  11. Khoury PR, Mitsnefes M, Daniels SR, Kimball TR (2009) Age-specific reference intervals for indexed left ventricular mass in children. J Am Soc Echocardiogr 22:709–714

    Article  PubMed  Google Scholar 

  12. Simpson JM, Savis A, Rawlins D, Qureshi S, Sinha MD (2010) Incidence of left ventricular hypertrophy in children with kidney disease: impact of method of indexation of left ventricular mass. Eur J Echocardiogr 11:271–277

    Article  PubMed  Google Scholar 

  13. Borzych D, Bakkaloglu SA, Zaritsky J, Suarez A, Wong W, Ranchin B, Qi C, Szabo AJ, Coccia PA, Harambat J, Mitu F, Warady BA, Schaefer F, International Pediatric Peritoneal Dialysis Network (2011) Defining left ventricular hypertrophy in children on peritoneal dialysis. Clin J Am Soc Nephrol 6:1934–1943

    Article  PubMed  PubMed Central  Google Scholar 

  14. Schoenmaker NJ, van der Lee JH, Groothoff JW, van Iperen GG, Frohn-Mulder IME, Tanke RB, Ottenkamp J, Kuipers IM (2013) Low agreement between cardiologists diagnosing left ventricular hypertrophy in children with end-stage renal disease. BMC Nephrol 14:170

    Article  PubMed  PubMed Central  Google Scholar 

  15. Grothues F, Smith GC, Moon JCC, Bellenger NG, Collins P, Klein HU, Pennell DJ (2002) Comparison of interstudy reproducibility of cardiovascular magnetic resonance with two-dimensional echocardiography in normal subjects and in patients with heart failure or left ventricular hypertrophy. Am J Cardiol 90:29–34

    Article  PubMed  Google Scholar 

  16. Armstrong AC, Gidding S, Gjesdal O, Wu C, Bluemke DA, Lima JAC (2012) LV mass assessed by echocardiography and CMR, cardiovascular outcomes, and medical practice. JACC Cardiovasc Imaging 5:837–848

    Article  PubMed  PubMed Central  Google Scholar 

  17. Schaefer B, Rusai K, Toth A, Pasti K, Ujszaszi A, Kreko M, Horvath E, Sallay P, Reusz GS, Merkely B, Tulassay T, Szabo AJ (2012) Cardiac magnetic resonance imaging in children with chronic kidney disease and renal transplantation. Pediatr Transplant 16:350–356

    Article  PubMed  Google Scholar 

  18. Malatesta-Muncher R, Wansapura J, Taylor M, Lindquist D, Hor K, Mitsnefes M (2012) Early cardiac dysfunction in pediatric patients on maintenance dialysis and post kidney transplant. Pediatr Nephrol 27:1157–1164

    Article  PubMed  PubMed Central  Google Scholar 

  19. Stewart GA, Foster J, Cowan M, Rooney E, McDonagh T, Dargie HJ, Rodger RS, Jardine AG (1999) Echocardiography overestimates left ventricular mass in hemodialysis patients relative to magnetic resonance imaging. Kidney Int 56:2248–2253

    Article  PubMed  CAS  Google Scholar 

  20. Jakubovic BD, Wald R, Goldstein MB, Leong-Poi H, Yuen DA, Perl J, Lima JA, Liu JJ, Kirpalani A, Dacouris N, Wald R, Connelly KA, Yan AT (2013) Comparative assessment of 2-dimensional echocardiography vs. cardiac magnetic resonance imaging in measuring left ventricular mass in patients with and without end-stage renal disease. Can J Cardiol 29:384–390

    Article  PubMed  Google Scholar 

  21. Lorenz CH, Walker ES, Morgan VL, Klein SS, Graham TP (1999) Normal human right and left ventricular mass, systolic function, and gender differences by cine magnetic resonance imaging. J Cardiovasc Magn Reson 1:7–21

    Article  PubMed  CAS  Google Scholar 

  22. Vinnakota KC, Bassingthwaighte JB (2004) Myocardial density and composition: a basis for calculating intracellular metabolite concentrations. Am J Physiol Heart Circ Physiol 286:H1742–H1749

    Article  PubMed  CAS  Google Scholar 

  23. Lai WW, Geva T, Shirali GS, Frommelt PC, Humes RA, Brook MM, Pignatelli RH, Rychik J, Task Force of the Pediatric Council of the American Society of Echocardiography, Pediatric Council of the American Society of Echocardiography (2006) Guidelines and standards for performance of a pediatric echocardiogram: a report from the task force of the pediatric council of the American Society of Echocardiography. J Am Soc Echocardiogr 19:1413–1430

    Article  PubMed  Google Scholar 

  24. De Simone G, Daniels SR, Kimball TR, Roman MJ, Romano C, Chinali M, Galderisi M, Devereux RB (2005) Evaluation of concentric left ventricular geometry in humans: evidence for age-related systematic underestimation. Hypertension 45:64–68

    Article  PubMed  Google Scholar 

  25. Buechel EV, Kaiser T, Jackson C, Schmitz A, Kellenberger CJ (2009) Normal right- and left ventricular volumes and myocardial mass in children measured by steady state free precession cardiovascular magnetic resonance. J Cardiovasc Magn Reson 11:19

    Article  PubMed  PubMed Central  Google Scholar 

  26. Robbers-Visser D, Boersma E, Helbing WA (2009) Normal biventricular function, volumes, and mass in children aged 8 to 17 years. J Magn Reson Imaging 29:552–559

    Article  PubMed  Google Scholar 

  27. Sarikouch S, Peters B, Gutberlet M, Leismann B, Kelter-Kloepping A, Koerperich H, Kuehne T, Beerbaum P (2010) Sex-specific pediatric percentiles for ventricular size and mass as reference values for cardiac MRI: assessment by steady-state free-precession and phase-contrast MRI flow. Circ Cardiovasc Imaging 3:65–76

    Article  PubMed  Google Scholar 

  28. Kawel-Boehm N, Maceira A, Valsangiacomo-Buechel ER, Vogel-Claussen J, Turkbey EB, Williams R, Plein S, Tee M, Eng J, Bluemke DA (2015) Normal values for cardiovascular magnetic resonance in adults and children. J Cardiovasc Magn Reson 17:29

    Article  PubMed  PubMed Central  Google Scholar 

  29. Wühl E, Witte K, Soergel M, Mehls O, Schaefer F, German Working Group on Pediatric Hypertension (2002) Distribution of 24-h ambulatory blood pressure in children: normalized reference values and role of body dimensions. J Hypertens 20:1995–2007

    Article  PubMed  Google Scholar 

  30. Neuhauser HK, Thamm M, Ellert U, Hense HW, Rosario AS (2011) Blood pressure percentiles by age and height from nonoverweight children and adolescents in Germany. Pediatrics 127:e978–e988

    Article  PubMed  Google Scholar 

  31. Neuhauser H, Schienkiewitz A, Schaffrath Rosario A, Dortschy R, Kurth B-M (2013) Referenzperzentile für anthropometrische Maßzahlen und Blutdruck aus der Studie zur Gesundheit von Kindern und Jugendlichen in Deutschland (KiGGS) 2003–2006, 2nd edn. Robert Koch-Institut, Berlin

  32. Bland JM, Altman DG (1986) Statistical methods for assessing agreement between two methods of clinical measurement. Lancet 1:307–310

    Article  PubMed  CAS  Google Scholar 

  33. Cohen J (1960) A coefficient of agreement for nominal scales. Educ Psychol Meas 20:37–46

    Article  Google Scholar 

  34. Altman DG (1991) Practical statistics for medical research, 1st edn. Chapman and Hall, Oxford

    Google Scholar 

  35. Schwartz GJ, Brion LP, Spitzer A (1987) The use of plasma creatinine concentration for estimating glomerular filtration rate in infants, children, and adolescents. Pediatr Clin North Am 34:571–590

    PubMed  CAS  Google Scholar 

  36. Filler G, Lepage N (2003) Should the Schwartz formula for estimation of GFR be replaced by cystatin C formula? Pediatr Nephrol 18:981–985

    Article  PubMed  Google Scholar 

  37. Oh J, Wunsch R, Turzer M, Bahner M, Raggi P, Querfeld U, Mehls O, Schaefer F (2002) Advanced coronary and carotid arteriopathy in young adults with childhood-onset chronic renal failure. Circulation 106:100–105

    Article  PubMed  Google Scholar 

  38. Missouris CG, Forbat SM, Singer DR, Markandu ND, Underwood R, MacGregor GA (1996) Echocardiography overestimates left ventricular mass: a comparative study with magnetic resonance imaging in patients with hypertension. J Hypertens 14:1005–1010

    PubMed  CAS  Google Scholar 

  39. Perdrix L, Mansencal N, Cocheteux B, Chatellier G, Bissery A, Diebold B, Mousseaux E, Abergel E (2011) How to calculate left ventricular mass in routine practice? An echocardiographic versus cardiac magnetic resonance study. Arch Cardiovasc Dis 104:343–351

    Article  PubMed  Google Scholar 

  40. Barker PCA, Pasquali SK, Darty S, Ing RJ, Li JS, Kim RJ, DeArmey S, Kishnani PS, Campbell MJ (2010) Use of cardiac magnetic resonance imaging to evaluate cardiac structure, function and fibrosis in children with infantile Pompe disease on enzyme replacement therapy. Mol Genet Metab 101:332–337

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  41. Malikenas A, Cerniauskiene V, Jakutovic M, Jankauskiene A (2005) Left ventricular geometry in children with chronic renal failure. Med Kaunas Lith 41(Suppl 1):5–11

    Google Scholar 

  42. Raimondi F, Chinali M, Girfoglio D, Benincasa M, Pasquini L, Emma F, de Simone G, Chiara Matteucci M (2009) Inappropriate left ventricular mass in children and young adults with chronic renal insufficiency. Pediatr Nephrol 24:2015–2022

    Article  PubMed  Google Scholar 

  43. McGill RL, Biederman RWW, Getts RT, Hazlett SM, Sharma SB, Duran J, Brandys DE, Sysak JC, Sureshkumar KK, Sandroni SE, Marcus RJ (2009) Cardiac magnetic resonance imaging in hemodialysis patients. J Nephrol 22:367–372

    PubMed  Google Scholar 

  44. Chen S-C, Su H-M, Hung C-C, Chang J-M, Liu W-C, Tsai J-C, Lin M-Y, Hwang S-J, Chen H-C (2011) Echocardiographic parameters are independently associated with rate of renal function decline and progression to dialysis in patients with chronic kidney disease. Clin J Am Soc Nephrol 6:2750–2758

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  45. Tsioufis C, Kokkinos P, Macmanus C, Thomopoulos C, Faselis C, Doumas M, Stefanadis C, Papademetriou V (2010) Left ventricular hypertrophy as a determinant of renal outcome in patients with high cardiovascular risk. J Hypertens 28:2299–2308

    Article  PubMed  CAS  Google Scholar 

  46. Andrikou E, Tsioufis C, Thomopoulos C, Andrikou I, Kasiakogias A, Leontsinis I, Kordalis A, Katsimichas T, Tousoulis D, Stefanadis C (2012) Left ventricular mass index as a predictor of new-onset microalbuminuria in hypertensive subjects: a prospective study. Am J Hypertens 25:1195–1201

    Article  PubMed  CAS  Google Scholar 

  47. Cuspidi C, Meani S, Negri F, Giudici V, Valerio C, Sala C, Zanchetti A, Mancia G (2009) Indexation of left ventricular mass to body surface area and height to allometric power of 2.7: is the difference limited to obese hypertensives? J Hum Hypertens 23:728–734

    Article  PubMed  CAS  Google Scholar 

  48. Zoccali C, Benedetto FA, Mallamaci F, Tripepi G, Giacone G, Cataliotti A, Seminara G, Stancanelli B, Malatino LS, Investigators CREED (2001) Prognostic impact of the indexation of left ventricular mass in patients undergoing dialysis. J Am Soc Nephrol 12:2768–2774

    PubMed  CAS  Google Scholar 

  49. Cuspidi C, Facchetti R, Bombelli M, Sala C, Tadic M, Grassi G, Mancia G (2015) Prognostic value of left ventricular mass normalized to different body size indexes: findings from the PAMELA population. J Hypertens 33:1082–1089

    Article  PubMed  CAS  Google Scholar 

  50. De Simone G, Kizer JR, Chinali M, Roman MJ, Bella JN, Best LG, Lee ET, Devereux RB, Strong Heart Study Investigators (2005) Normalization for body size and population-attributable risk of left ventricular hypertrophy: the strong heart study. Am J Hypertens 18:191–196

    Article  PubMed  Google Scholar 

  51. Foppa M, Duncan BB, Rohde LEP (2005) Echocardiography-based left ventricular mass estimation. How should we define hypertrophy? Cardiovasc Ultrasound 3:17

    Article  PubMed  PubMed Central  Google Scholar 

  52. Armstrong AC, Gjesdal O, Almeida A, Nacif M, Wu C, Bluemke DA, Brumback L, Lima JAC (2014) Left ventricular mass and hypertrophy by echocardiography and cardiac magnetic resonance: the multi-ethnic study of atherosclerosis. Echocardiography 31:12–20

    Article  PubMed  Google Scholar 

  53. Simpson JM, Rawlins D, Mathur S, Chubb H, Sinha MD (2013) Systolic and diastolic ventricular function assessed by tissue Doppler imaging in children with chronic kidney disease. Echocardiography 30:331–337

    Article  PubMed  Google Scholar 

  54. Ley S, Eichhorn J, Ley-Zaporozhan J, Ulmer H, Schenk J-P, Kauczor H-U, Arnold R (2007) Evaluation of aortic regurgitation in congenital heart disease: value of MR imaging in comparison to echocardiography. Pediatr Radiol 37:426–436

    Article  PubMed  Google Scholar 

  55. Weaver DJ, Kimball TR, Koury PR, Mitsnefes MM (2009) Cardiac output and associated left ventricular hypertrophy in pediatric chronic kidney disease. Pediatr Nephrol 24:565–570

    Article  PubMed  Google Scholar 

  56. Lindblad YT, Axelsson J, Balzano R, Vavilis G, Chromek M, Celsi G, Bárány P (2013) Left ventricular diastolic dysfunction by tissue Doppler echocardiography in pediatric chronic kidney disease. Pediatr Nephrol 28:2003–2013

    Article  PubMed  Google Scholar 

  57. Dogan CS, Akman S, Simsek A, Ozdem S, Comak E, Gokceoglu AU, Kardelen F, Koyun M (2015) Assessment of left ventricular function by tissue Doppler echocardiography in pediatric chronic kidney disease. Ren Fail. doi:10.3109/0886022X.2015.1061301

    Google Scholar 

  58. Lu X, Xie M, Tomberlin D, Klas B, Nadvoretskiy V, Ayres N, Towbin J, Ge S (2008) How accurately, reproducibly, and efficiently can we measure left ventricular indices using M-mode, 2-dimensional, and 3-dimensional echocardiography in children? Am Heart J 155:946–953

    Article  PubMed  Google Scholar 

  59. Pacileo G, Castaldi B, Di Salvo G, Limongelli G, Rea A, D’Andrea A, Russo MG, Calabrò R (2013) Assessment of left-ventricular mass and remodeling in obese adolescents: M-mode, 2D or 3D echocardiography? J Cardiovasc Med 14:144–149

    Article  Google Scholar 

  60. Friedberg MK, Su X, Tworetzky W, Soriano BD, Powell AJ, Marx GR (2010) Validation of 3D echocardiographic assessment of left ventricular volumes, mass, and ejection fraction in neonates and infants with congenital heart disease: a comparison study with cardiac MRI. Circ Cardiovasc Imaging 3:735–742

    Article  PubMed  Google Scholar 

  61. Foster BJ, Mackie AS, Mitsnefes M, Ali H, Mamber S, Colan SD (2008) A novel method of expressing left ventricular mass relative to body size in children. Circulation 117:2769–2775

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

The authors would like to thank Adriana Komancsek (radiographer) for the competent acquisition of CMR images.

Ethical approval

The study confirmed to the declaration of Helsinki, was approved by the ethics committee of the University of Freiburg and registered in the German registry of clinical trials (Deutsches Register Klinische Studien, trial no. DRKS00003295).

Informed consent

Prior written informed consent was obtained from all parents (and adolescents where appropriate).

Conflict of interest

The authors declare no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Charlotte Gimpel.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary table

Available pediatric normal values for left ventricular dimensions (DOCX 39 kb)

Glossary

BSA

Body surface area

CMR(−)

Cardiac magnetic resonance/measured by CMR

Echo(−)

Echocardiography/ echocardiographicaly measured

EF

Ejection fraction

LVM

Left ventricular mass

LVH

Left ventricular hypertrophy

LVMI

LVM indexed to height in m2.7

LVMBSA

LVM normalized to body surface area

ABPM

24-hour ambulatory blood pressure measurement

CKD

Chronic kidney disease

CI

Confidence interval

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Arnold, R., Schwendinger, D., Jung, S. et al. Left ventricular mass and systolic function in children with chronic kidney disease—comparing echocardiography with cardiac magnetic resonance imaging. Pediatr Nephrol 31, 255–265 (2016). https://doi.org/10.1007/s00467-015-3198-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00467-015-3198-z

Keywords

Navigation