Skip to main content
Log in

An isoparametric tangled finite element method for handling higher-order elements with negative Jacobian

  • Original Paper
  • Published:
Computational Mechanics Aims and scope Submit manuscript

Abstract

This paper presents an isoparametric tangled finite element method (i-TFEM) method for handling tangled high order/curvilinear meshes. Tangled elements, i.e. elements with negative Jacobian determinant, frequently occur during various stages of analysis and optimization, leading to erroneous results in standard finite element method (FEM). The proposed i-TFEM is an extension of standard FEM to allow for tangled elements. Specifically, a novel variational formulation is proposed that leads to a simple modification of the standard FEM stiffness matrix and additional piece-wise compatibility constraints. Moreover, i-TFEM reduces to the standard FEM for non-tangled (regular) meshes. The accuracy of the proposed i-TFEM is demonstrated for tangled 9-node quadrilateral (Q9) and 6-node triangular (T6) elements. Numerical experiments involving linear and nonlinear elasticity and Poisson problems illustrate that the accuracy and convergence rate of the proposed i-TFEM over a tangled mesh is comparable to that of the standard FEM over a non-tangled mesh.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25
Fig. 26
Fig. 27
Fig. 28

Similar content being viewed by others

References

  1. Cook RD et al (2007) Concepts and applications of finite element analysis. Wiley, Hoboken

    Google Scholar 

  2. Cui X, Duan S, Huo S, Liu G (2021) A high order cell-based smoothed finite element method using triangular and quadrilateral elements. Eng Anal Boundary Elem 128:133–148

    Article  MathSciNet  Google Scholar 

  3. Manu C (1985) Complete quadratic isoparametric finite elements in fracture mechanics analysis. Int J Numer Meth Eng 21(8):1547–1553

    Article  MathSciNet  Google Scholar 

  4. Trinh M-C, Jun H (2021) A higher-order quadrilateral shell finite element for geometrically nonlinear analysis. Eur J Mech-A/Solids 89:104283

    Article  MathSciNet  Google Scholar 

  5. Masud A, Khurram R (2006) A multiscale finite element method for the incompressible Navier–Stokes equations. Comput Methods Appl Mech Eng 195(13–16):1750–1777

    Article  MathSciNet  Google Scholar 

  6. Hendriana D, Bathe KJ (2000) On a parabolic quadrilateral finite element for compressible flows. Comput Methods Appl Mech Eng 186(1):1–22

    Article  MathSciNet  Google Scholar 

  7. Polycarpou AC (2005) Introduction to the finite element method in electromagnetics. Synthes Lect Comput Electromagn 1(1):1–126

    Article  Google Scholar 

  8. Huang L, Mandeville R, Rolph W III (1999) Magnetostatics and coupled structural finite element analysis. Comput Struct 72(1–3):199–207

    Article  Google Scholar 

  9. Zienkiewicz OC, Taylor RL, Zhu JZ (2005) The finite element method: its basis and fundamentals. Elsevier, Amsterdam

    Google Scholar 

  10. Frey PJ, George P-L (2007) Mesh generation: application to finite elements. Iste

  11. Lo DS (2014) Finite element mesh generation. CRC Press, Boca Raton

    Book  Google Scholar 

  12. Blacker T (2001) Automated conformal hexahedral meshing constraints, challenges and opportunities. Eng Comput 17(3):201–210

    Article  Google Scholar 

  13. Pietroni N, Campen M, Sheffer A, Cherchi G, Bommes D, Gao X, Scateni R, Ledoux F, Remacle J-F, Livesu M (2022) Hex-mesh generation and processing: a survey. ACM Trans Gr (TOG) 42:1

    Google Scholar 

  14. Akram MN, Si L, Chen G (2021) An embedded polygon strategy for quality improvement of 2d quadrilateral meshes with boundaries. In: VISIGRAPP (1: GRAPP), pp 177–184

  15. Remacle J-F, Toulorge T, Lambrechts J (2013) Robust untangling of curvilinear meshes. In: Proceedings of the 21st international meshing roundtable. Springer, pp 71–83

  16. Freitag LA, Plassmann P (2000) Local optimization-based simplicial mesh untangling and improvement. Int J Numer Meth Eng 49(1–2):109–125

    Article  Google Scholar 

  17. Knupp PM (2000) Achieving finite element mesh quality via optimization of the Jacobian matrix norm and associated quantities. Part ii-a framework for volume mesh optimization and the condition number of the jacobian matrix. Int J Numer Meth Eng 48(8):1165–1185

    Article  Google Scholar 

  18. Escobar JM, Rodrıguez E, Montenegro R, Montero G, González-Yuste JM (2003) Simultaneous untangling and smoothing of tetrahedral meshes. Comput Methods Appl Mech Eng 192(25):2775–2787

    Article  Google Scholar 

  19. Knupp PM (2003) A method for hexahedral mesh shape optimization. Int J Numer Meth Eng 58(2):319–332

    Article  Google Scholar 

  20. Fußeder D, Simeon B, Vuong A-V (2015) Fundamental aspects of shape optimization in the context of isogeometric analysis. Comput Methods Appl Mech Eng 286:313–331

    Article  MathSciNet  Google Scholar 

  21. Staten ML, Owen SJ, Shontz SM, Salinger AG, Coffey TS (2011) A comparison of mesh morphing methods for 3d shape optimization. In: Proceedings of the 20th international meshing roundtable. Springer, Berlin, pp 293–311

  22. Stees M, Dotzel M, Shontz SM (2020) Untangling high-order meshes based on signed angles. In: Proceedings of the 28th international meshing roundtable

  23. Stees M, Shontz SM (2018) An angular approach to untangling high-order curvilinear triangular meshes. In: International meshing roundtable. Springer, pp 327–342

  24. Toulorge T, Geuzaine C, Remacle J-F, Lambrechts J (2013) Robust untangling of curvilinear meshes. J Comput Phys 254:8–26

    Article  MathSciNet  Google Scholar 

  25. Roca X, Gargallo-Peiró A, Sarrate J (2012) Defining quality measures for high-order planar triangles and curved mesh generation. In: Proceedings of the 20th international meshing roundtable. Springer, Berlin, pp 365–383

  26. Ruiz-Gironés E, Sarrate J, Roca X (2016) Generation of curved high-order meshes with optimal quality and geometric accuracy. Procedia Eng 163:315–327

    Article  Google Scholar 

  27. Mohammadi F, Dangi S, Shontz SM, Linte CA (2020) A direct high-order curvilinear triangular mesh generation method using an advancing front technique. In: International Conference on Computational Science. Springer, Berlin, pp 72–85

  28. Sarrate J, Huerta A (2000) Efficient unstructured quadrilateral mesh generation. Int J Numer Meth Eng 49(10):1327–1350

    Article  Google Scholar 

  29. Liu G, Dai K, Nguyen TT (2007) A smoothed finite element method for mechanics problems. Comput Mech 39(6):859–877

    Article  Google Scholar 

  30. Beirão da Veiga L, Brezzi F, Cangiani A, Manzini G, Marini LD, Russo A (2013) Basic principles of virtual element methods. Math Models Methods Appl Sci 23(01):199–214

    Article  MathSciNet  Google Scholar 

  31. Da Veiga LB, Dassi F, Russo A (2017) High-order virtual element method on polyhedral meshes. Comput Math Appl 74(5):1110–1122

    Article  MathSciNet  Google Scholar 

  32. Artioli E, Da Veiga LB, Dassi F (2020) Curvilinear virtual elements for 2d solid mechanics applications. Comput Methods Appl Mech Eng 359:112667

    Article  MathSciNet  Google Scholar 

  33. De Bellis M, Wriggers P, Hudobivnik B (2019) Serendipity virtual element formulation for nonlinear elasticity. Comput Struct 223:106094

    Article  Google Scholar 

  34. Bordas SP, Natarajan S, Kerfriden P, Augarde CE, Mahapatra DR, Rabczuk T, Pont SD (2011) On the performance of strain smoothing for quadratic and enriched finite element approximations (xfem/gfem/pufem). Int J Numer Meth Eng 86(4–5):637–666

    Article  Google Scholar 

  35. Rajendran S (2010) A technique to develop mesh-distortion immune finite elements. Comput Methods Appl Mech Eng 199(17–20):1044–1063

    Article  MathSciNet  Google Scholar 

  36. Prabhune B, Suresh K (2023) A computationally efficient isoparametric tangled finite element method for handling inverted quadrilateral and hexahedral elements. Comput Methods Appl Mech Eng 405:115897

    Article  MathSciNet  Google Scholar 

  37. Prabhune B, Suresh K (2022) Towards tangled finite element analysis over partially inverted hexahedral elements. arXiv preprint arXiv:2207.03905

  38. Prabhune B, Suresh K (2023) Isoparametric tangled finite element method for nonlinear elasticity. arXiv preprint arXiv:2303.10799

  39. Prabhune B, Sridhara S, Suresh K (2022) Tangled finite element method for handling concave elements in quadrilateral meshes. Int J Numer Meth Eng 123(7):1576–1605

    Article  MathSciNet  Google Scholar 

  40. Dhas B, Srinivasa AR, Reddy J, Roy D (2022) A novel four-field mixed fe approximation for kirchhoff rods using cartan’s moving frames. Comput Methods Appl Mech Eng 115094

  41. Pian TH (1972) Finite element formulation by variational principles with relaxed continuity requirements, In: The mathematical foundations of the finite element method with applications to partial differential equations. Elsevier, pp 671–687

  42. Tong P (1970) New displacement hybrid finite element models for solid continua. Int J Numer Meth Eng 2(1):73–83

    Article  Google Scholar 

  43. Farhat C, Roux F-X (1991) A method of finite element tearing and interconnecting and its parallel solution algorithm. Int J Numer Meth Eng 32(6):1205–1227

    Article  MathSciNet  Google Scholar 

  44. Oden JT, Reddy JN (2012) Variational methods in theoretical mechanics. Springer, Berlin

    Google Scholar 

  45. Auricchio F, da Veiga LB, Brezzi F, Lovadina C (2017) Mixed finite element methods. Encyclopedia Comput Mech 2nd Ed 1:1–53

    Google Scholar 

  46. Oñate E, Idelsohn S, Zienkiewicz O, Taylor R (1996) A finite point method in computational mechanics. Applications to convective transport and fluid flow. Int J Numer Meth Eng 39(22):3839–3866

    Article  MathSciNet  Google Scholar 

  47. Kramer R, Bochev P, Siefert C, Voth T (2013) An extended finite element method with algebraic constraints (xfem-ac) for problems with weak discontinuities. Comput Methods Appl Mech Eng 266:70–80

    Article  MathSciNet  Google Scholar 

  48. Kramer RM, Bochev PB, Siefert CM, Voth TE (2014) Algebraically constrained extended edge element method (exfem-ac) for resolution of multi-material cells. J Comput Phys 276:596–612

  49. Kramer RM, Siefert CM, Voth TE, Bochev PB (2018) Formulation and computation of dynamic, interface-compatible Whitney complexes in three dimensions. J Comput Phys 359:45–76

    Article  MathSciNet  Google Scholar 

  50. Wagner GJ, Liu WK (2000) Application of essential boundary conditions in mesh-free methods: a corrected collocation method. Int J Numer Meth Eng 47(8):1367–1379

    Article  Google Scholar 

  51. Wu C-KC, Plesha ME (2002) Essential boundary condition enforcement in meshless methods: boundary flux collocation method. Int J Numer Meth Eng 53(3):499–514

    Article  Google Scholar 

  52. Zienkiewicz OC, Taylor RL, Taylor RL (2000) The finite element method: solid mechanics, vol 2. Butterworth-Heinemann

  53. Bower AF (2009) Applied mechanics of solids. CRC Press, Boca Raton

    Book  Google Scholar 

  54. Timoshenko S, Goodier J (1970) Theory of elasticity, 3rd ed, p 567

  55. Wriggers P, Reddy B, Rust W, Hudobivnik B (2017) Efficient virtual element formulations for compressible and incompressible finite deformations. Comput Mech 60:253–268

    Article  MathSciNet  Google Scholar 

  56. Li Z, Cen S, Huang J, Li C-F (2020) Hyperelastic finite deformation analysis with the unsymmetric finite element method containing homogeneous solutions of linear elasticity. Int J Numer Meth Eng 121(16):3702–3721

    Article  MathSciNet  Google Scholar 

  57. van Huyssteen D, Reddy BD (2020) A virtual element method for isotropic hyperelasticity. Comput Methods Appl Mech Eng 367:113134

    Article  MathSciNet  Google Scholar 

  58. Moxey D, Green M, Sherwin S, Peiró J (2015) An isoparametric approach to high-order curvilinear boundary-layer meshing. Comput Methods Appl Mech Eng 283:636–650

    Article  MathSciNet  Google Scholar 

  59. Hughes TJ, Cottrell JA, Bazilevs Y (2005) Isogeometric analysis: cad, finite elements, nurbs, exact geometry and mesh refinement. Comput Methods Appl Mech Eng 194(39–41):4135–4195

    Article  MathSciNet  Google Scholar 

  60. Xia S, Qian X (2018) Generating high-quality high-order parameterization for isogeometric analysis on triangulations. Comput Methods Appl Mech Eng 338:1–26

    Article  MathSciNet  Google Scholar 

  61. Xu G, Mourrain B, Duvigneau R, Galligo A (2011) Parameterization of computational domain in isogeometric analysis: methods and comparison. Comput Methods Appl Mech Eng 200(23–24):2021–2031

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

The authors would like to thank the support of National Science Foundation through Grant 1715970. We would also to thank Prof. Suzanne Shontz for providing the tangled and untangled meshes.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Krishnan Suresh.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix A: Identification Identification of the positive and negative Jacobian regions

Appendix A: Identification Identification of the positive and negative Jacobian regions

While the proposed i-TFEM implementation does not require explicit identification of the \(J^+\) and \(J^-\) regions, for completeness, we provide here a procedure for identifying these two regions.

Recall that the determinant of the Jacobian associated with isoparametric mapping is given by:

$$\begin{aligned} |\varvec{J}| = \left| {\begin{array}{*{20}c} x (\xi , \eta ),_{\xi } &{} y (\xi , \eta ),_{\xi } \\ x (\xi , \eta ),_{\eta } &{} y (\xi , \eta ),_{\eta } \\ \end{array}} \right| \end{aligned}$$
(A.1)

When an element becomes tangled, the parametric space can be decomposed into a positive \(|\varvec{J}|\) region and a negative \(|\varvec{J}|\) region, denoted as \(J^+\) and \(J^-\) respectively. The two regions are divided by the \(|\varvec{J}| = 0\) curve, i.e., we can identify the \(J^+\) and \(J^-\) regions by computing the \(\varvec{|J|} = 0\) curve.

To illustrate, we consider a 4-noded bilinear quadrilateral (Q4) element for simplicity. Let the element be defined by the vertices \(\left[ (x_1, y_1), (x_2, y_2), (x_3, y_3), (x_4, y_4)\right] \). Given the bilinear mapping, the Jacobian is given by

$$\begin{aligned} \varvec{J} = \frac{1}{4} \left[ {\begin{array}{*{20}c} \eta -1 &{} 1 - \eta &{} 1 + \eta &{} -(1 + \eta )\\ \xi -1 &{} -(1+ \xi ) &{} 1 + \xi &{} 1 - \xi \\ \end{array}} \right] \left[ {\begin{array}{*{20}c} x_1 &{} x_2 &{} x_3 &{} x_4\\ y_1 &{} y_2 &{} y_3 &{} y_4\\ \end{array}} \right] ^T \end{aligned}$$

The Jacobian determinant can be expressed as a straight line:

$$\begin{aligned} \left| \varvec{J} \right| = \text {det} (\varvec{J}) = c_0 + c_1\xi + c_2\eta \end{aligned}$$
(A.2)

where,

$$\begin{aligned} c_0&={\left[ \left( x_1 -x_3\right) \left( y_2 -y_4\right) - \left( x_2 -x_4\right) \left( y_1 -y_3\right) \right] }/{8},\\ c_1&= \left[ \left( x_3 - x_4 \right) \left( y_1 - y_2\right) - \left( x_1 - x_2 \right) \left( y_3 - y_4\right) \right] /8,\\ c_2&= \left[ \left( x_2 -x_3\right) \left( y_1 -y_4\right) - \left( x_1 -x_4\right) \left( y_2 -y_3\right) \right] /8. \end{aligned}$$

Thus, the two regions can be computed easily.

For a 9-node quadrilateral (Q9) element, the \(|\varvec{J}| = 0 \) is no longer a straight line. However, it is possible to derive an expression for this curve. For example, one can show that, for the tangled Q9 element in Fig. 2b, the \(\varvec{|J|} = 0\) curve is given by

$$\begin{aligned}{} & {} 0.0605 \xi ^2 \eta ^2 - 0.0055 \left( \xi ^2 \eta + \xi \eta ^ 2 \right) - 0.0129 \left( \xi ^2 + \eta ^ 2 \right) \\{} & {} \quad - 3.1762 \left( \xi + \eta \right) + 1.2898 \xi \eta + 1.2127 = 0. \end{aligned}$$

Consequently, one can identify the two regions \(J^+\) and \(J^-\).

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Prabhune, B., Suresh, K. An isoparametric tangled finite element method for handling higher-order elements with negative Jacobian. Comput Mech 73, 159–176 (2024). https://doi.org/10.1007/s00466-023-02361-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00466-023-02361-4

Keywords

Navigation