Skip to main content
Log in

Risk-averse approach for topology optimization of fail-safe structures using the level-set method

  • Original Paper
  • Published:
Computational Mechanics Aims and scope Submit manuscript

Abstract

This paper presents a risk-averse approach in the context of fail-safe topology optimization. The main novelty is the minimization of two risk functions quantifying the costs inherent to partial or full collapses, whose occurrence is considered as a source of uncertainty. This provides the designer with the flexibility to explicitly incorporate probabilistic information of occurrence of different structural failures, in contrast to the worst case approach, that penalizes all the damage configurations regardless their probability of occurrence. For the first time in the context of fail-safe topology optimization, a level-set method is employed. The level-set function is updated by means of a reaction–diffusion equation incorporating the topological derivative of the two risk-averse functions considered. Finally, the numerical experiments reveal the capability of the proposed formulations to yield redundant structures less sensitive to inherent losses of stiffness resulting from possible failures, whilst allowing designers to assume an acceptable level of risk. The benefits and drawbacks of the formulations proposed are compared against deterministic and fail-safe worst-case formulations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

References

  1. Aage N, Andreassen E, Lazarov BS, Sigmund O (2017) Giga-voxel computational morphogenesis for structural design. Nature 550(84):84–86

    Article  Google Scholar 

  2. Allaire G, Jouve F, Toader A-M (2004) Structural optimization using sensitivity analysis and a level-set method. J Comput Phys 194:363–393

    Article  MathSciNet  Google Scholar 

  3. Allaire G, de Gournay F, Jouve F, Toader A-M (2005) Structural optimization using topological and shape sensitivity via a level set method. Control Cybern 34:59–80

    MathSciNet  MATH  Google Scholar 

  4. Ambrozkiewicz O, Kriegesmann B (2020) Density-based shape optimization for fail-safe design. J Comput Des Eng 7(5):615–629

    Google Scholar 

  5. Ambrozkiewicz O, Kriegesmann B (2019) Adaptive strategies for fail-safe topology optimization. In: EngOpt 2018 proceedings of the 6th international conference on engineering optimization. Springer, Berlin

  6. Amstutz S (2011) Connections between topological sensitivity analysis and material interpolation schemes in topology optimization. Struct Multidisc Optim 43:755–765

    Article  MathSciNet  Google Scholar 

  7. Certification Specifications for Large Aeroplanes (2012) Technical report, CS-25, Amendment 12, European Aviation Safety Agency

  8. Cid Bengoa C, Baldomir A, Hernández S, Romera L (2018) Multi-model reliability-based design optimization of structures considering the intact configuration and several partial collapses. Struct Multidisc Optim 57:977–994

  9. Cid C, Baldomir A, Hernandez S (2020) Probability-damage approach for fail-safe design optimization (PDFSO). Struct Multidisc Optim 62:3149–3163

    Article  Google Scholar 

  10. Conti S, Held H, Pach M, Rumpf M, Schultz R (2009) Shape optimization under uncertainty-a stochastic programming perspective. SIAM J Optim 19(4):1610–1632

    Article  MathSciNet  Google Scholar 

  11. Conti S, Held H, Pach M, Rumpf M, Schultz R (2011) Risk averse shape optimization. SIAM J Control Optim 49(3):927–947

    Article  MathSciNet  Google Scholar 

  12. Dambrine M, Dapogny C, Harbrecht H (2015) Shape optimization for quadratic functionals and states with random right-hand sides. SIAM J Control Optim 53(5):3081–3103

    Article  MathSciNet  Google Scholar 

  13. Dapogny C, Faure A, Michailidis G, Allaire G, Couvelas A, Estevez R (2017) Geometric constraints for shape and topology optimization in architectural design. Comput Mech 59:933–965

    Article  MathSciNet  Google Scholar 

  14. Dou S, Stolpe M (2021) On stress-constrained fail-safe structural optimization considering partial damage. Struct Multidisc Optim 63:929–933

    Article  MathSciNet  Google Scholar 

  15. Dunning PD, Kim HA, Mullineux G (2011) Introducing loading uncertainty in topology optimization. AIAA J 49(4):760–768

    Article  Google Scholar 

  16. Ellingwoo BR, Dusenberry DO (2005) Building design for abnormal loads and progressive collapse. Comput-Aided Civ Infrastruct Eng 20(3):194–205

    Article  Google Scholar 

  17. Faber M (2008) Risk assessment in engineering: principles, system representation and risk criteria

  18. Jansen M, Lombaert G, Schevenels M, Sigmund O. Topology optimization of fail-safe structures using a simplified local damage model. Struct Multidisc Optim, 49:657–666, 2914

  19. Jensen JS, Sigmund O (2011) Topology optimization for nanophotonics. Laser Photonics Rev 5(2):308–321

    Article  Google Scholar 

  20. Keshavarzzadeh V, James KA (2019) Robust multiphase topology optimization accounting for manufacturing uncertainty via stochastic collocation. Struct Multidisc Optim 60:2461–2476

    Article  MathSciNet  Google Scholar 

  21. Keshavarzzadeh V, Fernandez F, Tortorelli DA (2017) Topology optimization under uncertainty via non-intrusive polynomial chaos expansion. Comput Methods Appl Mech Eng 318:120–147

    Article  MathSciNet  Google Scholar 

  22. Lagaros ND, Papadrakakis M (2007) Robust seismic design optimization of steel structures. Struct Multidiscip Optim 33(6):457–469

    Article  Google Scholar 

  23. Lüdeker JK, Kriegesmann B (2019) Fail-safe optimization of beam structures. J Comput Des Eng 6:260–268

  24. Martínez-Frutos J, Herrero-Pérez D (2018) Evolutionary topology optimization of continuum structures under uncertainty using sensitivity analysis and smooth boundary representation. Comput Struct 205:15–27

    Article  Google Scholar 

  25. Martínez-Frutos J, Kessler M, Periago F (2015) Robust optimal shape design for an elliptic PDE with uncertainty in its input data. ESAIM: COCV 21(4):901–923

    MathSciNet  MATH  Google Scholar 

  26. Martínez-Frutos J, Herrero-Pérez D, Kessler M, Periago F (2016) Robust shape optimization of continuous structures via the level set method. Comput Methods Appl Mech Eng 305:271–291

    Article  MathSciNet  Google Scholar 

  27. Martínez-Frutos J, Herrero-Pérez D, Kessler M, Periago F (2018) Risk-averse structural topology optimization under random fields using stochastic expansion methods. Comput Methods Appl Mech Eng 330:180–206

    Article  MathSciNet  Google Scholar 

  28. Michell AGM (1904) LVIII. the limits of economy of material in frame-structures. Lond Edinb Dublin Philos Mag J Sci 8(47):589–597

    Article  Google Scholar 

  29. Novotny AA, Sokolowski J (2013) Topological derivatives in shape optimization. Interaction of Mechanics and Mathematics

  30. Novotny AA, Feijo RA, Taroco E, Padra C (2003) Topological sensitivity analysis. Comput Methods Appl Mech Eng 192:803–29

    Article  MathSciNet  Google Scholar 

  31. Osher S, Sethian JA (1988) Front propagation with curvature dependent speed: algorithms based on Hamilton–Jacobi formulations. J Comput Phys 78:12–49

    Article  Google Scholar 

  32. Otomori M, Yamada T, Izui K, Nishiwaki S (2015) Matlab code for a level set-based topology optimization method using a reaction diffusion equation. Struct Multidisc Optim 51:1159–1172

    Article  MathSciNet  Google Scholar 

  33. Peng X, Sui Y (2018) ICM method for fail-safe topology optimization of continuum structures. J Theor Appl Mech 50:611–621

    Google Scholar 

  34. Schultz R, Tiedemann S (2003) Risk aversion via excess probabilities in stochastic programs with mixed-integer recourse. SIAM J Optim 14:115–138

    Article  MathSciNet  Google Scholar 

  35. Schultz R, Tiedemann S (2006) Conditional value-at-risk in stochastic programs with mixed-integer recourse. Math Program 105:365–386

    Article  MathSciNet  Google Scholar 

  36. Wang M-Y, Wang X, Guo D (2003) A level set method for structural topology optimization. Comput Methods Appl Mech Eng 192(1–2):227–246

    Article  MathSciNet  Google Scholar 

  37. Wang H, Liu J, Wen G, Xie YM (2020) The robust fail-safe topological designs based on the von mises stress. Finite Elem Anal Des 71:103376

    Article  MathSciNet  Google Scholar 

  38. Wu J, Aage N, Westermann R, Sigmund O (2018) Infill optimization for additive manufacturing-approaching bone-like porous structures. IEEE Trans Vis Comput Graphics 24(2):1127–1140

    Article  Google Scholar 

  39. Yamada T, Izui K, Nishiwaki S, Takezawa A (2010) A topology optimization method based on the level set method incorporating a fictitious interface energy. Comput Methods Appl Mech Eng 199(45):2876–2891

    Article  MathSciNet  Google Scholar 

  40. Youn BD, Choi KK, Yang R-J, Gu L (2004) Reliability-based design optimization for crashworthiness of vehicle side impact. Struct Multidiscip Optim 26(3–4):272–283

    Article  Google Scholar 

  41. Zhou M, Fleury R (2016) Fail-safe topology optimization. Struct Multidisc Optim 54:1225–1243

    Article  Google Scholar 

  42. Zhu JH, Zhang WH, Xia L (2016) Topology optimization in aircraft and aerospace structures design. Arch Comput Methods Eng 23(4):595–622

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

Project supported by the Autonomous Community of the Region of Murcia, Spain through the programme for the development of scientific and technical research by competitive groups (20911/PI/18), included in the Regional Program for the Promotion of Scientific and Technical Research of Fundación Séneca-Agencia de Ciencia y Tecnología de la Región de Murcia. The second author acknowledges the financial support of Fundación Séneca, through the contract with reference number 21132/SF/19 under the programe Subprograma Regional Saavedra Fajardo de incorporación de doctores a Universidades y Centros de investigación de la Región de Murcia.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. Martínez-Frutos.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Martínez-Frutos, J., Ortigosa, R. Risk-averse approach for topology optimization of fail-safe structures using the level-set method. Comput Mech 68, 1039–1061 (2021). https://doi.org/10.1007/s00466-021-02058-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00466-021-02058-6

Keywords

Navigation