Skip to main content
Log in

A novel interface integral formulation for 3D steady state thermal conduction problem for a medium with non-homogenous inclusions

  • Original Paper
  • Published:
Computational Mechanics Aims and scope Submit manuscript

Abstract

A novel regularized interface integral equation for three-dimensional steady state heat conduction problems with non-homogeneous inclusions is developed. The proposed formulation only contains the fundamental solution of isotropic matrix. As a result, the fundamental solution of non-homogeneous inclusion, usually very difficult to obtain, is avoided. Domain integrals caused by the contrast of heat conductivities between the inclusions and the matrix are converted into equivalent interface integrals using the radial integration method by expressing the temperature gradient as a series of radial basis functions. Therefore, a pure interface integral equation is obtained and there is no need to discretize the inclusion into finite elements to evaluate the domain integral. For the determination of the flux and temperature, collocation points are distributed inside the inclusion to form a system of linear equations. To eliminate the geometrical errors and study the inclusions with arbitrary geometry, bivariate Non-Uniform Rational B-Splines basis functions are used to depict the boundaries of the inclusions. Numerical results are compared with available analytical solutions or finite element solutions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24

Similar content being viewed by others

References

  1. Eshelby JG (1957) The determination of the elastic field of an ellipsoidal inclusion, and related problems. Proc R Soc Lond A 241:376–396

    Article  MathSciNet  MATH  Google Scholar 

  2. Muskhelishvili NI (1953) Some basic problems of mathematical theory of elasticity. Noordhorff, Groningen

    MATH  Google Scholar 

  3. Hwu C, Yen WJ (1993) On the anisotropic elastic inclusions in plane elastostatics. J Appl Mech 60:626–632

    Article  MathSciNet  MATH  Google Scholar 

  4. Eshelby JG (1959) The elastic field outside an ellipsoidal inclusion. Proc R Soc Lond A 252:561–659

    Article  MathSciNet  MATH  Google Scholar 

  5. Zienkiewicz OC, Taylor RL (2000) The finite element method, 5th edn. Butterworth-Heinemann, London

    MATH  Google Scholar 

  6. Ghosh S, Mukhopadhyay SN (1993) Amaterial based finite element analysis of heterogeneous media involving Dirichlet tessellations. Comput Methods Appl Mech Eng 104:211–247

    Article  MATH  Google Scholar 

  7. Nakamura T, Suresh S (1993) Effects of thermal residual stresses and fiber packing on deformation of metal-matrix composites. Acta Metall Mater 41:1665–1681

    Article  Google Scholar 

  8. Thomson RD, Hancock JW (1984) Local stress and strain fields near a spherical elastic inclusion in a plastically deforming matrix. Int J Fract 24:209–228

    Article  Google Scholar 

  9. Zhang J, Katsube N (1995) A hybrid finite element method for heterogeneous materials with randomly dispersed elastic inclusions. Finite Elem Anal Des 19:45–55

    Article  MATH  Google Scholar 

  10. Beck JV (2010) Heat conduction using Green’s functions. Hemisphere Pub. Corp., Washington

    Google Scholar 

  11. Ozisik MN (1993) Heat conduction, 2nd edn. Wiley, New York

    Google Scholar 

  12. Hiroshi H, Minoru T (1986) Equivalent inclusion method for steady state heat conduction in composites. Int J Eng Sci 24(7):1159–1172

    Article  MATH  Google Scholar 

  13. Brebbia CA, Dominguez J (1989) Boundary elements: an introduction course. Computational Mechanics Publications/McGraw-Hill, New York

    MATH  Google Scholar 

  14. Bonnet M (1999) Boundary integral equation methods for solids and fluids. Wiley, New York

    Google Scholar 

  15. Cruse TA (1988) Boundary element analysis in computational fracture mechanics. Kluwer Academic Publishers, Dordrecht

    Book  MATH  Google Scholar 

  16. Rizzo FJ (1967) An integral equation approach to boundary value problems of classical elastostatics. Q Appl Math 25:83–95

    Article  MATH  Google Scholar 

  17. Dong CY, Lo SH, Cheung YK (2003) Interaction between coated inclusions and cracks in an infinite isotropic elastic medium. Eng Anal Bound Elem 27:871–884

    Article  MATH  Google Scholar 

  18. Dong CY (2015) An interface integral formulation of heat energy calculation of steady state heat conduction in heterogeneous media. Int J Heat Mass Transf 90:314–322

    Article  Google Scholar 

  19. Dong CY (2015) Boundary integral equation formulations for steady state thermal conduction and their applications in heterogeneities. Eng Anal Bound Elem 54:60–67

    Article  MathSciNet  MATH  Google Scholar 

  20. Dong CY, Lo SH, Cheung YK (2004) Numerical solution for elastic inclusion problems by domain integral equation with integration by means of radial basis functions. Eng Anal Bound Elem 28:623–632

    Article  MATH  Google Scholar 

  21. Zhang YM, Sladek V, Sladek J, Liu ZY (2012) A new boundary integral equation formulation for plane orthotropic elastic media. Appl Math Model 36:4862–4875

    Article  MathSciNet  MATH  Google Scholar 

  22. Zhang YM, Liu ZY, Gao XW, Sladek V, Sladek J (2014) A novel boundary element approach for solving the 2D elasticity problems. Appl Math Comput 232:568–580

    MathSciNet  MATH  Google Scholar 

  23. Qu WZ, Zhang YM, Gu Y, Wang FJ (2017) Three-dimensional thermal stress analysis using the indirect BEM in conjunction with the radial integration method. Adv Eng Softw 112:147–153

    Article  Google Scholar 

  24. Wilson RB, Cruse TA (1978) Efficient implementation of anisotropic three dimensional boundary-integral equation stress analysis. Int J Numer Meth Eng 12:1383–1397

    Article  MathSciNet  MATH  Google Scholar 

  25. Lee J, Choi S, Mal A (2001) Stress analysis of an unbounded elastic solid with orthotropic inclusions and voids using a new integral equation technique. Int J Solids Struct 38:2789–2802

    Article  MATH  Google Scholar 

  26. Buryachenko VA, Bechel VT (2000) A series solution of the volume integral equation for multiple inclusion interaction problems. Compos Sci Technol 60:2465–2469

    Article  Google Scholar 

  27. Dong CY, Lo SH, Cheung YK (2002) Application of boundary-domain integral equation in elastic inclusion problems. Eng Anal Bound Elem 26:471–477

    Article  MATH  Google Scholar 

  28. Gao XW, Davies TG (2002) Boundary element programming in mechanics. Cambridge University Press, Cambridge

    MATH  Google Scholar 

  29. Nardini D, Brebbia CA (1982) A new approach for free vibration analysis using boundary elements. In: Brebbia CA (ed) Boundary element methods in engineering. Springer, Berlin, pp 312–326

    Chapter  Google Scholar 

  30. Nowak AJ, Brebbia CA (1989) The multiple-reciprocity method. A new approach for transforming B.E.M. domain integrals to the boundary. Eng Anal Bound Elem 6:164–168

    Article  Google Scholar 

  31. Takhteyev V, Brebbia CA (1990) Analytical integrations in boundary elements. Eng Anal Bound Elem 7:95–100

    Article  Google Scholar 

  32. Gao XW (2002) A boundary element method without internal cells for two-dimensional and three-dimensional elastoplastic problems. J Appl Mech Trans ASME 69:154–160

    Article  MATH  Google Scholar 

  33. Gao XW (2002) The radial integration method for evaluation of domain integrals with boundary-only discretization. Eng Anal Bound Elem 26:905–916

    Article  MATH  Google Scholar 

  34. Yang K, Wang J, Du JM, Peng HF, Gao XW (2017) Radial integration boundary element method for nonlinear heat conduction problems with temperature-dependent conductivity. Int J Heat Mass Transf 104:1145–1151

    Article  Google Scholar 

  35. Yang K, Peng HF, Wang J, Xing CH, Gao XW (2017) Radial integration BEM for solving transient nonlinear heat conduction with temperature-dependent conductivity. Int J Heat Mass Transf 108:1551–1559

    Article  Google Scholar 

  36. Hughes TJ, Cottrell JA, Bazilevs Y (2005) Isogeometric analysis: CAD, finite elements, NURBS, exact geometry and mesh refinement. Comput Methods Appl Mech Eng 194:4135–4195

    Article  MathSciNet  MATH  Google Scholar 

  37. Farin G, Hoschek J, Kim M-S (eds) (2002) Handbook of computer aided geometric design. Elsevier, Amsterdam

    MATH  Google Scholar 

  38. Verhoosel CV, Scott MA, Hughes TJ, De Borst R (2011) An isogeometric analysis approach to gradient damage models. Int J Numer Methods Eng 86:115–134

    Article  MathSciNet  MATH  Google Scholar 

  39. Zhang H, Wang D (2015) An isogeometric enriched quasi-convex meshfree formulation with application to material interface modeling. Eng Anal Bound Elem 60:37–50

    Article  MathSciNet  MATH  Google Scholar 

  40. Tang S, Kopacz AM, O’Keeffe SC, Olson GB, Liu WK (2013) Concurrent multiresolution finite element: formulation and algorithmic aspects. Comput Mech 52(6):1265–1279

    Article  MathSciNet  MATH  Google Scholar 

  41. Liu Z, Fleming M, Liu WK (2018) Microstructural material database for self-consistent clustering analysis of elastoplastic strain softening materials. Comput Methods Appl Mech Eng 330:547–577

    Article  MathSciNet  Google Scholar 

  42. Sakuma T, Yasuda Y (2002) Fast multipole boundary element method for large-scale steady-state sound field analysis. Part I: setup and validation. Acta Acust United Acust 88(4):513–525

    Google Scholar 

  43. Liu Y, Nishimura N, Otani Y (2005) Large-scale modeling of carbon-nanotube composites by a fast multipole boundary element method. Comput Mater Sci 34(2):173–187

    Article  Google Scholar 

  44. Dong C, Bonnet M (2002) An integral formulation for steady state elastoplastic contact over a coated half-plane. Comput Mech 28:105–121

    Article  MATH  Google Scholar 

  45. Wang L, Zhou X, Wei X (2008) Heat conduction: mathematical models and analytical solutions. Springer, Berlin

    MATH  Google Scholar 

  46. Simpson RN, Bordas SPA, Trevelyan J, Rabczuk T (2012) A two-dimensional isogeometric boundary element method for elastostatic analysis. Comput Methods Appl Mech Eng 209–212:87–100

    Article  MathSciNet  MATH  Google Scholar 

  47. Gu JL, Zhang JM, Li GY (2012) Isogeometric analysis in BIE for 3-D potential problem. Eng Anal Bound Elem 36:858–865

    Article  MathSciNet  MATH  Google Scholar 

  48. Simpson RN, Bordas SPA, Lian H, Trevelyan J (2013) An isogeometric boundary element method for elastostatic analysis: 2D implementation aspects. Comput Struct 118:2–12

    Article  Google Scholar 

  49. Gong YP, Dong CY, Qin XC (2017) An isogeometric boundary element method for three dimensional potential problems. J Comput Appl Math 313:454–468

    Article  MathSciNet  MATH  Google Scholar 

  50. Gong YP, Dong CY (2017) An isogeometric boundary element method using adaptive integral method for 3D potential problems. J Comput Appl Math 319:141–158

    Article  MathSciNet  MATH  Google Scholar 

  51. Yin HM, Paulino GH, Buttlar WG, Sun LZ (2008) Heat flux field for one spherical inhomogeneity embedded in a functionally graded material matrix. Int J Heat Mass Transf 51:3018–3024

    Article  MATH  Google Scholar 

  52. Hammerschmidt U, Abid M (2015) The thermal conductivity of glass-sieves: I. Liquid saturated frits. Int J Therm Sci 96:119–127

    Article  Google Scholar 

  53. Carslaw HS, Jaeger JC (1959) Conduction of heat in solid. Oxford University Press, Oxford

    Google Scholar 

  54. Abid M, Hammerschmidt U, Köhler J (2014) Thermophysical properties of a fluid-saturated sandstone. Int J Therm Sci 76(2):43–50

    Article  Google Scholar 

  55. Powers JM (2013) On the necessity of positive semi-definite conductivity and Onsager reciprocity in modeling heat conduction in anisotropic media. J Heat Transf 126(5):767–776

    Google Scholar 

Download references

Acknowledgements

The research is supported by the National Natural Science Foundation of China (11672038, 11272054). Y.P. Gong is also supported by the Graduate Technological Innovation Project of Beijing Institute of Technology (2017CX10033).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. Y. Dong.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gong, Y.P., Yang, H.S. & Dong, C.Y. A novel interface integral formulation for 3D steady state thermal conduction problem for a medium with non-homogenous inclusions. Comput Mech 63, 181–199 (2019). https://doi.org/10.1007/s00466-018-1590-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00466-018-1590-9

Keywords

Navigation