Skip to main content
Log in

Towards an efficient two-scale approach to model technical textiles

  • Original Paper
  • Published:
Computational Mechanics Aims and scope Submit manuscript

Abstract

The paper proposes and investigates an efficient two-scale approach to describe the material behavior of technical textiles. On the macroscopic scale the considered textile materials are modeled as homogeneous by means of shell elements. The heterogeneous microstructure, which consists e.g. of woven fibers, is explicitly resolved in representative volume elements (RVE). A shell-specific homogenization scheme is applied to connect the macro and the micro scale. The simultaneous solution of the macroscopic and the nonlinear microscopic simulations, e.g. by means of the FE\(^2\)-method, is very expensive. Therefore, a different approach is applied here: the macro constitutive response is computed in advance and tabulated for a certain RVE and for different loading scenarios. These homogenized stress and tangent values are then used in a macroscopic simulation without the need to explicitly resort to the microscopic simulations. The efficiency of the approach is analyzed by means of numerical examples.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19

Similar content being viewed by others

References

  1. Feyel F (2003) A multilevel finite element method (FE\(^2\)) to describe the response of highly non-linear structures using generalized continua. Comput Methods Appl Mech Eng 192:3233–3244

    Article  MATH  Google Scholar 

  2. Feyel F, Chaboche J-L (2000) FE\(^2\) multiscale approach for modelling the elasto visco plastic behaviour of long fibre SiC/Ti composite materials. Comput Methods Appl Mech Eng 183:309–330

    Article  MATH  Google Scholar 

  3. van der Sluis O, Schreurs PJG, Brekelmans WAM, Meijer HEH (2001) Homogenisation of structured elastoviscoplastic solids at finite strains. Mech Mater 33:499–522

    Article  Google Scholar 

  4. McHugh PE, Asaro RJ, Shih CF (1993) Computational modeling of metal matrix composite materials - III. Comparisons with phenomenological models. Acta Metall Mater 41:1489–1499

    Article  Google Scholar 

  5. Peng X, Cao J (2002) A dual homogenization and finite element approach for material characterization of textile composites. Composites B 33:45–56

    Article  Google Scholar 

  6. Takano N, Uetsuji Y, Kashiwagi Y, Zako M (1999) Hierarchical modelling of textile composite materials and structures by the homogenization method. Modell Simul Mater Sci Eng 7:207–231

    Article  Google Scholar 

  7. Miehe C (2003) Computational micro-to-macro transitions for discretized micro-structures of heterogeneous materials at finite strains based on the minimization of averaged incremental energy. Comput Methods Appl Mech 192:559–591

    Article  MathSciNet  MATH  Google Scholar 

  8. Suquet P (1985) Local and global aspects in the mathematical theory of plasticity. In: Sawczuk A, Bianchi G (eds) Plasticity today: modelling, methods and applications. Elsevier, London

  9. Ghosh S, Lee K, Moorthy S (1995) Multiple scale analysis of heterogeneous elastic structures using homogenization theory and voronoi cell finite element method. Int J Solids Struct 32:27–62

    Article  MathSciNet  MATH  Google Scholar 

  10. Ghosh S, Lee K, Moorthy S (1996) Two scale analysis of heterogeneous elastic-plastic materials with asymptotic homogenization and Voronoi cell finite element model. Comput Methods Appl Mech Eng 132:63–116

    Article  MATH  Google Scholar 

  11. Geers MGD, Kouznetsova VG, Brekelmans WAM (2010) Multi-scale computational homogenization: trends and challenges. J Comput Appl Math 234:2175–2182

    Article  MATH  Google Scholar 

  12. Miehe C (1999) Computational micro-macro transitions and overall moduli in the analysis of polycrystals at large strains. Comput Mater Sci 16:372–382

    Article  Google Scholar 

  13. Miehe C, Koch A (2002) Computational micro-to-macro transitions of discretized microstructures undergoing small strains. Arch Appl Mech 72:300–317

    Article  MATH  Google Scholar 

  14. Miehe C (1996) Numerical computation of algorithmic (consistent) tangent moduli in large-strain computational inelasticity. Comput Methods Appl Mech 134:223–240

    Article  MATH  Google Scholar 

  15. Kouznetsova VG, Geers MGD, Brekelmans WAM (2004) Multi-scale second-order computational homogenization of multi-phase materials: a nested finite element solution strategy. Comput Methods Appl Mech 193:5525–5550

    Article  MATH  Google Scholar 

  16. Castañeda PP, Tiberio E (2000) A second-order homogenization method in finite elasticity and applications to black-filled elastomers. J Mech Phys Solids 48:1389–1411

    Article  MathSciNet  MATH  Google Scholar 

  17. Temizer I, Wriggers P (2006) An adaptive method for homogenization in orthotropic nonlinear elasticity. Comput Methods Appl Mech 196:3409–3423

    Article  MathSciNet  MATH  Google Scholar 

  18. Temizer I, Zohdi TI (2007) A numerical method for homogenization in non-linear elasticity. Comput Mech 40:281–298

    Article  MATH  Google Scholar 

  19. Fillep S, Mergheim J, Steinmann P (2013) Computational modelling and homogenization of technical textiles. Eng Struct 50:68–73

    Article  MATH  Google Scholar 

  20. Fillep S, Mergheim J, Steinmann P (2015) Computational homogenization of rope-like technical textiles. Comput Mech 55:577–590

    Article  MathSciNet  MATH  Google Scholar 

  21. Geers MGD, Coenen E, Kouznetsova VG (2007) Multi-scale computational homogenization of structured thin sheets. Model Simul Mater Sci 15:373–404

    Google Scholar 

  22. Kouznetsova VG, Brekelmans WAM, Baaijens FPT (2001) An approach to micro-macro modeling of heterogeneous materials. Comput Mech 27:37–48

    Article  MATH  Google Scholar 

  23. Laursen TA, Simo JC (1993) A continuum-based finite element formulation for the implicit solution of multibody, large deformation frictional contact problems. Int J Numer Methods Eng 36:3451–3485

    Article  MathSciNet  MATH  Google Scholar 

  24. Green AE, Zerna W (1954) Theoretical elasticity. Clarendon Press, Oxford

    MATH  Google Scholar 

  25. Betsch P, Gruttmann F, Stein E (1996) A 4-node finite shell element for the implementation of general hyperelastic 3D-elasticity at finite strains. Comput Methods Appl Mech Eng 130:57–79

    Article  MathSciNet  MATH  Google Scholar 

  26. Smit RJM, Brekelmans WAM, Meijer HEH (1998) Prediction of the mechanical behaviour of non-linear heterogeneous systems by multi-level finite element modeling. Comput Methods Appl Mech Eng 155:181–192

    Article  MATH  Google Scholar 

  27. Liu L, Chen J, Li X, Sherwood J (2005) Two-dimensional macro-mechanics shear models of woven fabrics. Composites Part A 36:105–114

    Article  Google Scholar 

  28. Yvonnet J, Monteiro E, He Q-C (2013) Computational homogenization method and reduced database model for hyperelastic heterogeneous structures. Int J Multiscale Comput Eng 3:201–225

  29. Verpoest I, Lomov SV (2005) Virtual textile composites software WiseTex: integration with micro-mechanical, permeability and structural analysis. Compos Sci Technol 65:2563–2574

    Article  Google Scholar 

  30. Lomov SV, Ivanov DS, Verpoest I, Zako M, Kurashiki T, Nakai H, Hirosawa S (2007) Meso-FE modelling of textile composites: road map, data flow and algorithms. Compos Sci Technol 67:1870–1891

  31. Hamila N, Boisse P, Chatel S (2008) Finite element simulation of composite reinforcement draping using a three node semi discrete triangle. Int J Mater Form 1:867–870

    Article  Google Scholar 

  32. Hamila N, Boisse P, Sabourin F, Brunet M (2009) A semi-discrete shell finite element for textile composite reinforcement forming simulation. Int J Numer Methods Eng 79:1443–1466

    Article  MATH  Google Scholar 

  33. Durville D (2010) Simulation of the mechanical behaviour of woven fabrics at the scale of fibers. Int J Mater Form 3:1241–1252

    Article  Google Scholar 

  34. Durville D (2009) A finite element approach of the behaviour of woven materials at microscopic scale. In: Mechanics of microstructured solids. Springer, Berlin, pp 39-46

  35. Ten Thije RHW, Akkerman R, Huétink J (2007) Large deformation simulation of anisotropic material using an updated Lagrangian finite element method. Comput Methods Appl Mech Eng 196:3141–3150

    Article  MATH  Google Scholar 

  36. Ten Thije RHW, Akkerman R (2008) Solutions to intra-ply shear locking in finite element analyses of fibre reinforced materials. Composites Part A 39:1167–1176

    Article  Google Scholar 

  37. Beex LAA, Verberne CW, Peerlings RHJ (2013) Experimental identification of a lattice model for woven fabrics: application to electronic textile. Composites Part A 48:82–92

    Article  Google Scholar 

  38. Beex LAA, Peerlings RHJ, Van Os K, Geers MDG (2015) The mechanical reliability of an electronic textile investigated using the virtual-power-based quasicontinuum method. Mech Mater 80:52–66

    Article  Google Scholar 

  39. Yu W-R, Harrison P, Long A (2005) Finite element forming simulation for non-crimp fabrics using a non-orthogonal constitutive equation. Composites Part A 36:1079–1093

    Article  Google Scholar 

  40. Lin H, Wang J, Long A, Clifford M, Harrison P (2007) Predictive modelling for optimization of textile composite forming. Compos Sci Technol 67:3242–3252

    Article  Google Scholar 

  41. Tworzydlo WW, Cecot W, Oden JT, Yew CH (1998) Computational micro-and macroscopic models of contact and friction: formulation, approach and applications. Wear 220:113–140

    Article  Google Scholar 

  42. Bandeira AA, Wriggers P, de Mattos Pimenta P (2004) Numerical derivation of contact mechanics interface laws using a finite element approach for large 3D deformation. Int J Numer Methods Eng 59:173–195

    Article  MathSciNet  MATH  Google Scholar 

  43. Hager C, Hueber S, Wohlmuth BI (2008) A stable energy-conserving approach for frictional contact problems based on quadrature formulas. Int J Numer Methods Eng 73:205–225

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

This project was funded by the DFG (STE 544/40-2).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sebastian Fillep.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fillep, S., Mergheim, J. & Steinmann, P. Towards an efficient two-scale approach to model technical textiles. Comput Mech 59, 385–401 (2017). https://doi.org/10.1007/s00466-016-1354-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00466-016-1354-3

Keywords

Navigation